# Quaternion Attitude Control System of Highly Maneuverable Aircraft

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Wie, B.; Barba, P.M. Quaternion Feedback for Spacecraft Large Angle Maneuvers; Ford Aerospace & Communications Corporation: Palo Alto, CA, USA, 1984. [Google Scholar]
- Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Determination and Control; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Chaturvedi, N.A.; Sanyal, A.K.; McClamroch, N.H. Rigid-Body Attitude Control. IEEE Control. Syst.
**2011**, 31, 30–51. [Google Scholar] [CrossRef] - Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Diebel, J. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix
**2006**, 58, 1–35. [Google Scholar] - Graf, B. Quaternions and dynamics. arXiv
**2008**, arXiv:0811.2889. [Google Scholar] - Ogata, K. Modern Control Engineering; Prentice Hall: Englewood Cliffs, NJ, USA, 2010. [Google Scholar]
- Blajer, W.; Kosma, Z.; Krawczyk, M.; Graffstein, J. Prediction of the dynamic characteristics and control of aircraft in prescribed trajectory flight. J. Theor. Appl. Mech.
**2001**, 39, 79–103. [Google Scholar] - Blajer, W.; Graffstein, J.; Krawczyk, M. UAV program motion and control in prescribed mission. J. Theor. Appl. Mech.
**1998**, 36, 963–978. [Google Scholar] - Cook, M.V. Flight Dynamics Principles; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Krawczyk, M.; Szczepanski, C.; Zajdel, A. Simulation and Testing of Flight Stabilization System Using Trimmers. In Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques; Springer: Berlin/Heidelberg, Germany, 2021; pp. 185–196. ISBN 978-3-030-74893-7. [Google Scholar]

**Figure 2.**The assumed aircraft coordinate system [10].

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gołąbek, M.; Welcer, M.; Szczepański, C.; Krawczyk, M.; Zajdel, A.; Borodacz, K. Quaternion Attitude Control System of Highly Maneuverable Aircraft. *Electronics* **2022**, *11*, 3775.
https://doi.org/10.3390/electronics11223775

**AMA Style**

Gołąbek M, Welcer M, Szczepański C, Krawczyk M, Zajdel A, Borodacz K. Quaternion Attitude Control System of Highly Maneuverable Aircraft. *Electronics*. 2022; 11(22):3775.
https://doi.org/10.3390/electronics11223775

**Chicago/Turabian Style**

Gołąbek, Michał, Michał Welcer, Cezary Szczepański, Mariusz Krawczyk, Albert Zajdel, and Krystian Borodacz. 2022. "Quaternion Attitude Control System of Highly Maneuverable Aircraft" *Electronics* 11, no. 22: 3775.
https://doi.org/10.3390/electronics11223775