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Abstract: The research on brain cognition provides theoretical support for intelligence and cognition
in computational intelligence, and it is further applied in various fields of scientific and technological
innovation, production and life. Use of the 5G network and intelligent terminals has also brought
diversified experiences to users. This paper studies human perception and cognition in the quality of
experience (QoE) through audio noise. It proposes a novel method to study the relationship between
human perception and audio noise intensity using electroencephalogram (EEG) signals. This kind of
physiological signal can be used to analyze the user’s cognitive process through transformation and
feature calculation, so as to overcome the deficiency of traditional subjective evaluation. Experimental
and analytical results show that the EEG signals in frequency domain can be used for feature learning
and calculation to measure changes in user-perceived audio noise intensity. In the experiment, the
user’s noise tolerance limit for different audio scenarios varies greatly. The noise power spectral
density of soothing audio is 0.001–0.005, and the noise spectral density of urgent audio is 0.03. The
intensity of information flow in the corresponding brain regions increases by more than 10%. The
proposed method explores the possibility of using EEG signals and computational intelligence to
measure audio perception quality. In addition, the analysis of the intensity of information flow in
different brain regions invoked by different tasks can also be used to study the theoretical basis of
computational intelligence.

Keywords: computational intelligence; quality of experience; human perception; electroencephalogram

1. Introduction

With the continuous development of computer technology, how to deal with and
analyze the potentially insightful information in big data has become an extremely urgent
problem that must be overcome. The emergence of computational intelligence and artificial
intelligence technology has become an effective way to solve the above problems in vari-
ous scientific fields. Many outstanding works have further promoted the application of
computational intelligence. In the field of image analysis, machine learning (ML) and deep
neural networks are used for feature extraction and image segmentation [1,2].

In the field of multimedia communication, with the development of multimedia and
communication technology, new services and applications emerge in an endless stream.
There are more and more ways for people to obtain information through various terminals,
and the audio–visual forms are becoming increasingly abundant; traditional audio, video
and emerging virtual reality, augmented reality and other forms are becoming more and
more convenient. Ubiquitous multimedia and converged media services are changing
people’s lives, which also leads to great changes in business content and data volume.
Whether a product can provide users with satisfactory services has become a decisive factor
for success in the rapidly changing market environment, which is crucial for communication
service providers and business service providers. Under the new market demand, the
communication changes from data communication to multimedia communication. User

Electronics 2022, 11, 3774. https://doi.org/10.3390/electronics11223774 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11223774
https://doi.org/10.3390/electronics11223774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11223774
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11223774?type=check_update&version=1


Electronics 2022, 11, 3774 2 of 15

satisfaction is also affected by a variety of factors, and the mechanism of action is much more
complex [3,4]. At this time, ML is often used for resource allocation, quality management
and quality prediction [5].

Traditionally, the most recognized method is a technology parameter-centric quality
metric named quality of service (QoS) [6], which mainly considers objective technical
parameters such as jitter, packet loss, delay, etc. It has been widely used in technology and
industry. Additional research has found that the key performance QoS of traditional net-
works measures the objective quality [6]. The QoS does not consider the actual experience
of users. Therefore, a good QoS may not satisfy users, which leads to the bottleneck of
improving user satisfaction [7].

International standardization organizations ITU-T [8] defined QoE as “the overall
acceptability of an application or service, as perceived subjectively by the end-user” [9].
According to such a definition, the factors influencing QoE are more diverse, including not
only audio quality, video quality and network quality, but also service content, multimedia
devices and users’ personal feelings [3]. For service providers and network operators, the
shift from the traditional quality evaluation method focusing on QoS service performance
to the QoE evaluation aiming at users’ perception and demand seems to better reflect
the original intention of providing users with better-quality services. Therefore, QoE
research has become an interdisciplinary field involving a lot of knowledge, such as social
psychology, cognitive science, intelligent computing and engineering science [10].

At present, the evaluation methods of QoE are mainly divided into two categories: ob-
jective parameter-based evaluation and intelligent cognitive-based subjective
evaluation [4,7,11], as shown in Figure 1. The objective parameter-based evaluation method
first measures or calculates the objective parameters, or establishes a mathematical esti-
mation model from objective parameters to subjective experience, which is based on the
statistical knowledge derived from a large number of data, then the estimation model is
further used to transform the objective parameters into the estimated value of experience
quality [11]. Both the advantages and disadvantages of this kind of method are very
prominent. One advantage is that if a suitable mathematical model has been embedded
in the QoE evaluation system, the evaluation of QoE will be efficient. Therefore, it is
still the best choice for the actual multimedia business scenario [12]. The disadvantage is
that it is impossible to truly experience the multi-level satisfaction of users without their
participation. Intelligent cognitive-based subjective evaluation refers to evaluation that
requires users’ participation. Either the specific indicators or the information of experience
quality needs to be obtained directly from users. It can be reported by users straight away
or be measured by users’ relevant physiological variables. These physiological data need to
further adopt feature extraction and learning to calculate and analyze the real feelings of the
user [7,10,13]. Based on the correlation between perceptual processes and neurophysiology,
using advanced calculation and analysis of user neurophysiological indicators to quantify
users’ subjective experience is an important way to overcome the bias caused by users’
upper cognitive behavior in the process of subjective feedback [14]. In addition, due to the
amount of data and analytical requirements, computational intelligence techniques also
provide more feasible methods for subjective QoE prediction and quality analysis [15,16].

In multimedia communication, the sound is the sensory channel with the highest
priority, which is the basis of audiovisual perception. Nonetheless, to our knowledge, the
influence of auditory perception on QoE is much less studied than that of visual perception
on QoE. This paper proposed a new method to explore the possibility of measuring the
user’s auditory subjective feelings by collecting the physiological sensory signals from
the user’s central nervous system. The main contributions of our work are summarized
as follows. First, a complete experiment was designed to collect perceptual data of users
under different audio quality conditions, including EEG data, subjective judgment data
and perceptual semantic data. Second, a new method of studying the relationship between
human perception ability and audio noise intensity using EEG signals was proposed, and
the perceptual tolerance of audio noise in different semantic scenarios was obtained. In
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addition, the relationship between audio signal to noise ratio (SNR), audio scenarios, user
emotions, and noise perceptual tolerance was explored. Finally, the location of the brain
area for audio processing was explored, and the connectivity of related brain regions was
quantitatively analyzed.

Figure 1. The evaluation methods of QoE.

The rest of this paper is organized as follows. Section 2 reviews related work for
QoE evaluation. Section 3 briefly describes the experiment design and data recording. In
Section 4, we describe the signal processing and analysis methods in detail, and Section 5
expands on the experimental results and discussion. In Section 6, we conclude the current
work and give the direction for future work.

2. Related Work

Since the concept of QoE was proposed, there has been a lot of excellent work pub-
lished continuously on QoE prediction and evaluation. In the paper [17], the authors used
subjective mean opinion score (MOS) data and evolutionary algorithms to optimize QoE
on a global scale. In the paper [18], deep learning (DL) was used to extract generalized
features and representation learning from text data, video and audio data and classification
parameters, and finally achieved QoE prediction through the classifier. The data in the
above works came from communication networks and multimedia devices. Psychological
and physiological data were retrieved directly from the user. The psychology aspect mainly
involves the user questionnaire, the ratings, and so on. The physiology aspect mainly
involves the collection and processing of users’ physiological signals. Currently, physiolog-
ical measures used to assess the quality of multimedia experience fall into three categories:
central nervous system measurement, peripheral autonomic nervous system measurement,
and eye measurements [19]. Human primary perception and thinking activities belong to
the central nervous system function. The neural connections between attention, decision
making, and memory in animals and humans have been described in a wide range of
experimental studies [20]. Because the physiological indicators measured by the central
nervous system can directly reflect human perception and other thinking activities, this
method is more conducive to the calculation and analysis of users’ perception and cognitive
process of multimedia stimulation [14]. The most common devices available are electroen-
cephalography (EEG) [19], near-infrared spectroscopy (NIRS) [21], functional magnetic
resonance imaging (fMRI) [22] and magnetoencephalography (MEG) [23]. The activity
of the peripheral autonomic nervous system is not controlled by the upper cognition of
the brain. The peripheral autonomic nervous system regulates physiological functions
such as respiration, heart rate and skin conductance, so electrocardiography (ECG) [24]
and electrodermal activity (EDA) [25] can be used to measure the fatigue degree and emo-
tional changes of users. There is also an eye measurements method that evaluates QoE by
measuring eye gaze tracking, blinking, or pupillometry [26].

EEG is one of the basic theoretical research methods for brain science. Human mental
and physical activities are dependent on bioelectricity. The brain produces and transmits
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different but regular electrical signals all the time. Therefore, the physiological signals of
brain activity can overcome the influence of user fatigue, preference, educational back-
ground and external environment when analyzing the user’s real feelings [27]. When
neurons in the brain fire, they penetrate the brain’s dura and skull, creating a weak wave
of electrical potential on the brain’s skin. This allows non-invasive EEG measurements to
infer the firing of intracranial neurons, which can be observed and collected by attaching
special electrodes to the surface of the scalp [27]. The location of these electrodes is usually
specified in the 10–20 standard system, and the appropriate reference electrode is selected.
A standard system facilitates the spatial localization and signal tracking of electrodes in
EEG signal analysis.

Induced event-related potentials (ERPs) [28], time-frequency domain analysis [29]
and spatial brain connectivity [30] are important methods for EEG experiments and signal
processing. ERPs is a special brain potential evoked by sensory stimulation and cognitive
process in the brain. The relative strength of the component is significantly improved
during the superposition averaging process. After the occurrence of sensory stimulation
events, the waveforms of specific channel signals show distinct multiple fluctuations in
sequence, and these peaks and troughs represent different patterns of ERPs. The middle-
latency response generally refers to the potential induced by 50–200 ms, mainly including
N100, P100, N200 and P200. In the paper [31], the authors pointed out that N100 was
widely present in a variety of cognitive processing functions, including auditory, visual,
behavioral and cognitive tasks, and it can reflect early simple sensory processing and can be
used as a biomarker of neuroplasticity. P300 is the neural activity triggered by task-related
target stimulus, which is an important aspect of ERPs research. It is a widely existing
component that can be recorded and observed in the scalp, with a large amplitude and a
wide span [32]. The P3a subcomponent reflects the top-down frontal attentional mechanism
during task processing. Another subcomponent, P3b, reflects top-down temporoparietal
activity related to memory mechanisms [33]. N400 can be used as a neurophysiological
index for semantic priming, with the absolute value of N400 amplitude being smaller when
a word is a good match with the previous word/context, and larger when the two do
not match [34]. The time-frequency decomposition of non-stationary time signals, such
as continuous wavelet transform (CWT) [35], discrete wavelet transform (DWT) [29] and
empirical mode decomposition (EMD) [36], are effective EEG signal analysis methods,
which can accurately capture and locate transient features in the time domain and the
frequency domain to better understand the dynamic characteristics of the human brain.
Assessing information exchange between brain regions is also a common method for
analyzing EEG signals. This method can be combined with graph theory to analyze and
quantify the structure, function and causality of the brain. The directed transfer function of
the autoregressive model framework was proposed and used to determine the direction
and frequency content of brain activity, and the validity of the DTF algorithm was verified
by real neurobiological data [37,38]. In the paper [39], the authors validated a connection-
based EEG feature detection method using ML based on tone-mapped high dynamic range
videos and confirmed that DTF outperformed undirected functions.

It is clear from a large amount of research that visual stimuli have been studied far
more than auditory stimuli. In the paper [40], the authors pointed out that there were
not as many physiological studies on hearing as vision, so early auditory perception
activation could be explored by means of physiological measurement and computational
intelligence. In our previous article, we carried out some preliminary research, including
recruiting volunteers, collecting EEG signal samples, selecting appropriate threshold of
DTF to construct edge sets and using weighted degree for clustering [41]. The work of this
paper was based on the previous work, so part of the previous experimental results are
presented in Section 5.3.
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3. Design of Experiments
3.1. Procedure

The experiments were performed in the Wireless Multimedia Communication Lab
(WMC) at Tsinghua University. The subjects were required to complete all the experimental
contents in the professional EEG shielding room, as shown in Figure 2. The process of signal
acquisition required the subject to complete all experiments in a professional EEG shielding
chamber. This shielding room can strictly control external noise, indoor temperature, light,
and electromagnetic interference. Mobile phones and other devices were banned during
the experimental phase. Before the experiment, every participant was asked to read and
sign an informed consent form. The researchers explained the experimental procedure
and operation to the subjects in detail. The subjects did not know the specific principles
and methods of the experiment. During the experiment, the subjects had to complete their
tasks alone in the shielding room. Researchers could watch the indoor situation through a
monitor in the control room and the brain waves of the subjects through a computer screen
in real time. In special cases, researchers could communicate with the subject through the
internal microphone and sound system as necessary.

We recruited 12 students and young teachers as volunteers, consisting of 6 females
and 6 males, aged between 18 and 28. None of them had major illnesses. They all had
normal hearing and had never had any neurological problems. Participants were tested in a
soundproof, standardized EEG lab and asked to minimize blinking, make body movement,
and swallow during the experiment. Two of the subjects’ data were discarded due to the
too many behavioral interference signals. We finally admitted EEG data from a total of
10 subjects [41].

Figure 2. EEG experiment environment

3.2. Stimuli and Experimental Procedure

In the experiment, four kinds of specially processed audio materials with very different
semantic content were played through the headset, and each audio clip was played for
15 s. The four semantic contents were classical piano music, ocean waves, fire alarms and
mosquitoes, all with periodic rhythms. Six levels of white Gaussian noise were added to
each audio clip. The six Gaussian noise levels were defined according to the power spectral
density of noise, which was 0, 0.001, 0.005, 0.01, 0.03 and 0.1. Depending on the level, the
noise was added to the audio from 2s to 6s and lasted for 5 s. The noise of level 1 started
from the second second; the noise of level 2 started from the third second, and so on. In the
end, 24 different audio clips were obtained.

In each section of the experiment, the audio clips (24 in total) were randomly played
twice. So, in the whole experiment, all the audio clips (24 in total) were played six times.
After each audio clip was played, the subjects were asked whether they could tolerate
the noise in the audio. A response of Y meant yes, and N meant no. At the end of each
section, subjects rested for 3 min. At the end of the experiment, the subjects were asked
to complete a subjective audio semantic questionnaire. We used the semantic difference
method to make the subjects perform multiple perceptual evaluations on four different
kinds of audio. The subjects were asked to evaluate three contrasting pairs of attributes.
They were pleasant–unpleasant pair, relaxed–tense pair, and calm–upset pair. Matlab was
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used for audio material synthesis and signal processing, and Presentation, a program used
for stimulation presentation and experimental control in physiological experiments, was
used for stimulus materials. The whole experimental procedure is shown in Figure 3.

Guide Section 1 Rest Section 2 Rest Section 3 ASQ End

t

Experiments:

Clips 1 Clips 2 Clips 48…
Section:

Playing
audio Q&A Dark

screen
Trial:

15s

Figure 3. The experimental procedure consisted of three sections and two rests. In each session,
48 stimuli clips were played randomly.

4. Signal Processing
4.1. Directed Transfer Function

In brain network research, directional functional brain connections can also be called
causal brain connections. The information between the connected nodes is statistically
causal. Methods for constructing causal connections mainly include directional transfer
function (DTF) and partial directed coherence (PDC), and network connection thresholds
need to be further selected for quantification. In this paper, we used the DTF method to
construct the brain network and carried out degree feature extraction.

DTF is an autoregressive (AR) model [37], which can be described as

D

∑
d=0

Adxt−d = et

where D is the model order determined by Akaike information criterion, Ad is the delay
matrix in AR model, and when d = 0, it is an identity matrix. xt = (x1,t, x2,t, . . . , xk,t) is
the the EEG data based on time series and et = (e1,t, . . . , ek,t) is the vector of uncorrelated
zero-means Gaussian white noise processes. If xk,tis a stationary stochastic process, Ad can
be obtained according to the Yule–Walker equation. Then, the Z transformation gives the
following result.

X( f ) = H( f )E( f )

where H( f ) is the transfer function, X( f ) and E( f ) represent the transformed EEG data
and noise data at frequency f . The DTF value (denoted by DTFi,j( f )) is obtained by
performing column square sum normalization by H and indicates the information flow
intensity between the i-th and j-th electrode.

There is a large amount of redundancy in the DTF coefficients. In the simulated
signal test, only dimensions of 3, 4, 5 or 7 are used frequently [37,42], while in actual
multichannel EEG signal processing, the dimensions are generally much greater than those
in the simulated test. Therefore, we first simulated and tested the same dimensional vector
time series system of the DTF algorithm so as to determine an appropriate threshold to
construct the brain-connected network. We controlled the spectral radius ρ(Ad) to solve the
problem of randomly generating a large number of Ad matrices while maintaining system
stability in high-dimensional vector time series system simulation [37,41]. The formula is
as follows.

r(Ad) ≤ ρ(Ad) ≤ R(Ad)
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where r(Ad) and R(Ad) are the minimum and maximum row summation of Ad, respec-
tively. In the process of simulation, we let each row summation of Ad be a random variable
obeying uniform distribution with extreme values of 0.30 and 0.95; thus, we had for all i.

31

∑
j=1

Ad(i, j) ∼ U(0.30, 0.95)

Specifically, we gave the row summation and then randomly divided it into 5–16 parts
as the elements of the corresponding line, indicating that Ad was non-negative and
R(Ad) < 1.

In our previous work [41], we found a strong correlation between the information
flow accuracy of the DTF algorithm and the Ad of the actual AR model through large-scale
testing of random analog signals. Previous experimental results have shown that when 10%
was chosen as the threshold for constructing the brain connectivity network, the accuracy
of effective connectivity could be guaranteed at most densities of Ad.

4.2. Network Structure and Comprehensive Weighted Degree

In order to characterize the intensity of information flow in the cerebral cortex, we
constructed a brain connectivity graph by DTF( f ) denoted by Gq

f = (V, A, W), where
V = {1, 2, . . . , 31} is the vertex of the network, corresponding to 31 electrodes. A =
{(i, j)|i, j ∈ 1, . . . , 31 and i 6= j} is the directed edge set of the graph and W : A → [0, 1]
represents the weight of each directed edge. Figure 4 shows different brain connection
networks constructed by a subject when listening to piano music of different quality levels.
Different colors represent different connection strengths. As can be seen from the figure,
the strength of noise in audio affected brain connectivity.

Figure 4. The brain connection networks of a subject when listening to piano music with 0 (a), 1 (b),
4 (c) and 5 (d) noise level.

To further quantify the information strength feature, for each vertex v ∈ V(G), we
calculated the following parameters.

deg(v) = ∑
w∈ON(v)\IN(v)

W(v, w) + ∑
w∈IN(v)\ON(v)

W(w, v) + ∑
w∈ON(v)∩IN(v)

max(W(v, w), W(w, v))

where IN(v) and ON(v) are the input and output neighbor of vertex v, respectively,
and deg(v) is the comprehensive weighted degree of v , we also let degGq

f
(V) denote the

comprehensive weighted degree sequence of graph Gq
f , and λq denote that of full-frequency

band [41].

λq =

∑
f

degGq
f
(V)

fmax − fmin + 1
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Figure 5 shows the brain topography of comprehensive weighted degree of a user in
four different audio scenarios under two extreme conditions (the audio with no noise and
the audio with noise intensity of 0.1). It can be seen that the user’s EEG response varies
greatly under different conditions.

Figure 5. The brain topography of comprehensive weighted degree in four different audio scenarios
under two extreme conditions.

4.3. Clustering

For each given audio semantic scenario, we performed the clustering algorithm sepa-
rately on λ0, . . . λ5. Clustering optimization was carried out according to the error sum of
squares criterion function.

J =
K

∑
i=1

N

∑
j=1

wji‖λq − Ci‖

where w is the membership coefficient, which is either zero or one. λq is the feature
data of K-means clustering. This comprehensive weighted degree was 31 dimensions.
The clustering category was defined as the acceptable level space and the unacceptable
level space, and the user’s tolerance level in different audio semantics was determined by
the clustering sample subordination, which was defined as the proportion of EEG signal
samples classified into the unacceptable level category at different noise levels.

5. Result and Discussion
5.1. Results of Subjective Data Analysis on Noise Level

Figure 6 shows the statistical subjective evaluation results of the number of times
the user experiences noise that affects audio quality. It can be seen from the results that
the pure subjective evaluation of users was not completely consistent with the objective
facts. In many cases, the subjective evaluation results were intuitive but not reliable. For
example, in the case of the sound of ocean waves, when the noise level was low, there was
no negative evaluation. Users did not make a lot of negative quality evaluations, even
when the noise level reached level 4, which was unexpected. In addition, although subjects
were required to evaluate only the impact of noise on audio quality, in the last two audio
scenarios of the experiment, when the noise level was zero, a lot of negative evaluations on
audio quality had been received. In fact, the objective audio quality was very good at that
point and did not include noise. This is the disadvantage of subjective evaluation, which is
the uncontrollable subjective arbitrariness of users.
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Figure 6. Number of times the user experiences noise that affects audio quality.

5.2. Results of Semantic Questionnaire Analysis

The attributes and semantic questionnaire analysis results are shown in Figure 7. It
can be clearly seen from the figure that the perceptive semantic radar map of the four audio
scenarios expressed two completely different audio emotions. This data and result can also
be seen in our previous work [41]. The details were discussed in Section 5.3, together with
the physiological data results.

(a) (b) (c) (d)

Figure 7. The subjective audio semantic questionnaire: the result of multiple perceptual evaluations
on four different kinds of audio. (a) Piano music (b) Ocean wave (c) Fire alarm (d) Mosquito.

5.3. Perceptual Tolerance

An important goal of our analysis of EEG signals is to find the level of noise perceptual
tolerance, when the noise level is higher than the perceptual tolerance, almost all subjects
would show an intolerable trend. According to general experience, the perceptual tolerance
of humans to audio noise should be determined by the value of the SNR. Figure 8 shows
the SNR results of all audio stimulus materials with noise in our experiment. As can be
seen from the Figure 8, the value of SNR decreases significantly with the increase in noise
level. In addition, due to the different semantics of the audio scene, the value of SNR
with the same noise level fluctuates in a small range. However, the physiological signal
analysis results given in Figure 9 show that humans have different perceptual tolerance
for the same noise level. In this work, the brain map of the comprehensive weighting
degree was very different from that of high-intensity audio when users listened to raw
audio and low-intensity-noise audio. Therefore, the comprehensive weighting degree of
the full frequency can be used as EEG features for the clustering algorithm. Figure 9 shows
the clustering visualization results as block diagrams of all subjects.

It can be clearly seen from Figure 9 that the user’s noise tolerance level for a particular
audio scenario was determined. Specifically, the user’s limits of audio 1, 2, 3 and 4 were
noise levels 1, 2, 4 and 4, respectively. We suspected the above results were related to the
audio scenario and the difference between the original audio signal and the noise. So, we
focused on the analysis of the semantic environment of the audio and the absolute integral
value of the deviation between the four semantic audios with different levels of white noise.
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Figure 8. The SNR of audio stimulus materials.

Figure 9. Clustering visualization results with comprehensive weighted degree based on DTF: A
lighter block indicates a lower degree of subordination, and a deeper block indicates a higher degree
of subordination. Red dashed lines represent the determination of clustering result.

Combined with the results of the perception semantic questionnaire results in Figure 7,
it can be seen that based on the choices of all subjects, the smooth piano music and ocean
waves make people feel pleasant, relaxed and calm. Under this situation, even the low-
intensity white Gaussian noise on such audio will have a great influence on the subject’s
quality of experience; the user will be very sensitive to the noise, and their brainwave signal
will significantly change. A different situation appears in audio 3 and 4. The fire alarm
makes subjects feel tense and unpleasant, and mosquito audio makes subjects more upset.
In this semantic audio environment, the subject’s sensitivity to noise is reduced, and the
perceptual tolerance of noise intensity is increased. Different audio scenes bring different
perceptual emotions to people, which perfectly explains that humans’ perceptual tolerance
does not exactly correspond to the objective SNR of the audio. Figure 10 gives more details
about the signal absolute difference integral proportion difference between audio with
five levels of noise and raw audio under four different audio scenarios. This is a strong
explanation for the results that the perceptual tolerance of audio 3 and 4 are higher than
that of audio 1 and 2. The clustering results can also be seen in our previous work [41].

In conclusion, the perceptual tolerance of human perception of noise was related to
the audio semantic environment perceived by users, and it was inversely proportional
to the signal absolute difference integral proportion difference between audio with noise
and raw audio under different audio scenarios. Moreover, both EEG signals analysis and
subjective evaluations indicated that users were more sensitive to noise-induced quality
changes in the calming and soothing audio scenario.

Figure 10. The signal absolute difference integral proportion difference between audio with five
levels of noise and raw audio under four different audio scenarios.
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5.4. Connectivity Analysis of Related Brain Regions

To better illustrate the experimental result, we presented the comprehensive weighted
degree of key channel signal of ten users with qualified experimental data. We defined
the key channel as degree >1 in the audio condition (high-quality audio or audio with
noise), and compared with level 0, the amplitude of level 5 increased by more than 10%.
The specific values are shown in the table below.

The brain is divided into frontal, parietal, temporal, and occipital regions. The naming
of the channel electrodes on the EEG cap is refined according to the location of the four
brain regions. The channel F represents the frontal region, P represents the c region, T
represents the temporal region, O represents the occipital region, C represents the central
region, FC represents the frontal central region, CP represents the central parietal region, FP
represents the frontal pole region, the singular represents the left brain, the even represents
the right brain, and Z represents the middle region.

As can be seen from Table 1, when users heard the audio, the degree of nodes of CP
related channels degree was higher than that of other nodes (8/10 users), and the degree of
nodes of FC related channels degree was higher than that of other nodes (8/10 users), too,
indicating that certain brain regions were activated after users heard the audio stimulation.
We found that no matter the audio scenario, the value of node degree would increase
significantly when there was noise, indicating that the activation degree of the electrical
nerve signal in the brain area increased. For example, under four audio scenarios, the
channel degree of the original audio and the audio with noise level 5 increased by 39.59%,
35.08%, 16.07%, and 41.66%, respectively. For another example, the CP2 channel degree
of user 1 increased by 28.2%,65.92%, and 32.3% under the audio scenarios 1, 2 and 4. In
audio scenario 3, the degree of channel CP5 increased by 13.99% in the same brain area.
Similarly, the increase in FC-related channels was also obvious. Under audio scenarios 1, 2
and 3, the degree of FC2 of user 4 increased by 105.88%, 37.97%, and 28.78%, respectively.
The degree of FC6 in the same area increased by 10.16% under audio scenario 2 and 18.75%
under audio scenario 4. These statements suggested that noise had a greater effect on the
brain regions where the channels mentioned above were located. In particular, the central
parietal region where CP channels were located and the frontal central region where FC
channels were located were cognitive-integration-related brain regions and preference-
decision-related brain regions. These were consistent with previous research on brain
perception [43]. All of these were consistent conclusions, regardless of the individual or
the audio scenario. However, activation of the brain regions did not rule out individual
differences. For example, when user 7 was under audio scenario 1 and scenario 4, the
degree value and the increase in F3 and Fz channels in the frontal regions were both great.

Table 1. The values and ranges of degree.

User Audio Scene Channel The Values and Ranges of Degree

1

1 23:CP2 1.95, 2.50, 28.2%
2 23:CP2 1.79, 2.97, 65.92%
3 11:CP5 2.43, 2.77, 13.99%

4
6:FC5 0.95, 1.18, 24.21%

23:Cp2 1.95, 2.58, 32, 3%

2

1 23:CP2 2.02, 2.50, 23.76%
2 23:CP2 1.79, 2.97, 65.92%
3 11:CP5 2.42, 2.86, 18.18%

4
6:CP5 0.89, 1.18, 32.58%
23:CP2 1.96, 2.58, 31.63%
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Table 1. Cont.

User Audio Scene Channel The Values and Ranges of Degree

3

1 28:FC6 1.07, 1.33, 24.29%

2
23:CP2 1.74, 1.79, 2.87%
24:Cz 1.82, 2.11, 15.93%
19:P4 2.13, 2.60, 22.06%

3 28:FC6 0.83, 1.26, 51.8%

4 23:CP2 1.39, 1.53, 10.07%
19:P4 2.31, 2.56, 10.82%

4

1 29:FC2 0.85, 1.75, 105.88%

2 28:FC6 3.05, 3.36, 10.16%
29:FC2 0.79, 1.09, 37.97%

3 24:Cz 2.77, 3.16, 14.07%
29:FC2 0.66, 0.85, 28.78%

4 28:FC6 3.04, 3.61, 18.75%

5

1 6:FC5 1.66, 2.60, 56.62%
23:CP2 1.97, 2.75, 39.59%

2 12:CP1 0.36, 1.18, 227.77%
23:CP2 1.71, 2.31, 35.08%

3
6:FC5 1.64, 2.27, 38.41%

23:CP2 1.68, 1.95, 16.07%
31:F8 1.34, 1.65, 23.13%

4 23:CP2 1.68, 2.38, 41.66%
31:F8 1.16, 1.59, 37.06%

6

1 6:FC5 1.75, 2.24, 28.00%

2
6:FC5 1.45, 2.28, 57.24%
7:FC1 0.84, 1.30, 54.76%
8:C3 1.56, 2.05, 31.41%

3 7:FC1 0.64, 0.84, 31.25%
4 6:FC5 1.64, 2.58, 57.31%

7

1 2:Fz 1.04, 1.23, 18.26%
14:P3 0.93, 1.06, 13.97%

2 12:CP1 1.52, 1.73, 13.81%
14:P3 1.15, 1.63, 41.73%

3
12:CP1 1.04, 1.51, 45.19%
22:CP6 1.11, 1.38, 24.32%
28:FC6 0.73, 1.05, 43.83%

4 2:Fz 1.13, 1.48, 30.97%
14:P3 1.06, 1.39, 31.13%

8

1 13:PZ 0.98, 1.22, 24.48%
23:CP2 0.52, 1.26, 142.3%

2 12:CP1 1.42, 1.77, 24.64%
3 23:CP2 0.55, 1.25, 127.27%
4 29:FC2 0.57, 0.69, 21.05%

9

1 12:CP1 0.54, 1.04, 92.59%
23:CP2 2.2, 2.42, 10.00%

2 11:CP5 1.78, 2.29, 28.65%
3 12:CP1 0.72, 1.03, 43.05%
4 23:CP2 2.36, 2.66, 12.71%

10

1 6:FC5 1.64, 1.77, 7.92%
2 29:FC2 0.61, 0.68, 11.47%
3 11:CP5 1.78, 1.86, 4.49%
4 6:FC5 1.26, 1.82, 44.44%

6. Conclusions

This paper discussed the evaluation methods of human subjective perception from
two aspects. They were the analysis of the physiological signals from the central nervous
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system and the users’ subjective behavioral data. The EEG was used to record real brain
wave data, and brain connectivity maps were constructed to obtain the perceptual tolerance
degree of audio noise in different scenarios. The relationship between audio signal-to-
noise ratio, audio scenarios, user emotions and noise perception tolerance was analyzed
comprehensively. Meanwhile, a change in brain activity intensity was also demonstrated.
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Abbreviations

QoE Quality of Experience.
EEG Electroencephalogram.
QoS Quality of Service.
MOS Mean Opinion Score.
ML Machine learning.
DL Deep learning.
DTF Directional Transfer Function.
ERPs Event-Related Potentials.
NIRS Near-Infrared Spectroscopy.
fMRI Functional Magnetic Resonance Imaging.
MEG Magnetoencephalography.
ECG Electrocardiography.
EDA Electrodermal Activity.
CWT Continuous Wavelet Transform.
DWT Discrete Wavelet Transform.
EMD Empirical Mode Decomposition.
AR Autoregressive.
PDC Partial Directed Coherence.
SNR Signal to Noise Ratio.
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