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Abstract: Conveyor belts in mining sites are prone to cracks, which leads to dramatic degradation of
overall system performance and the breakdown of operation. Crack detection using radio frequency
identification (RFID) sensing technology is recently proposed to provide robust and low-cost health
monitoring systems for conveyor belts. The intelligent machine learning (ML) technique is one of the
most promising solutions for crack detection and successful implementation within the IoT paradigm.
This paper presents a conveyor belt structural health monitoring (SHM) model using ML and Internet
of Things (IoT) connectivity. The model is extensively tested, and the classification is conducted based
on simulated data obtained from an Ultra High Frequency (UHF) RFID sensor. Here, the sensor is
laid on a belt, and the data are obtained at different crack orientations of vertical, horizontal, and
diagonal cracks, for varying crack widths of 0.5 to 5 mm at 10 different locations on the sensor. The
ML model is tested with different input features and training algorithms, and their performances are
compared and analysed to identify the superior input feature and training algorithm. This method
produces high accuracy in determining crack width, orientation, and location. The findings show
that the proposed detection system based on ML modelling could detect cracks with 100% accuracy.
The proposed system can also distinguish between vertical, horizontal, and diagonal cracks with an
accuracy of 83.9%, and has a significant identification rate of 84.4% accuracy for detecting crack-width
as narrow as 0.5 mm. Moreover, the model can predict the region of the crack with an accuracy of
95.5%. Overall, the results show that the proposed model is very robust and can perform SHM of
conveyor belts with high accuracy for a range of parameters and classification scenarios. The method
has huge industrial significance in coal mines.

Keywords: conveyor belt health monitoring; crack detection; UHF RFID sensor; machine learning

1. Introduction

Structural health monitoring (SHM) is a vital mechanism to ensure the safe and reliable
operation of macroscale essential structures such as bridges, dams, and mining assets such
as transporting conveyor belts. Although these structures are expected to operate with
high reliability at different loading scenarios within their safety confines, the prolonged
exposure to harsh environmental conditions and nonstop operational consignments causes
deterioration of the structures and terminates their operations [1]. Such inevitable degra-
dation in operational services is expected due to the introduction of fatigue and cracks.
Hence, large-scale structures are always in need of ongoing inspection and maintenance [2].
Smart sensing using passive RFID sensors can monitor and repair structural deteriorations
and manage urgent attention requirements [3].

The conveyor belt is the main asset in the mining production process. The economic
benefits of mining are mainly dependent on the conveyor belt’s healthy operation. Although
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steel cord is usually used in belt compositions to increase their tensile strength, the conveyor
belt still suffers from tears due to compression, contact with sharp foreign materials,
manufacture failure, etc. [2].

Since belt tearing happens frequently, numerous contact and wireless-based damage
detection methods have been researched in the literature. Some contact detection methods
are linear detection, oscillating roller detection, vibration detection, pressure detection, and
bandwidth detection [4]. Contact-based detection is faster, but it can lead to operational
interference and inaccurate detection. Non-contact detection methods studied in the
literature are electromagnetic induction detection, ultrasonic detection, X-ray detection,
and image processing technology (IPT) [5]. However, the extreme environmental conditions
of coal mines can limit these methods’ reliability. Another method of induction coil sensors
based on Eddy current-based testing (ECT) or magnetic loop is also widely employed for
the detection of structural cracks, it is not appropriate in the case of non-conductive material
like conveyor belts [6,7]. In cases where it is adapted to monitor conveyor belt health, it
is fragile and can produce false positives [8]. RFID technology-based sensors are recently
adopted in realizing SHM together with the IoT-based smart environment vision [9]. The
term Internet of Things (IoT) was first devised for supply chain management [10]. However,
with the rise of crossover technology throughout the past decade, the IoT term has evolved
to be an umbrella that includes a variety of applications related to industries, health,
logistics and utilities, and large-scale infrastructure health monitoring [11]. The objective of
IoT is to create a network of interconnected entities that can retrieve (sense) information
from the environment, communicate with the World, and utilize the current Internet-based
services to deliver application, analysis, and control, all within the realm of the virtual
infrastructure provided by cloud computing. Kevin Ashton, the first person to coin the
term IoT, believed RFID was a prerequisite for the Internet of Things [10,12]. Much existing
content in the Internet of Things has RFID as the foundation and networking core of the
construction. For our proposed conveyor belt monitoring, it requires the integration of
sensors into the belt and typically a reading distance of 20 cm is sufficient to extract the
sensing information. The extracted sensing information can easily be collected, transferred,
and processed in a central processing hub or operators’ dashboard by using a simple
wireless sensor network made of LoRaWan or mesh network topology. Thus, it can be
said that RFID is the core technology of IoT [13]. RFID is economical, can communicate
wirelessly, and can be designed to have sensing abilities. Extensive research has been
conducted to make RFID tags immensely robust [14]. They are frequently used in the
supply chain, access/security, and retail ID industry for their flexibility [15] and can have a
reliable operation in harsh environments. Moreover, the RFID sensors can be made from
flexible materials and embedded inside the belt layers to provide protection to the sensors
and avoid any damage during the installation process and the redirection process of the
conveyor rollers [16,17]. Apart from its usual implementation in identification and tracking,
the tag response can represent physical properties such as strain, fatigue, and humidity.
Moreover, passive RFID sensors are wirelessly powered to provide sensing results without
needing further electronic devices or batteries [9]. The integration of RFID technology with
a Wireless Sensor Network (WSN) can create a collective sensing system that can interpret
real-world physical parameters and play a core role in the shaping of smart sensing within
the IoT framework.

In recent years, ML has emerged as a powerful technique to predict the health status of
large structures. ML has various advantages compared to the traditional prediction meth-
ods such as flexibility with large data sets, enhancing detection by eliminating irrelevant
input features, adaptability, and prediction ability of nonlinear behavior [18]. Hence, ML
is used to detect the structural health of civil constructions such as building columns [19],
asphalt road pavement [20], steel pipes [21], and gas turbines [2]. However, most of the
studies conducted the machine learning method on images acquired [22], and other studies
are based on vibration data. However, the consolidated process in [22] requires large
preprocessing and installation steps. Moreover, the system in [11] sometimes mistakenly
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identifies dents or bends as cracks. In the case of mining conveyor belts that run for several
miles and can suffer from many environmental factors such as dust and external light,
crack detection based on image approach is infeasible. Unlike the switching principle,
RFID sensors produce a response (RSSI—Received Signal Strength Indicator) at all times,
irrespective of the health status of the belt [23]. There is never a blank moment. The
introduction of cracks alters the RSSI response and each crack type demonstrates individual
patterns, which can then be mined/learned by machine learning [24]. It has to be noted that
although the change happening in RSSI response due to the cracks are distinct, there might
be overlapping in values between the different types of crack types, locations, and widths.
Such decision boundaries and minute variations cannot be characterized and detected
without machine learning-based classification.

In this paper, we propose a novel concept, design, and training approach for an
artificial neural network (ANN) based on data obtained from the UHF RFID sensor for
conveyor belt crack detection. This includes the exclusive collaboration of techniques to
ensure high detection accuracy. Simultaneously, the proposed approach can be integrated
into the IoT paradigm of smart sensing. However, to be able to fuse ANN classification
with UHF RFID-based sensors into the high-profile IOT notion, a robust classifier needs
to be designed. The robustness and validity of a classifier are reliable on several intrinsic
machine learning parameters. Thus, our second goal is to diversify our designed network’s
performance by analyzing and comparing it over a range of training algorithms, and
different input data parameters. The unique model uses an array of different data obtained
by simulation of the UHF RFID sensor and belt. The model is robust enough to produce a
very high accuracy rate without requiring complex input parameters. The ANN is capable
of predicting three different types of crack orientations. Moreover, it can predict the region
of the crack and classify crack widths even when they are as narrow as 0.5 mm. So, our
proposed system can classify among several cases. The experimental results show that our
proposed method produces crack detection with 100% of accuracy.

The paper is organized as follows: the related literature and studies have been re-
viewed to provide a succinct summary of existing research. It is proceeded by the detailed
theoretical background of UHF RFID sensing principle, ML principles, and the training
algorithms implemented in this article. Then the methodology adopted in this paper is
described, followed by a projected layout of the integration of the designed model and IoT
concept. After that, the experimental details are reported. Later, the results and analysis are
discussed in detail and the study is concluded by summarizing the findings and inferences.

2. Related Works

IoT has great potential and capacity to simplify a complex system by integrating
several sophisticated applications. At a preliminary level, IoT is a system of connected
objects with unique identifiers such as RFID tags which are also used as sensors. Here, many
objects are connected to the Internet and share data among themselves, such as mobile
phones, home appliances, city infrastructures, medical instruments, and plants equipped
with sensors [25]. Recent rapid development in the WSN and sensing technologies such
as RFID- based sensors is a great boost to IoT-based environmental and structural health
monitoring systems. The SHM is integrated into IoT by deploying multiple sensors across
the structure, and the sensing data are shared with the processing centres to extract the
physical parameters such as the crack’s width, and determine the current status of the
structure in real time. Then, the operators can remotely access, monitor, and control the
operation with the Internet [11]. Such an integrated approach of SHM and IoT enhances
reconfiguration flexibility, connecting many platform devices and providing remote access
to the operations.

In the mining industry, maintenance requirements of the assets can save costs. For
instance, for Goldcorp, a mining company, utilizing gigantic machines to transport materials
can incur a loss of two million dollars per day if these machines have a breakdown. Now, the
company can save huge costs by applying ML technology to predict its equipment’s health
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with more than 90% accuracy [26]. SHM can draw immense benefits from the predictive
capabilities of machine learning. More specifically, machine learning algorithms can learn
a system’s typical behaviour from sensors’ data and identify when something out of the
ordinary begins to happen [27]. The potential of integrating multiple domain applications
into IoT increases the amount of data collected from smart structures, which is hard to
handle with traditional monitoring systems. Here, machine learning can work together
with big data technologies to store and process the monitoring data. ML-based SHM is
more suitable for IoT because it can convert simple sensor readings to large-scale industrial
actions such as scheduling maintenance. The most useful feature of ML for IoT is that it
can develop its prediction efficiency by repeated learning and feedback algorithms [28]. It
is worth mentioning that IoT system based on human-generated input is prone to errors,
which can also be easily eliminated by ML technology.

RFID sensors can be utilized with ML to create an embedded wireless system with
many significant features such as low-cost, and reduced human or manual intervention to
maximize the possibility of detecting structural deformation. RFID technology is mainly
built up of RFID tags and readers. The UHF tag has a small microchip and an antenna to
transfer data via radio waves to the reader, where the data in the microchip (IC) represents
the tag’s ID and the reader collects and processes the RSSI from the sensors. Here, the RSSI
is varied according to the sensing results. The reader also provides the energy required to
power the passive RFID tags [29].

This flexible SHM system would be an ideal fit for the services-oriented IoT archi-
tecture visioned in Figure 1. For the mining industry, the crack sensing method using
RFID sensors and ML can overcome the computational and energy constraints of the IoT
domain because ML has the ability to perform such complex computations at reduced
energy requirements [26]. The SHM system incorporating IoT consists of data acquired
from the sensors that are connected to an external platform. Here, the monitoring centre is
automatically alerted when a crack is identified by ML. This allows the person in charge to
access this information from anywhere across a range of devices. Tables 1 and 2 summa-
rize crack detection methodologies based on the use of ML and other Non-ML methods
presented in the literature, respectively. As shown in Table 1, most of the ML-based de-
tection techniques use images as their inputs and involve civil structures such as roads,
buildings, and concrete. Performing identification using images requires complex feature
extraction methods leading to high memory usage and lengthy parameters. There is always
the requirement to finely detect the underlying damage from impeding factors such as
shadow and resolution. Table 2 also shows that the other sensing methodologies using
RFID techniques rely on new tag design and the computation of new parameters, and are
not implemented on materials such as conveyor belts, despite the SHM of conveyor belts
being an immense industrial requirement.

The novelty of detecting the crack pattern of conveyor belt cracks with respect
to the cracks’ orientations, widths, and locations cannot be achieved without using
machine learning. Here, our paper is the first publication in the literature that discusses
the various sensor features that can be used for the machine learning training algorithms
and also analyses the algorithm which is suitable to provide highly accurate results
in determining the crack pattern. Thus, according to our best knowledge, a crack
detection for the conveyor belt using RFID based sensor with machine learning is still
not addressed in the literature.
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Figure 1. Envisioned IoT centric Machine Learning based UHF RFID SHM system.

Table 1. Summary of Existing SHM Systems Based on ML-Based Techniques.

Study/Year Features Disadvantages

Detection of Conveyor Belt
longitudinal tears [30]
2019

- Visual detection using Visible and
Mid-Infrared images.
- Accuracy rate 92.04%.

- Works with steel cord conveyor belt.
- Cannot detect upper and lower surface tears in a
single run.
- Actual installation requires continuous dust and
water cleaning for the system to
operate successfully.

Surface crack detection of gas
turbines [2]
2020

- IPT as the pre-processing step followed
by convolutional neural network (CNN).
- Accuracy rate 96.26%.

- Input data sent to CNN needs to be shuffled so
that it consists of more non-crack data.
- Does not cover all crack types and angles.
- Smoothing might lower the chances of detecting
small cracks.
- Requires data annotation.

Multi-surface damage detection
of conveyor belt [31]
2019

- Requires a focused light source to
illuminate while capturing images.
- Image Features are extracted using the
visual saliency method.
- Tested in ideal and wet conditions.

- Undamaged images are not included in
the modelling.
- Training and testing conducted with only
damaged data can cause overfitting.
- Cracks misclassified as tears.

Asphalt pavement crack
detection [20]
2017

- Images are obtained by Mobile mapping
system, then transformed to pavement
surface image.
- Uses Graphical User Interface (GUI) tool
to train and test the SVM model.

- Hard to detect cracks located on the far side of
the camera.
- Low transverse crack detection rate.
- Requires manual evaluation of images for
quantitative analysis,

Asphalt pavement crack
detection [22]
2017

- Precision 90.13%.
- Input Image is captured using 3D laser
imaging technology.

- Time-consuming.
- Only training the model took 9 days.
- Has difficulty detecting hair-line cracks.
- Confuses pavement edges with cracks.
- Works with 3D data.
- Requires modification for other data types.
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Table 1. Cont.

Study/Year Features Disadvantages

Building column crack detection
[19]
2020

- Can detect Horizontal and Vertical
cracks.
- Acoustic features are captured using
Microwave sensor.
- Crack Error Rate:
- 0.1% (No Crack)
- 0.2% (Horizontal and Vertical Crack).

- Requires denoising.
- Acoustic features are unsuitable for application in
another structural crack detection.

Conveyor Belt damage
detection [32]
2021

- Can detect surface wear, surface
damage, breakdown, and tear.
- Experimentation was conducted with
3000 images.
- verify the generalization ability of the
proposed model.
- Accuracy of 89.12% with the proposed
Improved-Yolov3 algorithm.

- Graphics memory overflow occurs.
- Light and surface debris might degrade images.

Table 2. Summary of Existing SHM Systems Based on Non-ML Based Techniques.

Study/Year Feature Disadvantages

UHF RFID sensor-based crack
analysis of Aluminium beam
[33]
2018

- Impedance and Reflection coefficient
- Circular patch antenna with opening in
the middle as sensor.
- Sensing is conducted by calibrating the
change in resonant frequency with
variations in crack depth.

- Suitable for metal structures only.
- Requires calibration after every installation.

Enhancing Low Frequency (LF)
RFID sensing system to detect
defective metal [34]
2018

- Time-Frequency representation of tag
response.
- Sweep frequency reader is developed to
capture the altered resonant frequency
occurring due to cracks, wireless
environment, and coupling between tag,
reader, and defect.
- Effect of distance is suppressed.

- The resonant frequency shift occurring due to the
metal has to be known beforehand.
- During sweeping, cracks cannot be determined
when extracted features overlap.

UHF RFID tag split into two
sections to sense cracks in
bridges [35]
2013

- Power.
- The tag is split into two components
- tag antenna and moveable chip loop.
- Calibration curve is generated based on
varying distances and
corresponding power.

- Can only work with displacements occurring in a
straight line in one direction.
- Does not work in orthonormal planes. Function is
dependent on the power delivered by the reader
and tag antenna.
- Chip loop will operate if displacement is
too large.

UHF RFID sensor detect cracks
in Ultra High Performance
Concrete (UHPC) [36]
2019

- Backscattered power.
- Tag is directly attached to the surface by
removing the substrate between them.
- Tested using both fixed and handheld
readers to test practical applications.
- Tested on UHPC specimens with and
without metal fibres.

- Each experiment conducted in identical
controlled settings, but RSSI will be affected by
environment in real life.
- Small detection area.
- UHPC structure only.

3. Theory
3.1. Principle of RFID Sensing

A UHF RFID antenna-based crack sensor is founded on the theory that a crack will
alter the radiation and impedance pattern of the antenna. The sensing results of cracks are
obtained from variations in the received power compared to the power received from the
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sensor in the case of a healthy state with no crack. More specifically, the received power at
the reader antenna in the presence of a crack is expressed as PR[Ψ] [33]:

PR[Ψ] =

(
4πd
λ0

)2 Pth
GRGT [Ψ]τ[Ψ]ηρ

(1)

where d is the distance between the reader and tag antennas, λ0 is the free-space wavelength,
Pth is the minimum threshold power to activate the tag chip, GR is the gain of the reader
antenna, GT [Ψ] is the gain of the tag antenna and ηρ is the polarization mismatch between
the reader and tag antennas. The power transmission coefficient, τ[Ψ] , is the impedance
mismatch between the tag chip impedance (Zc = Rc + jXc) and the tag antenna impedance
(Za[ψ] = Ra[ψ] + jXa[ψ]), and is given by [33]:

τ[ψ] = 1−
∣∣∣∣Zc − Z∗a [ψ]
Zc + Z∗a [ψ]

∣∣∣∣2 =
4RcRa[ψ]

|Zc + Za[ψ]|2
(2)

where * indicates the conjugate value, [ψ] indicates the presence of a crack. As shown in (1),
in the presence of a crack, the received power is changed due to the variations of GT [Ψ] and
τ[Ψ] caused by the variation of Za[ψ] in (2) [33]. Considering practical implementations
where the output metric is RSSI, the relationship between gain, transmission coefficient,
and RSSI is directly verified [17].

RSSIi
r,g

(
δ, d, εe f f

)
=

λ

4πdi

4
· ηp· G2

r · G2
g

(
δ, εe f f

)
· τg

(
δ, εe f f

)
(3)

Hence, we can infer that the theoretically derived parameters are equivalent to RSSI.
Additionally, machine learning detection accuracy using RSSI would produce similar
comparable results as to those parameters used in this paper.

3.2. Artificial Neural Network Overview

The ANN is a machine learning method that builds on the notion of imitating the
biological decision process of the human brain. In contrast to the traditional regression
method, the ANN can model complex nonlinear correlations. The ANN is also extremely
resistant to errors and faster as it can be implemented in parallel processing. Similar to the
neurons in a biological system, the ANN is composed of interconnected nodes and layers
as follows.

(1) Topology

Figure 2 shows a general architecture of an ANN. The nodes are linearly arranged in
phases called layers. Generally, there are three sets of layers, called input layers, output
layers, and hidden layers. The nodes can be interconnected in two methods. The first
method is a connection with one direction and one has a two-direction connection, where
the output can be an input. So, there are two types of neural networks called feedforward
and feedback network.

(2) Mechanism

Neural network structure is based on three modules: properties of the nodes, network
model, and learning methods. Each node relates to other nodes through connections with
particular strength factors called weights. It denotes the steepness of a function. On the
other hand, bias is similar to the intercept added in a linear equation. Hence, bias is a
constant, which helps the model to fit best for the given data. Each node has a threshold
value that needs to be achieved by the weighted input sums for it to be activated and allow
the signal passage. Once a node is activated, the signal is transformed through a transfer
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function f and permitted to proceed to the next nodes. Mathematically this model can be
represented by [37]

y = f
n

∑
i=0

wixi − T (4)

where y is the output of the node, wi is the weight of the input xi, and T is the threshold
value. There are many types of transfer functions such as Sigmoid and step. Owing to the
nonlinear nature of most problems in nature, nonlinear transfer function is more useful
than linear ones [38].
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(3) Learning

During network training, the ANN adopts a learning process to modify or tune
the weights to the optimal values. Within the learning process, there are two categories:
supervised learning and unsupervised learning. In supervised learning, a sample of
inputs and corresponding outputs are provided as a training set. The training set needs
to be created such that it exhibits the model’s features well, to prevent unreliability in the
generated model. When the generated model produces the expected outcomes for a wide
range of inputs, the supervised model is finalized by fixing the necessary weights.

Unsupervised learning, on the other hand, studies only the input data to find whether
it contains a characteristic pattern within itself or not. It does not examine the target output
values. Regression is an example of supervised learning whereas k-means clustering is
how an unsupervised method works [37].

(4) Training Algorithms

The main difficulty in applying ANN-based crack detection is discovering the most
suitable training function for the classification task. Another objective of the study is to
discover the most suitable training function for the classification task. This is achieved by
utilizing 4 types of training algorithms, which are:

1. Gradient descent-based resilience back-propagation algorithm
2. Scaled Conjugate back-propagation
3. Bayesian Regularization (2 and 3 are both under conjugate-based algorithms)
4. Levenberg-Marquardt algorithm is selected from Quasi Newton-based algorithm

branch.

The algorithm outcomes are compared for each of the 4 intended detection tasks:

1. Between Healthy and Cracked
2. Between three types of crack orientations
3. Detecting a crack width of 0.5 mm
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4. Detecting the location of the crack

In this paper, the performances of four types of training algorithms in feedforward
neural networks are compared for each of the four forms of classification. The proposed
work compares training algorithms based on their convergence rate and the correctness of
the classification.

a. Gradient Descent Algorithm

Gradient descent is an optimization procedure for finding a local minimum of a
differentiable function. Gradient descent has the goal to diminish the cost function by
finding the values of a function’s parameters (coefficients). It is one of the most popular
training algorithms, which updates weights and biases in the direction of the negative
gradient of the performance function [39].

b. Resilience Backpropagation

This is a gradient descent-based technique that eliminates the effects of the magnitudes
of the partial derivatives [40]. Here the sign of the derivative is used to determine the
direction of the weight update and the magnitude of the derivative has no effect on the
weight update. The size of the weight change is determined by a separate update value of
the derivative of the performance function and the number of iterations [41].

c. Conjugate Gradient Algorithm

In the case of the basic gradient descent algorithm, the weights are adjusted towards
the negative of the gradient, where the performance function decreases fastest. However,
this method does not always give rise to the quickest convergence. In the conjugate gradient
algorithm, a search is conducted along conjugate directions, instead of the diminishing
direction. It produces faster convergence. The conjugate gradient algorithms can work
better for bigger batches of weights with their requirement for low storage spaces [42].

d. Scaled Conjugate Gradient

It uses a size scaling mechanism and avoids a time-consuming line search per learning
iteration. This mechanism produces a faster convergence by reducing the computation in
each iteration, compared to many other algorithms [43].

e. Quasi-Newton Algorithm

Newton’s method is capable of producing better and faster optimization than conju-
gate gradient methods. Newton’s method utilizes the Hessian matrix (second derivative)
of the performance index at the current values of the weights and biases. Newton’s method
has a faster convergence rate but is complex due to the Hessian matrix calculation. Hence
Quasi-Newton method was created that skipped the Hessian matrix calculation with an
approximation at each iteration stage.

The Levenberg–Marquardt backpropagation algorithm is an iterative Quasi-Newton
method that ensures the decrease of performance function at each iteration, making it the
fastest training algorithm. It expresses the minimum of a multi-variable function using the
sum of squares of non-linear real-valued functions. This function requires larger memory
and computation time due to the calculation of both gradients and the approximated
Hessian matrix [44].

f. Bayesian Regularization

Bayesian regularized artificial neural networks incorporate the Bayes theorem into
regularization to reduce cross-validation requirements while being more robust at the same
time. Regularization is the step of adding a weight penalty in the form of a diagonal matrix,
to control the problem of inflation of the weights that can occur when the model is complex.
Bayes’ theorem is the process of making inferences regarding past events using probability.
Bayesian Regularization based functions can overcome overtraining because there is a
measure to stop training if a certain procedure is reached. It is also hard to overfit because
it does not train irrelevant parameters or weights [45].
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4. Methodology

The purpose of this study is:

1. To propose a novel machine learning-based coal mining conveyor belt crack detection
incorporating the UHF RFID tag sensor that can:

• detect cracks,
• detect the type of cracks among vertical, horizontal, and diagonal,
• detect as low as 0.5 mm of crack width,
• predict with high precision the location of the crack on the belt.

2. To provide a further detailed comparative analysis of crack detection using a wide
range of machine learning algorithms, and inputs.

All these experiments are carried out on a Windows 10 (64-bit) operating system with
i5 processor and 8 GB RAM and Matrix Laboratory (MATLAB) software. In order to best
replicate the actual surrounding environmental effects such as noise and interferences, the
sensor design using the Computer Simulation Technology Microwave Suite (CST) software
takes into account the electromagnetic boundary conditions and the electromagnetic effects
of the belt and sensor materials involved in the simulation. In our proposed approach, we
propose that the reader antenna is fitted and fixed underneath the conveyor belt to collect
the sensor response from the sensors which are embedded inside the belt. So there is no
effect of the minerals on the sensor response and the scenario for the experiment in the
paper is similar to that in real-time. Experiments are conducted by placing the designed
UHF sensor on top of the belt structure and subjecting it to different orientations of vertical,
horizontal, and diagonal cracks, at 10 different locations, for varying crack widths of 0.5 mm
to 5 mm. The measured data to be considered are the sensor complex impedance (Za[ψ]),
transmission coefficient (τ[Ψ]), and the antenna gain (GT [Ψ]). For each crack width, there
are a set of impedances, gains, and transmission coefficients corresponding to 10 different
locations across the belt. Thus, each orientation of crack has data for six crack widths,
which at ten different locations produces a total sample size of 360 features for (Za[ψ]), and
180 features for (τ[Ψ]) and also (GT [Ψ]). The uncracked healthy state of the tag on the belt
has one feature for each calculated parameter. A combination of features for each crack is
tested as inputs to the ANN training stage. Following the previous studies in the literature
such as [21,46], the dataset data is divided into sets for training (70%), validation (15%),
and for testing (15%). Here, as will be demonstrated in Section 6, the simulation results
show that the proposed model achieves a classification accuracy rate of 100% for detecting
cracked states and this illustrates that the training dataset is sufficient to train the machine
learning algorithms.

In order to eliminate any bias in the presentation order of the sample patterns to the
ANN, these sample sets are randomized and normalized to fall within the range of 1 to
−1. In the hidden layer, the reported experimental data are predicted with 10 neurons and
hyperbolic tangent sigmoid transfer function. The number of neurons in the input layer
varies between 1 and 2 depending on the input parameter. The number of neurons in the
output layer ranges from 1 to 5 depending on the number of classes to identify. Since our
problem is a multiclass classification problem, the discrete probability distribution-based
transfer activation function is used in the output layer of the neural network instead of the
sigmoid or linear step function.

Figure 3 shows the flowchart of the proposed model with Za[ψ] as an input. Figure 4
shows the ANN model forming our system for detecting cracked states with an input of
Za[ψ]. Since the paper intends to classify four different cases as mentioned earlier, when
the target classes to determine change, the number of neurons in the output layer will also
change. Figure 5 shows the general neural network structure created to test the algorithms
where w and b are the respective weights and biases of the layers. The output of ANN
represents the detected class.
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The input to the hidden layer of the network is varied and consists of either of
the following,

1. real and imaginary impedance values, Za[ψ],
2. transmission coefficient, τ[Ψ],
3. Gain, GT [Ψ],
4. Transmission coefficient, Gain [τ[Ψ], GT [Ψ]].

The design goal is to obtain high-accuracy results with low computational com-
plexity that can be implemented without the need for additional operations to improve
the accuracy.

5. Integration of RFID-Based Sensors into IoT

In this section, a scenario where the proposed approach can be integrated into the
IoT paradigm of smart sensing has been discussed. UHF RFID sensors are embedded
in the conveyor belt and their output parameters are uploaded into the cloud regularly.
The ML model is installed into the cloud platform and is fed by the incoming sensor data.
The model splits the data into training, validation, and testing sets. The model utilizes
the predetermined network algorithm to train and create a hypothesis. The hypothesis is
validated and tested to produce the final network model. Once the final model is ready,
it is sent to the decision-making endpoint. This trained model continuously performs
classification on the incoming live-streamed input data. It produces verdicts on the current
state of health of the conveyor belt based on the parameters that were (Za[ψ], τ[Ψ], or
GT [Ψ]) impacted by the crack, as it was trained to identify.

6. Experimentation and Results
6.1. UHF RFID Tag and Belt

Figure 6 shows the designed UHF RFID tag sensor used during experimentation
placed on top of the simulated conveyor belt. The sensor is composed of an inductive
loop connected to the IDC resonator via a gap-coupled outer box. The resonating fingers
are closely distributed to increase the total capacitance, mutual coupling, and eventual
sensitivity of the structure. Physical distress such as cracks will be represented through
the variation of the electromagnetic properties. The inductive loop is designed to match.
The commercial UHF RFID chip has an internal impedance of 18—j164 at 915 MHz. The
resonator has a response of 898 MHz. The smith chart and reflection coefficient of the sensor
in the UHF band are depicted in ([16], Figures 4 and 5). The original sample of the conveyor
belt used in the experiment is shown in Figure 7. The total height of the belt is 11 mm. The
belt is composed of several different material layers with different dielectric constants. The
dielectric properties of the layers will cumulatively affect the transmission of signal into
the tag. Thus, the belt’s effect on the RFID tag sensor performance needs to be included
during our crack detection analysis. The belt is composed of a material called Aramid
and Reinforced Fiber layers (Nylon, Polyester, and Cotton) [47,48]. However, since in the
practical visioning of a mining plant, the belt affects the RFID system as a block, microwave
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characterization using the transmission measurement method was used to determine the
dielectric constant of the whole belt for the UHF band [49]. This enabled us to consider
the belt as a single block with an individual dielectric constant, instead of mathematically
calculating the effective dielectric constant which would require the individual dielectric
constant and loss tangent of different layers. Theoretically calculated parameters can
sometimes conflict with physical experimental values, introducing uncertainties and errors
in the desired outcomes. By considering the practical value of our experiment, we aim to
increase our proposed system’s practical feasibility.
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It is worth mentioning that this current work is unique to [16,17] in the sense that it
performs Machine Learning based health status detection on the UHF RFID sensor response.
Whereas, the previous works [16,17] do not contain the ML application. So, the proposed
systems in [16,17] are integrated with ML in this study to provide accurate health status of
the conveyor belt.

6.2. Characterization of Cracks at Different Locations

The conveyor belt and RFID sensor tag are subjected to three types of cracks of
horizontal, vertical, and diagonal orientations as shown in ([16], Figure 12). For each type
of crack, further investigation is carried out by varying the crack widths. Figure 8 shows
the gradual increase of crack widths introduced during the vertical crack as an example.

6.3. Results

Table 3 shows a portion of the set of data that we have computed from our simulation
experiments corresponding to the vertical crack scenario. The sensor is subdivided into
10 regions; thus, the crack occurs at ten different locations. The complex input impedance,
transmission coefficient, and gain for each position and crack width are calculated. The
table lists the measurements for the first two positions.
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Table 3. Simulated input parameters for Vertical Crack Orientation (first two positions).

Position Number 1 2 3 4 5 6 7 8 9 10

Location (mm) (w.r.t leftmost
corner of sensor considered

as 0)
0 14.44 28.88 43.32 57.76 72.2 86.64 101.08 115.52 129.96

Crack width 0.5 mm 1 mm

position Transmission
coefficient (dB) Impedance (ohm) Gain

(dB)
Transmission

coefficient (dB) Impedance (ohm) Gain
(dB)

1 −0.27 15.96 + j220.15 2.218 −0.278 16.38 + j220.09 2.197

2 −0.394 33.30 + j263.98 1.579 −0.406 33.90 + j262.40 1.566

Crack width 2 mm 3 mm

position Transmission
coefficient (dB) Impedance (ohm) Gain

(dB)
Transmission

coefficient (dB) Impedance (ohm) Gain
(dB)

1 −0.324 18.78 + j217.89 1.973 −0.334 19.38 + j217.84 1.970

2 −0.384 32.22 + j263.34 1.744 −0.369 30.73 + j262.43 1.819

Crack width 4 mm 5 mm

position Transmission
coefficient (dB) Impedance (ohm) Gain

(dB)
Transmission

coefficient (dB) Impedance (ohm) Gain
(dB)

1 −0.34 19.7 + j217.73 2.027 −0.346 19.90 + j216.79 2.021

2 −0.365 30.31 + j261.87 1.727 −0.345 28.63 + j262.26 1.848

In order to obtain the optimal model that will produce the best detection accuracies,
we varied the inputs fed to the ANN by using different combinations of parameters, for
example only impedance, gain or transmission coefficient, or a combination of gain and
transmission coefficient.

Based on a range of trials, it was found that for fine classification between cracked and
healthy states, all of the inputs worked well. However, for the identification of other details,
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proposed ANN models worked best when impedance was used as the input parameter,
i.e., impedance manifested the change induced by the crack physiology best.

There are numerous benefits to testing with several algorithms. Experimentations in
multiple settings allow for the enhanced study of comprehensive data preprocessing and
modelling techniques. In practical terms, it will give the researcher more room to navigate
the options at hand and choose the best suitable option depending on the particular
project requirements.

1. Between Cracked and Healthy

For each input element, at ten locations, there are two recognized classes: Cracked
and Uncracked. Table 4 demonstrates the Classification performance comparison between
detecting Cracked and Healthy states. The following observations can be deduced from
the outputs:

• All of the input parameters are highly efficient in detecting cracked and uncracked
states of the belt.

• A maximum accuracy rate of 100% is achieved with all inputs.
• Among the training algorithms, Bayesian Regularization is found to be the most

efficient. It produces a 100% identification rate in all instances. However, it also takes
the longest time to converge in some cases. Having said that, the execution time is still
very low.

• Except the gradient descent technique, the remaining methods produce considerably
higher accuracy rates of at least 84.4%, which is more than acceptable.

• Gain, Transmission Coefficient, and Impedance appear to be the optimal input param-
eter, whereas the combination of the Transmission coefficient and gain fails to produce
good rates for all cases.

Table 4. Classification Performance between cracked and healthy states.

Input Parameter Algorithm Epoch (Iterations to
Converge) Time (s) Classification

Accuracy Rate (%)

Impedance

Scaled Conjugate 47 1 96.7

Bayesian Regularization 104 4 100

Quasi Newton 56 1 94.6

Gradient Descent 49 0.3 75

Transmission
Coefficient

Scaled Conjugate 15 0.4 95.8

Bayesian Regularization 89 2 100

Quasi Newton 10 0.2 98.3

Gradient Descent 80 3 96.3

Gain

Scaled Conjugate 19 0.3 100

Bayesian Regularization 10 0.9 100

Quasi Newton 8 0.23 100

Gradient Descent 8 0.33 100

Transmission
Coefficient, Gain

Scaled Conjugate 24 0.15 100

Bayesian Regularization 12 6 100

Quasi Newton 56 1 s 84.4

Gradient Descent 47 0.3 61.1

Overall, the proposed network is very robust in detecting underlying cracks and
healthy patterns from the inputs provided the appropriate training algorithm is chosen.
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Owing to the quality of the input parameters, the designer can expect satisfactory
results from a pool of several training functions.

2. Between Three Different Types of Cracks

For each input element, at ten locations there are three recognized classes: Vertically
Cracked, Horizontally Cracked, and Diagonally Cracked. Table 5 depicts the classification
performance comparison between detecting Vertical, Horizontal, and Diagonally Cracked
states. The following observations can be deduced from the outputs:

• Each of the three different crack orientations has distinct individual patterns within
themselves, which helps in their identification.

• Impedance as an input and Bayesian Regularization as the training algorithm produces
the highest accuracy rates of 83.9%. Although not as high as cracked vs healthy
detection rates, it is still a good acceptable rate.

• The Transmission Coefficient Gain data set also has the best result with Bayesian
Regularization.

• This comparative analysis identifies Impedance and Bayesian Regularization to be the
best combination of input and training functions that will provide the best detection
between Vertical, Horizontal, and Diagonal Cracks.

Table 5. Classification Performance between Vertical, Horizontal, and Diagonally Cracked states.

Input Parameter Algorithm Epoch (Iterations to
Converge) Time (s) Classification

Accuracy Rate (%)

Impedance

Scaled Conjugate 19 0.1 60

Bayesian Regularization 1000 40 83.9

Quasi Newton 38 4 77.8

Gradient Descent 74 0.3 58.3

Transmission
Coefficient, Gain

Scaled Conjugate 9 0.12 48.9

Bayesian Regularization 1000 18 70.6

Quasi Newton 18 0.4 68.3

Gradient Descent 17 0.5 53.3

Examination of the results shows that the classification of different crack orientations
is a challenging task. In the future, suitable feature processing methods can be studied to
obtain better results.

3. Detecting Crack Width of 0.5 mm

For each input element, at ten locations there are two recognized classes, 0.5 mm of
crack width and others. We have used 0.5 mm to test our proposed system as it is the
lowest crack width that can be obtained and is also of very little width. We believe the
early stage crack starts with a very little typical width such as 0.5 mm [50]. Table 6 shows
the classification performance comparison between detecting crack widths. The following
observations can be deduced from the outputs:

1. The designed model is quite successful in detecting crack widths as low as 0.5 mm.
2. Both input parameters consistently produce good acceptable accuracy rates of at least

83.3% with all of the training algorithms.
3. Unlike the other cases, the [Transmission Coefficient, Gain] data set is found to be the

better input parameter than Impedance, producing a slightly higher identification
rate of 84.4%.

4. Because the results are consistent throughout, the decision maker has the freedom to
choose from a variety of parametric combinations.
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Table 6. Classification Performance between crack widths.

Input Parameter Algorithm Epoch (Iterations to
Converge) Time (s) Classification

Accuracy Rate (%)

Impedance

Scaled Conjugate 14 0.1 83.3

Bayesian Regularization 1000 40 83.3

Quasi Newton 19 5 83.3

Gradient Descent 13 0.2 83.3

Transmission
Coefficient, Gain

Scaled Conjugate 15 1 83.3

Bayesian Regularization 262 6 84.4

Quasi Newton 7 0.11 83.3

Gradient Descent 16 1 83.3

The detection of narrower crack widths is tricky and requires fine scrutinization.
Although the identification rates here are considered acceptable, further research should be
undertaken to improve the outcome.

4. Detecting Crack Location

For each input of two elements, at ten locations there are five recognized classes, region
1 to region 5. Table 7 shows the classification performance comparison between detecting
crack locations. The following observations can be deduced from the outputs:

• Bayesian Regularization and Impedance again outperform the others, producing as
high as 95.5% of identification rates. It also produces good results with the Quasi-
Newton method.

• Impedance is the better input parameter here, producing higher accuracies than the
[Transmission Coefficient, gain] data set. Even the lowest outcome of 61.1% is higher
than the maximum rate of 49.4% achieved by the other input.

• [Transmission Coefficient, Gain] appears to struggle in the location of crack detection,
failing to reach 50% of accuracy.

Table 7. Classification Performance between crack locations.

Input Parameter Algorithm Epoch (Iterations
to Converge) Time (s) Classification

Accuracy Rate (%)

Impedance

Scaled Conjugate 79 0.22 63.9

Bayesian Regularization 1000 20 95.5

Quasi Newton 56 1 84.4

Gradient Descent 47 0.3 61.1

Transmission
Coefficient, Gain

Scaled Conjugate 21 0.1 38.9

Bayesian Regularization 100 17 49.4

Quasi Newton 10 0.18 42.8

Gradient Descent 11 0.2 40.6

This analysis depicts the benefits of performance comparison using parameter vari-
ation. It assists in the determination of the optimal parameters capable of producing
consistent good results. For example, it shows that although a combination of Transmission
Coefficient and Gain as data produces good results in some classification scenarios, it cannot
be chosen as the optimal parameter for our proposed model because of its inconsistencies.

Table 8 shows the summary of the best classification performance parameters for all
the discussed cases.
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Table 8. Summary of the best classification performance parameters for all of the cases.

Input Parameter
Classification

Cracked vs. Uncracked Vertical vs. Diagonal
vs. Horizontal

Detecting 0.5 mm
Crack Width Detecting Location

Impedance Bayesian
Regularization—100%

Bayesian
Regularization—83.9% ALL—83.3% Bayesian

Regularization—95.5%

Transmission
Coefficient

Bayesian
Regularization—100%

Bayesian
Regularization—63.3%

Bayesian
Regularization—83.3%

Bayesian
Regularization—71.1%

Gain ALL—100% Quasi Newton—66.1% ALL—83.3% Bayesian
Regularization—57.8%

Transmission
Coefficient, Gain

Bayesian
Regularization, Scaled

Conjugate—100%

Bayesian
Regularization—70.6%

Bayesian
Regularization—84.4%

Bayesian
Regularization—49.4%

6.4. Analysis

The purpose of this study is to propose a novel machine learning-based coal mining
conveyor belt crack detection method incorporating the UHF RFID tag sensor that can
identify between cracked and healthy states, detect the type of crack orientation from
vertical, horizontal, and diagonal, detect as low as 0.5 mm of crack width, and predict the
crack location with high-accuracy. The study also conducted an elaborate comparative
analysis of crack detection using a wide range of machine-learning algorithms and inputs.

In order to make the comparison valid, all experiments were conducted in identical
simulated environments. The results can be analyzed from different perspectives: the
quality of the data set, the parameters of the neural network, and finally the effect of data
augmentation. We are not able to perform experiments based on physical experimental
data sets because then we would require immense quantities of fabricated tags and access
to the actual conveyor belt of the mining plant. Thus, we have resorted to the simulation
results to verify our proposed model.

It can be observed that the type of input parameter had a large impact on the model’s
accuracy. Different data sets are tested, and, finally, it is concluded that during the building
and testing of the model to classify between cracked and uncracked states, all the Gain,
Transmission coefficient and Impedance values embody the distinction between cracked
and healthy states the best. Accuracy as high as 100% is achieved in most cases with all
three inputs. This occurs due to the effect of cracks on the tag operation; the crack’s presence
is revealed through the changes in these parameters. It is noticed that an evenly distributed
data set with sufficient non-cracked data provided much better results, preventing any
unwanted skewness.

However, for all the other cases: discriminating between the types of cracks from
Vertical, Diagonal, and Horizontal, determination of the crack width, and the prediction
of crack location, input impedance appeared to be the more robust feature with a better
detection rate across all training algorithms, except for classification of 0.5 mm crack
width where a combination of transmission coefficient and gain produced a slightly higher
accuracy rate of 84.4%.

It is observed that although the use of impedance, gain and transmission coefficient
alone resulted in 100% of accuracy rate, the neural network learning algorithm also caused
the detection rates to change. Gain is found to be the only input parameter that produced
100% of the identification rate for all of the training functions applied.

Regarding the number of layers, neurons, and other hyperparameters, models with
Bayesian Regularization as the learning function is observed to be more responsive in
learning the underlying pattern of the input data set. We also found out that ten neurons
and a two-layered network suited our problem the best. Increasing the number of neurons
will make the model more adaptive to smaller details, and increasing the number of layers
will allow the model to work with more complex features. However, this does not guarantee
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better classification. In fact, increasing more neurons and layers than is necessary will
cause the network to overfit to the training set; that is, it will learn the training data,
but it will not be able to generalize to new unseen data. It increases the risk of lower
performance. Moreover, higher performance is achieved by utilizing a large number of
epochs and regularization implemented in the Bayesian Regularization algorithm. The
Bayesian Regularization method is more efficient because it eliminates the dependency on
irrelevant and highly correlated inputs and determines the importance of necessary weights.

As can be seen from the tables, for most of the algorithms time elapsed by the end of
execution is only a few seconds. Gradient descent is usually the fastest to converge, while it
maintains higher learning rates. Scaled Conjugate and Quasi-Newton are almost as fast as
Gradient Descent. Bayesian Regularization requires the longest time among all, although.
it outperforms others in performance. Due to the fact that it requires the calculation of a
very computationally demanding Hessian matrix [51], and would thus account for a long
time. Gradient descent and the Scaled Conjugate method converge in a reduced number of
iterations versus all the other training functions. It always takes a higher number of epochs
(iterations) for Bayesian Regularization to achieve the performance target, while all the
other functions require a far lesser number.

Table 8 shows the best classification percentage for each classification network with
respect to the input. We can say that depending on the situational requirement, Bayesian
Regularization is a very good fit for all the discussed classification scenarios; however, if
the execution time is to be considered, there are other functions with acceptable detection
rates that converge in lesser times.

It is hard to cover all types of cracks, with different shapes and angles. Data aug-
mentation, by using a combination of different input parameters, in addition to increasing
the number of samples, can increase the variance in the data set by arbitrarily generating
some of the absent crack shapes and angles. When both the transmission coefficient and
gain are used as inputs, accuracy is boosted in some cases. Therefore, in the future, data
augmentation can also be considered an important factor in improving classification ac-
curacy. The objective of the proposed method is to be able to detect tears as narrow as
0.5 mm at the earliest opportunity without the need for physical investigation. This method
provides the investigator flexibility to assess the location and determine the suitable mode
of maintenance without shutting down the plant operation. Stopping the operation is not a
desirable choice because it can lead to a capital loss of AUD 1800 per minute [52]. However,
our proposed method uses RFID sensors in conjunction with machine learning identifica-
tion which is ideal in the case of real-time monitoring of conveyor belts with lengths of
many kilometers. The monitoring system is implemented by overlaying or embedding
RFID sensors into the belt. Each sensor monitors cracks in the area of the belt on top of
it. Furthermore, to accurately monitor the whole belt, as future work, the algorithm can
be tuned to detect cracks occurring at places not covered by sensors. Machine Learning
can help to improve detection during those complicated scenarios by virtue of its superior
predictive ability.

As demonstrated in [16,17], the RFID sensor can be embedded inside the conveyor belt
to provide protection from damaging or peeling off due to the frictional force of the idlers or
rollers during the operation of the conveyor belt. Following the approach of [16,17] in this
paper, the proposed system based on ML can obtain the measurements from the sensors
while they are embedded inside the conveyor belt. We expect that the RSSI measurements
could be impacted by the materials around the embedded sensors. However, as shown
in [16,17], the RSSI measurements are varied with crack widths and orientations even
though the sensors are embedded inside the belt. For our experiments in the paper, there is
no impact on the performance of the proposed system based on ML for either when the
sensors are embedded as followed in [16,17] or when the sensors are attached to the surface
of the conveyor belt as followed in this paper.

Comparing the proposed method to classic IPTs and other machine learning models
also shows the advantage of implementing ANN learning methodology for detecting cracks.
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Table 9 demonstrates the performance of the proposed system in comparison to other
studies. Image processing techniques are capable of generating the exact shape of the cracks;
however, most of the time, the examined surfaces will have more complex characteristics
similar to cracks, such as dents, bends, ridges etc., and such damage might have the same
color and shape as that of a crack and IPT becomes inefficient. Machine learning methods
such as SVM respond well to proper feature selection and feature extraction/transformation
techniques, which can be time-consuming to generate and mostly require one-against-all
types of classifiers [53]. ANN-based methods can do multi-class identification, use back-
propagation to adjust the error weights, can modify the layers, neurons, and transfer
functions to intelligently learn the input data pattern. The pre-trained network can also be
reused instead of building another model from scratch. Therefore, it can be deduced that
deep learning methods using ANN yield better crack detection results.

Table 9. Performance Comparison.

Method Study Results Features Year

Impedance and
Machine Learning

Detection of Conveyor
Belt Cracks, orientation,

crack widths, and
crack location

- Accuracy rate 100%
- Works with coal mining

conveyor belts composed of fibre
and polyester.

2021

Image Processing
Technique

Detection of Conveyor
Belt longitudinal tears - Accuracy rate 92.1% - Works with steel cord conveyor

belt only.
[30]
2019

Image Processing
Technique

Machine Learning

Asphalt pavement
crack detection - Precision 90.13%

- Has difficulty to detecting hair
line cracks.

- Confuses pavement edges
with cracks.

[22]
2017

7. Future Works

An experiment is conducted for the fabricated UHF RFID sensor at different crack
orientations, as shown in Figure 9. Figure 9 shows the experimental setup in Monash
Microwave, Antenna, RFID, and Sensor (MMARS) Laboratory within the Department
of Electrical and Computer System Engineering, Monash University. Here the CSL468
Class 1 Gen 2 UHF RFID reader is used to measure the RSSI from the sensor. A linear
polarised antenna is used with a gain of 7.88 dBi and the total cable loss is 5.7 dBm at 923
MHz [54]. As shown in Figure 10, the response of the sensor in terms of the received signal
strength indicator (RSSI) is measured when the sensor has a single vertical, horizontal, or
diagonal crack compared to the healthy response of the sensor without a crack. The results
in Figure 10 show that the RSSI values show variation with the change of crack orientation.
Distinct differences between the three types of readings representing the types of cracks
are observed. Thus, the results in Figure 10 show promising potential for further research
investigation by further development of the proposed ML algorithms demonstrated in
this paper that adopt the RSSI values from the sensors. However, such development of
ML algorithms based on RSSI values requires obtaining the RSSI values from hundreds of
sensors and can be considered as another research problem to address in the future together
with the effects of motion. It is worth mentioning that we have successfully demonstrated
the efficiency of the proposed ML algorithms to achieve high accuracy using MATLAB
software, so the coding concept of the proposed algorithms can easily be developed more
in the future to apply software such as Python and TensorFlow which are better suited for
real-time applications [16,55]. Additionally, the issue of debris and its effect on the sensor
response can be addressed by fitting a sweeping mechanism at the junction where the belt
rolls over to eliminate any debris left. We intend to look into a series of steps to measure
the sensor response and its sensitivity to the presence of coal. It is worth mentioning that
the proposed system based on ML in this paper can be modified for applications using
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multiple sets of tags and judging the distance between the tag signals (distance sensor) to
achieve fault diagnosis and can be the subject of further future work.
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It is beyond the scope of this paper to validate experimentally the IoT based imple-
mentation of our proposed system. The proposed work in the paper is a logical framework
to integrate Health monitoring of mining conveyor belts using UHF RFID and Machine
Learning to the IoT domain. We are in the same line with the existing publications in the
literature that work on the integration of the IoT and RFID-based sensors [50]. Moreover,
in order to be able to test the proposed system in real life, we would require a continuous
input of real-time data from a mining plant over a significant period. Such implementation
of IoT techniques in the real world is hard to achieve as the implementation requires a sub-
stantial period, such as a period of two years as addressed in [56]. Furthermore, implanting
thousands of sensors in the conveyor belt in the mine site to collect sufficient data for the
IoT is also a time-consuming task. Thus, such implementation of IoT techniques can be
considered for future work.
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8. Conclusions

A detailed comparative performance analysis of ML-based UHF RFID crack detection
technique for conveyor belts is conducted. This novel concept has been illustrated keeping
hypothetical IoT implementation in mind. This is intended to be a pioneering study that will
help to usher the way towards further comprehensive exploration in industrial applications,
specifically targeting the coal mines. The depicted research analyzed several simulated
cases to verify the designed system. A comprehensive investigation with simulation makes
the system robust. Here, an UHF RFID tag sensor is placed on a conveyor belt sample and
subjected to different crack orientations and crack widths at several locations across the
belt. This provided a huge amount of crack scenarios that represent a real-world situation.
An ANN is designed to identify the health state of the belt, the orientation of the crack on
the belt, the crack width, and the location of the crack. The model is also tested by varying
the training algorithms and input attributes, to find the best combination that will produce
the maximum classification accuracy. A crack detection rate of as high as 100% is obtained,
with good acceptable rates of more than 84.4% for the other cases. Such an elaborate crack
detection system based on ML will immensely help to realize remote SHM of conveyor
belts, making it a viable addition to a prospective IoT paradigm. The authors are currently
carrying out further research to observe this proposed model’s response with chipless RFID
tag sensors.

Author Contributions: Conceptualization, F.T.Z.; formal analysis, F.T.Z.; methodology, F.T.Z.;
project administration, N.C.K.; supervision, N.C.K. and S.D.; validation, F.T.Z., O.S. and S.D.;
writing—original draft, F.T.Z.; writing—review and editing, O.S., H.M., N.C.K. and S.D. All
authors have read and agreed to the published version of the manuscript.

Funding: The research is supported by Monash University, Australian Coal Association Research
Program (ACARP) Grant C28036, and the Australian Government Research Training Program
(RTP) Scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deivasigamani, A.; Daliri, A.; Wang, C.-H.; John, S. A Review of Passive Wireless Sensors for Structural Health Monitoring. Mod.

Appl. Sci. 2013, 7, 57. [CrossRef]
2. Khani, M.M.; Vahidnia, S.; Ghasemzadeh, L.; Ozturk, Y.E.; Yuvalaklioglu, M.; Akin, S.; Ure, N.K. Deep-learning-based crack

detection with applications for the structural health monitoring of gas turbines. Struct. Health Monit. 2019, 19, 1440–1452.
[CrossRef]

3. Zhang, J.; Tian, G.Y.; Zhao, A.B. Passive RFID sensor systems for crack detection & characterization. NDT E Int. 2017, 86, 89–99.
[CrossRef]

4. Zhang, A.; Sun, Y.; Yin, Z. Research status and tendency of longitude tearing protection for belt conveyor. Coal Sci. Technol. 2007,
12, 77–79.

5. Zeng, Q.-L.; Wang, J.-G.; Wang, L.; Wang, C.-L. The Research of Coal Mine Conveyor Belt Tearing Based on Digital Image
Processing. In Advances in Intelligent Systems and Computing, Proceedings of the 2012 International Conference on Communication,
Electronics and Automation Engineering, Xi’an, China, 23–25 August 2012; Yang, G., Ed.; Springer: Berlin/Heidelberg, Germany,
2013; Volume 181, pp. 187–191. [CrossRef]

6. Ghoni, R.; Dollah, M.; Sulaiman, A.; Ibrahim, F.M. Defect Characterization Based on Eddy Current Technique: Technical Review.
Adv. Mech. Eng. 2014, 6. [CrossRef]

7. Hayashi, M.; Saito, T.; Nakamura, Y.; Sakai, K.; Kiwa, T.; Tanikura, I.; Tsukada, K. Extraction Method of Crack Signal for Inspection
of Complicated Steel Structures Using a Dual-Channel Magnetic Sensor. Sensors 2019, 19, 3001. [CrossRef]

8. Goodyear Rubber Products. Heavy Weight Conveyor Belt Catalogue. 2012. Available online: https://goodyearrubberproducts.com/
2018pdfs/EP_Conveyor_Belt_Catalog/pdf/EP_Conveyor_Belt_Catalog.pdf (accessed on 1 March 2022).

9. Zhang, J.; Tian, G.Y.; Marindra, A.M.J.; Sunny, A.I.; Zhao, A.B. A Review of Passive RFID Tag Antenna-Based Sensors and Systems
for Structural Health Monitoring Applications. Sensors 2017, 17, 265. [CrossRef]

10. Ashton, K. That ‘internet of things’ thing. RFID J. 2009, 22, 97–114.
11. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.

Future Gener. Comput. Syst. 2013, 29, 1645–1660.
12. Foote, K.D. A Brief History of the Internet of Things. Available online: https://www.dataversity.net/brief-history-internet-things/

(accessed on 6 November 2022).

http://doi.org/10.5539/mas.v7n2p57
http://doi.org/10.1177/1475921719883202
http://doi.org/10.1016/j.ndteint.2016.11.002
http://doi.org/10.1007/978-3-642-31698-2_27
http://doi.org/10.1155/2014/182496
http://doi.org/10.3390/s19133001
https://goodyearrubberproducts.com/2018pdfs/EP_Conveyor_Belt_Catalog/pdf/EP_Conveyor_Belt_Catalog.pdf
https://goodyearrubberproducts.com/2018pdfs/EP_Conveyor_Belt_Catalog/pdf/EP_Conveyor_Belt_Catalog.pdf
http://doi.org/10.3390/s17020265
https://www.dataversity.net/brief-history-internet-things/


Electronics 2022, 11, 3737 23 of 24

13. Madakam, S.; Lake, V.; Lake, V.; Lake, V. Internet of Things (IoT): A literature review. J. Comput. Commun. 2015, 3, 16.
14. Abdelmalek, O. Design and Prototyping of Robust Architectures for UHF RFID Tags. Ph.D Thesis, Université Grenoble Alpes,

Grenoble, France, 2016.
15. Duroc, Y.; Kaddour, D. RFID Potential Impacts and Future Evolution for Green Projects. Energy Procedia 2012, 18, 91–98. [CrossRef]
16. Dey, S.; Salim, O.; Masoumi, H.; Karmakar, N.C. A Novel UHF RFID Sensor Based Crack Detection Technique for Coal Mining

Conveyor Belt. IEEE J. Radio Freq. Identif. 2021, 6, 19–30. [CrossRef]
17. Salim, O.; Dey, S.; Masoumi, H.; Karmakar, N.C. Crack Monitoring System for Soft Rock Mining Conveyor Belt Using UHF RFID

Sensors. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [CrossRef]
18. Bishop, C.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: New York, NY, USA, 2006.
19. Kannadaguli, P.; Bhat, V. Microwave Imaging based Automatic Crack Detection System using Machine Learning for Columns.

In Proceedings of the 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT),
Gwalior, India, 10–12 April 2020; pp. 5–8.

20. Fujita, Y.; Shimada, K.; Ichihara, M.; Hamamoto, Y. A method based on machine learning using hand-crafted features for crack
detection from asphalt pavement surface images. In Proceedings of the Thirteenth International Conference on Quality Control
by Artificial Vision 2017, Tokyo, Japan, 14–16 May 2017; Volume 10338, p. 103380. [CrossRef]

21. Mustapha, S.; Braytee, A.; Ye, L. Detection of surface cracking in steel pipes based on vibration data using a multi-class support
vector machine classifier. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health
Monitoring, Portland, OR, USA, 12 April 2017; p. 101682. [CrossRef]

22. Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated Pixel-Level Pavement
Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 805–819.
[CrossRef]

23. Caizzone, S.; DiGiampaolo, E. Wireless Passive RFID Crack Width Sensor for Structural Health Monitoring. IEEE Sens. J. 2015,
15, 6767–6774. [CrossRef]

24. Zohra, F.-T.; Salim, O.; Dey, S.; Masoumi, H.; Karmakar, N. A Novel Machine Learning Based Conveyor Belt Health
Monitoring Incorporating UHF RFID Backscattered Power. In Proceedings of the 2021 IEEE 5th International Conference
on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Purwokerto, Indonesia, 24–25
November 2021; pp. 230–234. [CrossRef]

25. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for internet of things data
analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

26. McClelland, C. Applying Machine Learning to the Internet of Things. Available online: https://medium.com/iotforall/applying-
machine-learning-to-the-internet-of-things-5bd0216d4cc3 (accessed on 6 November 2022).

27. Google. Google Nest Thermostat. Available online: https://store.google.com/au/product/nest_learning_thermostat_3rd_gen
(accessed on 6 November 2022).

28. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications.
Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]

29. Kalansuriya, P.; Bhattacharyya, R.; Sarma, S. RFID Tag Antenna-Based Sensing for Pervasive Surface Crack Detection. IEEE Sens.
J. 2013, 13, 1564–1570. [CrossRef]

30. Hou, C.; Qiao, T.; Zhang, H.; Pang, Y.; Xiong, X. Multispectral visual detection method for conveyor belt longitudinal tear.
Measurement 2019, 143, 246–257. [CrossRef]

31. Hao, X.-L.; Liang, H. A multi-class support vector machine real-time detection system for surface damage of conveyor belts based
on visual saliency. Measurement 2019, 146, 125–132. [CrossRef]

32. Zhang, M.; Shi, H.; Zhang, Y.; Yu, Y.; Zhou, M. Deep learning-based damage detection of mining conveyor belt. Measurement 2021,
175, 109130K. [CrossRef]

33. Zhang, J.; Huang, B.; Zhang, G.; Tian, G.Y. Wireless Passive Ultra High Frequency RFID Antenna Sensor for Surface Crack
Monitoring and Quantitative Analysis. Sensors 2018, 18, 2130. [CrossRef]

34. Zhang, J.; Sunny, A.I.; Zhang, G.; Tian, G. Feature Extraction for Robust Crack Monitoring Using Passive Wireless RFID Antenna
Sensors. IEEE Sens. J. 2018, 18, 6273–6280. [CrossRef]

35. Cazeca, M.J.; Mead, J.; Chen, J.; Nagarajan, R. Passive wireless displacement sensor based on RFID technology. Sens. Actuators A
Phys. 2013, 190, 197–202. [CrossRef]

36. Bruciati, B.; Jang, S.; Fils, P. RFID-Based Crack Detection of Ultra High-Performance Concrete Retrofitted Beams. Sensors 2019,
19, 1573. [CrossRef]

37. Zou, J.; Han, Y.; So, S.-S. Overview of artificial neural networks. In Artificial Neural Networks; Livingstone, D.J., Ed.; Humana
Press: Totowa, NJ, USA, 2008; pp. 14–22.

38. Livingstone, D.J. Artificial Neural Networks: Methods and Applications; Humana Press: Totowa, NJ, USA, 2008.
39. Donges, N. Gradient Descent: An Introduction to One of Machine Learning’s Most Popular Algorithms. Available online:

https://builtin.com/data-science/gradient-descent. (accessed on 6 November 2022).
40. Anastasiadis, A.D.; Magoulas, G.D.; Vrahatis, M.N. New globally convergent training scheme based on the resilient propagation

algorithm. Neurocomputing 2005, 64, 253–270. [CrossRef]

http://doi.org/10.1016/j.egypro.2012.05.021
http://doi.org/10.1109/JRFID.2021.3098624
http://doi.org/10.1109/TIM.2021.3069025
http://doi.org/10.1117/12.2264075
http://doi.org/10.1117/12.2258232
http://doi.org/10.1111/mice.12297
http://doi.org/10.1109/JSEN.2015.2457455
http://doi.org/10.1109/icitisee53823.2021.9655974
http://doi.org/10.1016/j.dcan.2017.10.002
https://medium.com/iotforall/applying-machine-learning-to-the-internet-of-things-5bd0216d4cc3
https://medium.com/iotforall/applying-machine-learning-to-the-internet-of-things-5bd0216d4cc3
https://store.google.com/au/product/nest_learning_thermostat_3rd_gen
http://doi.org/10.1080/21693277.2016.1192517
http://doi.org/10.1109/JSEN.2013.2240155
http://doi.org/10.1016/j.measurement.2019.05.010
http://doi.org/10.1016/j.measurement.2019.06.025
http://doi.org/10.1016/j.measurement.2021.109130
http://doi.org/10.3390/s18072130
http://doi.org/10.1109/JSEN.2018.2844564
http://doi.org/10.1016/j.sna.2012.11.007
http://doi.org/10.3390/s19071573
https://builtin.com/data-science/gradient-descent.
http://doi.org/10.1016/j.neucom.2004.11.016


Electronics 2022, 11, 3737 24 of 24

41. Sharma, B.; Venugopalan, K. Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images.
IOSR J. Comput. Eng. 2014, 16, 31–35. [CrossRef]

42. Hager, W.W.; Zhang, H. A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2006, 2, 35–58.
43. Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [CrossRef]
44. Pham, D.; Sagiroglu, S. Training multilayered perceptrons for pattern recognition: A comparative study of four training algorithms.

Int. J. Mach. Tools Manuf. 2001, 41, 419–430. [CrossRef]
45. Burden, F.; Winkler, D. Bayesian regularization of neural networks. In Artificial Neural Networks; Livingstone, D.J., Ed.; Humana

Press: Totowa, NJ, USA, 2008; pp. 23–42.
46. Chen, F.-C.; Jahanshahi, M.R. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve

Bayes Data Fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [CrossRef]
47. Shah, K. Construction and Maintenance of Belt Conveyors for Coal and Bulk Material Handling Plants. April 2018, pp. 1–269.

Available online: www.practicalmaintenance.net (accessed on 4 July 2021).
48. Dunlop, F. Conveyor Belt Manual, Dunlop. Available online: https://www.fennerdunlopamericas.com/sites/default/files/u562

/conveyor_belt_manual.pdf. (accessed on 6 November 2022).
49. Karmakar, N.C.; Amin, E.; Saha, J.K. Characterization of Smart Materials. In Chipless RFID Sensors; John Wiley & Sons: Hoboken,

NJ, USA, 2016; pp. 99–124. [CrossRef]
50. Dey, S.; Bhattacharyya, R.; Sarma, S.E.; Karmakar, N.C. A Novel “Smart Skin” Sensor for Chipless RFID Based Structural Health

Monitoring Applications. IEEE Internet Things J. 2020, 8, 3955–3971. [CrossRef]
51. Sariev, E.; Germano, G. Bayesian regularized artificial neural networks for the estimation of the probability of default. Quant.

Finance 2019, 20, 311–328. [CrossRef]
52. Owen, P. Condition monitoring for conveyors. In Proceedings of the 9th International Materials Handling Conference, Fellbach,

Germany, 7–9 August 1997.
53. Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425.
54. C.S. Limited (Version 2.0.1) CSL CS468 16-Ports EPC Class 1 Gen 2 RFID Reader User’s Manual. Available online: https:

//www.convergence.com.hk/downloads/cs468/ (accessed on 6 November 2022).
55. Loo, N.; Chiew, Y.; Tan, C.; Arunachalam, G.; Ralib, A.; Nor, M.B.M. A Machine Learning Model for Real-Time Asynchronous

Breathing Monitoring. IFAC-PapersOnLine 2018, 51, 378–383. [CrossRef]
56. Wang, J.; Fu, Y.; Yang, X. An integrated system for building structural health monitoring and early warning based on an Internet

of things approach. Int. J. Distrib. Sens. Netw. 2017, 13, 12. [CrossRef]

http://doi.org/10.9790/0661-16123135
http://doi.org/10.1016/S0893-6080(05)80056-5
http://doi.org/10.1016/S0890-6955(00)00073-0
http://doi.org/10.1109/TIE.2017.2764844
www.practicalmaintenance.net
https://www.fennerdunlopamericas.com/sites/default/files/u562/conveyor_belt_manual.pdf.
https://www.fennerdunlopamericas.com/sites/default/files/u562/conveyor_belt_manual.pdf.
http://doi.org/10.1002/9781119078104.ch5
http://doi.org/10.1109/JIOT.2020.3026729
http://doi.org/10.1080/14697688.2019.1633014
https://www.convergence.com.hk/downloads/cs468/
https://www.convergence.com.hk/downloads/cs468/
http://doi.org/10.1016/j.ifacol.2018.11.610
http://doi.org/10.1177/1550147716689101

	Introduction 
	Related Works 
	Theory 
	Principle of RFID Sensing 
	Artificial Neural Network Overview 

	Methodology 
	Integration of RFID-Based Sensors into IoT 
	Experimentation and Results 
	UHF RFID Tag and Belt 
	Characterization of Cracks at Different Locations 
	Results 
	Analysis 

	Future Works 
	Conclusions 
	References

