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Abstract: The tuna swarm optimization algorithm (TSO) is a new heuristic algorithm proposed by
observing the foraging behavior of tuna populations. The advantages of TSO are a simple structure
and fewer parameters. Although TSO converges faster than some classical meta-heuristics algorithms,
it can still be further accelerated. When TSO solves complex and challenging problems, it often easily
falls into local optima. To overcome the above issue, this article proposed an improved nonlinear
tuna swarm optimization algorithm based on Circle chaos map and levy flight operator (CLTSO). In
order to compare it with some advanced heuristic algorithms, the performance of CLTSO is tested
with unimodal functions, multimodal functions, and some CEC2014 benchmark functions. The test
results of these benchmark functions are statistically analyzed using Wilcoxon, Friedman test, and
MAE analysis. The experimental results and statistical analysis results indicate that CLTSO is more
competitive than other advanced algorithms. Finally, this paper uses CLTSO to optimize a BP neural
network in the field of artificial intelligence. A CLTSO-BP neural network model is proposed. Three
popular datasets from the UCI Machine Learning and Intelligent System Center are selected to test
the classification performance of the new model. The comparison result indicates that the new model
has higher classification accuracy than the original BP model.

Keywords: artificial intelligence; circle chaotic map; Levy flight; nonlinear adaptive weight; tuna
swarm optimization

1. Introduction

Nowadays, many engineering problems in real life have become more and more com-
plex and challenging. High-quality solutions can help people effectively reduce resource
investment. Because most production practice problems are multivariate, nonlinear, and
have many complex constraints, the traditional branch and bound algorithm [1], conjugate
gradient method [2], and dynamic programming method [3] cannot achieve remarkable
results regarding these problems. The meta-heuristic algorithm has the characteristics of
strong global search ability, no dependence on gradient information, and wide adaptability.
It can effectively overcome the shortcomings of traditional optimization algorithms. Much
of the research on meta-heuristic algorithms has shown that these algorithms are able to
solve nonlinear optimization problems [4,5]. Many researchers tend to use meta-heuristic
algorithms to solve complex engineering problems. Now, meta-heuristic algorithms are ap-
plied in various fields, such as workshop scheduling [6], task optimization [7], engineering
management [8–10], and others.

The meta-heuristic algorithm is a mathematical method inspired by biological behav-
ior and some physical phenomena in nature. These methods are used to solve complex
problems in real life [11]. The meta-heuristic algorithm has the advantages of a simple struc-
ture, fewer hyperparameters, and being easy to understand. Based on these advantages, it
has become an important method for solving optimization problems today. Meta-heuristic
algorithms can be divided into four categories: swarm intelligence algorithms [12], evolu-
tionary algorithms [13], human-based algorithms [14], and physical and chemical-based
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algorithms [15]. The swarm intelligence algorithms simulate the behavior of animal pop-
ulations. Each individual in the population is a candidate solution. They are randomly
explored in the search space, which effectively avoids the possibility of entering the local
optimum. Some classic and newly proposed swarm intelligence algorithms include Golden
Jackal Optimization (GJO) [16], the Gray Wolf Optimization Algorithm (GWO) [17], and the
Poplar Optimization Algorithm (POA) [18]. Some classical evolutionary algorithms include
Genetic Algorithms [19] and the Biogeographic-Based Optimization Algorithm (BBO) [20],
etc. Meta-heuristic algorithms can effectively enhance the efficiency of engineering practice.
This has attracted more and more scholars’ attention.

In many industrial problems, specific solution functions can be established with math-
ematical models. How to solve complex function optimization problems has become a
focus of current research. For the optimization problems with fewer constraints and dimen-
sions, the traditional mathematical methods can achieve outstanding results. Although
meta-heuristic algorithms have very good performance in dealing with complex and high
dimensional optimization problems, the convergence speed of simple meta-heuristic algo-
rithms still needs to be improved. Sometimes with a single meta-heuristic algorithm, it is
difficult to get rid of the attraction of local extremum. To further enhance the optimization
capability of meta-heuristic algorithms, many experts try to use different strategies to
improve them. Zhongzhou Du introduced Levy flight in the iterative process of PSO,
which accelerated the optimization speed of PSO [21]. Hang Yu used a chaotic mapping
strategy to improve the GWO initialization method, which improved the accuracy of the
GWO solution [22]. Xiaoling Yuan introduced adaptive weight into the PSO algorithm,
which greatly strengthened its global search capability [23]. So-Youn Park combined CS
with oppositional learning, making the CS converge faster [24]. W. Xie used the golden
sine operator to improve the Black Hole algorithm (BH) [25], giving it better exploration
performance [26].

Xie et al. proposed a new meta-heuristic algorithm called the tuna swarm optimiza-
tion algorithm (TSO) [27] in 2021 after observing the foraging behavior of tuna swarms.
There are two common foraging strategies for tuna swarms: spiral foraging strategy and
parabolic foraging strategy. TSO searches for the global optimal value by simulating the
common individual in the tuna swarm to follow the optimal individual in the swarm to
attack the prey. Comparing TSO with the Whale Optimization Algorithm (WOA) [28], the
Salp Swarm Algorithm (SSA) [29], and some other advanced algorithms, the comparison
results indicate that TSO outperforms the competitors. The tuna swarm optimization
algorithm has the advantages of less parameters and easy realization. Therefore, after it
was proposed, TSO has been widely studied and applied to engineering practice. Although
TSO performs very well in many engineering practices, it still has some shortcomings.
Firstly, TSO cannot efficiently search for the global optimal value. It is easily attracted by
local extremum. Secondly, TSO does not converge fast enough. Finally, the followers of the
optimal individual blindly follow the later. There is a lack of local exploitation. At present,
Hu et al. have used Gaussian mutation to improve the TSO algorithm, and have applied
the improved algorithm to photovoltaic power prediction [30]. Kumara et al. improved
the TSO algorithm by using chaotic maps to increase the diversity of the algorithm popula-
tion [31]. This paper proposes an improved tuna swarm optimization algorithm (CLTSO)
based on the Circle chaotic map [32], Levy flight operator, and nonlinear adaptive operator.
The innovations made in this article are summarized as follows:

(1) At the CLTSO initialization stage, this paper introduces the Circle chaotic map to
uniformly generate individual positions. Because the initial positions of tuna individ-
uals are randomly generated, the initial tuna individuals are likely to cluster together.
In this paper, the emergence of the initial individual aggregation problem can be
effectively solved by introducing the Circle chaotic map.

(2) In CLTSO, the optimal individual and its follower positions are updated by using
Levy flight strategy. Because Levy flight uses a combination of long and short steps, it
can significantly enlarge the search scope of CLTSO.
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(3) In the iterative process of CLTSO, a nonlinear convergence factor is introduced to
balance the exploration and the exploitation. In CLTSO, a large convergence factor in
the initial iteration can bring the common individuals closer to the optimal individuals.
A smaller convergence factor at the end of iteration increases the capability of followers
to explore local scope.

This article covers the following aspects: Section 1 introduces some related content
of the meta-heuristic algorithm and the tuna swarm optimization algorithm. Section 2
reviews the two foraging strategies of the original tuna swarm optimization algorithm.
Section 3 introduces the improved Circle chaotic map strategy, the Levy flight operator,
and the nonlinear adaptive weight operator, and the usage of these operators to improve
TSO. Section 4 compares CLTSO with some classical and advanced meta-heuristics and
makes some experimental analysis. Section 5 modifies the BP neural network based on
CLTSO, and then tests the new model by using three popular datasets. Finally, Section 6
summarizes the content of the article.

The main mathematical symbols mentioned in this paper are shown in Table 1.

Table 1. Explanation of symbols.

Symbol Meaning

Xint
i Tuna individual in TSO

ub The upper boundary of the search space of TSO
lb The lower boundary of the search space of TSO

NP Population size of TSO
τ Distance parameter
α1 Weight parameters of tuna following the best individual
α2 Weight parameters of tuna following the front individual
p Weight parameters in parabolic foraging strategy
s The step length of Levy flight
t Current number of iterations of the algorithm

TMax Maximum number of iterations of the algorithm
α1i Improved version of α1
α2i Improved version of α2
pi Improved version of p

2. An Overview of Tuna Optimization Algorithms

Tuna is the top predator in the ocean. Although tuna swim very fast, some small prey
are more flexible than tuna. Therefore, in the process of predation, tuna often choose group
cooperation to capture prey. The tuna swarm has two efficient predatory strategies, namely,
the spiral foraging strategy and the parabolic foraging strategy. When the tuna swarm
uses the parabolic foraging strategy, each tuna will follow the previous individual closely.
The tuna swarm forms a parabola to surround the prey. When the tuna swarm adopts the
spiral foraging strategy, the tuna swarm will aggregate into spiral shapes and drive prey to
shallow water areas. Prey is more likely to be captured. By observing these two foraging
behaviors of tuna swarm, researchers proposed a new swarm intelligence optimization
called TSO.

2.1. Population Initialization

There are NP tunas in a tuna swarm. At the swarm initialization phase, the tuna
swarm optimization algorithm randomly generates the initial swarm in the search space.
The mathematical formulas for initializing tuna individuals are as follows:

Xint
i = rand · (ub− lb) + lb
=
[

x1
i x2

i · · · xj
i

]{
i = 1, 2, . . . , NP
j = 1, 2, . . . , Dim

(1)
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where Xint
i is the i-th tuna, ub and lb are the upper and lower boundaries of the range of

tuna exploration, and rand is a random variable with uniform distribution from 0 to 1. In
particular, each individual, Xint

i , in the tuna swarm represents a candidate solution for TSO.
Each individual tuna consists of a set of Dim-dimensional numbers.

2.2. Parabolic Foraging Strategy

Herring and eel are the main food sources of tuna. When they encounter predators,
they will use their speed advantage to constantly change their direction of swimming. It
is very difficult for predators to catch them. Because tuna is less agile than their prey, the
tuna swarm will take a cooperative approach to attack the prey. The tuna swarm will use
the prey as a reference point to keep chasing prey. During predation, each tuna follows the
previous individual, and the whole tuna swarm forms a parabola to surround the prey. In
addition, the tuna swarm also uses a spiral foraging strategy. Assuming that the probability
of the tuna swarm choosing either strategy is 50%, the mathematical model of parabolic
foraging of the tuna swarm is as follows:

Xt+1
i =

{
Xt

best + rand · (Xt
best − Xt

i ) + TF · p2 · (Xt
best − Xt

i ), if rand < 0.5
TF · p2 · Xt

i , if rand ≥ 0.5
(2)

p = (1− t
tmax

)
(t/tmax)

(3)

where t indicates that the tth iteration is currently running and tmax means the maximum
number of iterations preset. TF is a random value of 1 or −1.

2.3. Spiral Foraging Strategy

Besides the parabolic foraging strategy, there is another efficient cooperative foraging
strategy called the spiral foraging strategy. While chasing the prey, most tuna cannot
choose the right direction, but a small number of tuna can guide the swarm to swim in
the right direction. When a small group of tuna start chasing the prey, the nearby tuna
will follow this small group of individuals. Eventually, the entire tuna swarm will form a
spiral formation to catch the prey. When the tuna swarm adopts a spiral foraging strategy,
individuals will exchange information with the best to follow individuals or adjacent
individuals in the swarm. Sometimes the best individual is not able to lead the swarm to
capture prey effectively. The tuna will then select a random individual in the swarm to
follow. The mathematical formula of the spiral foraging strategy is as follows:

Xt+1
i =



α1 · (Xt
rand + τ ·

∣∣Xt
rand − Xt

i

∣∣+ α2 · Xt
i ),

i = 1

α1 · (Xt
rand + τ ·

∣∣Xt
rand − Xt

i

∣∣+ α2 · Xt
i−1),

i = 2, 3, . . . , NP

α1 · (Xt
best + τ ·

∣∣Xt
best − Xt

i

∣∣+ α2 · Xt
i ),

i = 1

α1 · (Xt
best + τ ·

∣∣Xt
best − Xt

i

∣∣+ α2 · Xt
i−1),

i = 2, 3, . . . , NP

, i f rand < t
tmax

, i f rand ≥ t
tmax

(4)

where Xt+1
i denotes the i-th tuna in the t + 1 iteration. The current best individual is

Xt
best. Xt

rand is the reference point randomly selected in the tuna swarm. α1 is the trend
weight coefficient to control the tuna individual swimming to the optimal individual or
randomly selected adjacent individuals. α2 is the trend weight coefficient to control the
tuna individual swimming to the individual in front of it. τ is the distance parameter that
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controls the distance between the tuna individual and the optimal individual or a randomly
selected reference individual. Their mathematical calculation model is as follows:

α1 = a + (1− a) · t
tmax

(5)

α2= (1− a)− (1− a) · t
tmax

(6)

τ = ebl · cos(2πb) (7)

l = e3 cos(((tmax+1/t)−1)π) (8)

where a is a constant to measure the degree of tuna following and b is a random number
uniformly distributed in the range of [0, 1].

2.4. Pseudocode of TSO

The pseudocode of the original TSO is displayed in Algorithm 1. The flow chart of
TSO is displayed in Figure 1.

Algorithm 1 Pseudocode of TSO Algorithm

Initialization: Set parameters NP, Dim, a, z and TMax
Initialize the position of tuna Xi (i = 1, 2, . . . , NP) by (1)
Counter t = 0
while T < TMax do

Calculate the fitness value of all tuna
Update the position and value of the best tuna Xt

best
for (each tuna) do

Update α1, α2, p by (5), (6), (3)
if (rand < z) then

Update Xt+1
i by (1)

else if (rand ≥ z) then
if (rand < 0.5) then

Update Xt+1
i by (4)

else if (rand ≥ 0.5) then
Update Xt+1

i by (2)
t = t + 1
return the best fitness value f (Xbest) and the best tuna Xbest

In the iterative process of the TSO algorithm, each tuna will randomly choose to
perform either the spiral foraging strategy or the parabolic foraging strategy. Tuna will also
generate new individuals in the search range according to probability Z. Therefore, TSO
will choose different strategies according to Z when generating new individual positions.
During the execution of the TSO algorithm, all tuna individuals in the population are
constantly updated until the number of iterations reaches a predetermined value. Finally,
the TSO algorithm returns the optimal individual in the population and its optimal value.

The following advantages of TSO can be seen from Algorithm 1: (1) The TSO algorithm
has fewer adjustable parameters, which is beneficial to the implementation of the algorithm.
(2) This algorithm will save the position of the best tuna individual in each iteration; even if
the quality of the candidate solution decreases, it will not affect the location of the optimal
value. (3) The TSO algorithm can keep the balance between exploitation and exploration
by selecting two foraging strategies.
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3. The Improved Tuna Swarm Optimization Algorithm

This section introduces an improved nonlinear tuna swarm optimization algorithm,
CLTSO, based on Circle chaotic map and Levy flight operator. Firstly, the population initial-
ization using Circle chaotic map can increase the diversity of the swarm. The combination
of TSO and Levy flight gives the algorithm an outstanding global exploration capability.
Furthermore, a nonlinear adaptive weight operator is introduced to modify the weight
coefficient of tuna following behavior in CLTSO. In CLTSO, the relationship between global
exploration and local exploitation in the iterative process are well balanced.

3.1. Circle Chaotic Map

Many changes in nature are not random. They seem to conform to some special laws.
Such a phenomenon is called chaos. Many movements in nature are chaotic [33]. Chaos is
a random behavior, but it conforms to certain laws, which enables this operator to display
more states in the search space of TSO [34].

Because the position of the tuna is randomly generated in the initialization phase of
the tuna algorithm, it is easy to make the initial tuna gather at the same place. The initial
tuna swarm does not fully cover the search space, resulting in a small difference between
tuna individuals. This greatly reduces the global searching capability of the algorithm.
The current popular chaotic mapping strategies are as follows: Tent [35], Logistic [36],
Circle [37], Chebyshev [38], Sinusoidal [39], and Iterative chaotic map [40]. Studying the
related literature on the above chaotic mapping strategies, we found that Circle chaotic
map has a more stable chaotic value and has a higher coverage rate in the search space [41].
However, our experiments indicate that the distribution of Circle chaotic value is still
not uniform. The chaotic values of the original Circle operator are clustered in the scope



Electronics 2022, 11, 3678 7 of 30

of [0.2, 0.5]. To make the chaotic value distribution more uniform, we improved the
mathematical model of the Circle chaotic mapping strategy.

The mathematical modeling of the original Circle chaotic map is as follows:

xi+1 = mod(xi + 0.2− (0.5/2π) sin(2πxi), 1) (9)

where xi is the ith chaotic particle and xi+1 is the (i + 1)th chaotic particle. The scatter
plot and frequency histogram of the initial candidate solution of the original Circle chaotic
mapping operator are displayed in subgraphs (a) and (c) of Figure 2. In the Circle chaotic
map experiment, the total number of particles is 2000. Chaotic particles denote the initial
candidate solution of TSO.
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As can be seen from subgraphs (a) and (c) of Figure 2, the chaotic particles are con-
centrated in the range of [0.2, 0.5] in the chaotic sequence initialized by Circle chaotic map.
However, the initial candidate solutions are too concentrated, which will greatly reduce the
population diversity of TSO. Therefore, the original Circle chaotic map is improved in this
paper [42]. The mathematical modeling of the improved Circle chaotic map is as follows:

xi+1 = mod(3.85xi + 0.4− (0.7/3.85π) sin(3.85πxi), 1) (10)

where xi is the ith chaotic particle and xi+1 is the (i + 1)th chaotic particle.



Electronics 2022, 11, 3678 8 of 30

The scatter plot and frequency histogram of the initial candidate solution of the
improved Circle chaotic map operator are displayed in subgraphs (b) and (d) of Figure 2.

From (b) and (d), we can clearly see that, compared to the original Circle chaotic
map, the particle distribution of the improved Circle chaotic map is more uniform. Each
candidate solution particle of the algorithm is explored in the search space. Therefore,
using the improved Circle chaotic map operator to modify TSO can obtain more uniform
candidate solutions. The initial tuna individuals uniformly distributed in the search space
of the algorithm can significantly increase the population diversity of TSO.

3.2. Levy Flight

The movement and trajectory of many small animals and insects in life have the
characteristics of Levy flight. These animals and insects include ants and flies. Many
animals in nature use Levy flight strategy as an ideal way of foraging. By studying this
phenomenon, French mathematician Paul Pierre Levy proposed the mathematical model of
Levy flight [43]. Levy flight is an operator conforming to Levy distribution. The step size
of Levy flight is random and mixed with long and short distances, which makes it easier to
search over a large scale and with unknown scope compared to Brownian motion [44]. In
the searching process, the Levy operator often uses short steps to walk and occasionally
uses long steps to jump, which allows it to efficiently get rid of the effects of local attraction
points. Therefore, in the random searching problem, many heuristic algorithms adopt this
strategy to modify the iterative process, which efficiently helps the algorithm to get rid of
the influence of local attraction points [45–47].

The Levy distribution can be expressed by the following mathematical model:

L(s) ∼ |s|−1−β (11)

where β is in the range of (0, 2), s is the step size, and L(s) is the probability density of a
step size, s, according to Levy modeling. The mathematical modeling of Levy distribution
is as follows:

L(s, γ, µ) =

{ √
γ

2π exp[− γ
2(s−µ)

] 1
(s−µ)3/2 , 0 < µ < s < ∞

0 , otherwise
(12)

where µ represents the minimum step size and µ > 0, γ represents size parameters. When
s→ ∞ , Equation (12) can be written in the following form:

L(s, γ, µ) ≈
√

γ

2π

1
s3/2 (13)

Usually, scholars regard L(s) approximation as the following mathematical formula:

L(s)→ αβ · Γ(β) sin(πβ/2)
π|s|1+β

, s→ ∞ (14)

where Γ represents gamma function. Its mathematical model is as follows:

Γ(z) =
∫ ∞

0
tz−1e−tdt (15)

Due to the high complexity of Levy distribution, researchers often use the Man-
tegna [48] algorithm to simulate Levy flight step size, s, which is defined as follows:

s =
µ

|ν|1/β
(16)
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where µ and v are defined as follows:

µ ∼ N
(

0, σ2
µ

)
(17)

ν ∼ N
(

0, σ2
ν

)
(18)

σµ =


Γ(1 + β) sin

(
πβ
2

)
Γ
[
(1+β)

2

]
· β · 2

(1+β)
2

, σν = 1 (19)

where the value of β is usually 1.5.
To show the global exploration capability of Levy flight more intuitively, this paper

compares Levy flight with random walk strategy. The simulation steps of Levy flight and
random walk are set to 300. The comparison results are presented in Figure 3.
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Figure 3 shows that the Levy flight has a larger search range than random walk. The
jump points of the random walk strategy are more concentrated, and the jump points of the
Levy flight strategy are widely distributed. Figure 3 fully demonstrates the characteristics
of Levy flight, which can make it better to explore in the whole searching space.

3.3. Nonlinear Adaptive Weight

How to balance the exploration capability and the exploration capability of the swarm
intelligence optimization algorithm is very important. Weight parameters play an impor-
tant role in the TSO algorithm. When the tuna chooses the spiral foraging strategy, in
Equations (5) and (6), the weight parameters α1 and α2 determine the degree of how much
tuna individuals follow the optimal individual to forage. This reflects the optimization
process of the algorithm. Similarly, in the parabolic foraging strategy, the weight parameter
p in Equation (2) determines the degree of how much ordinary individuals follow the
optimal individual. When the weight parameter is large, the degree of tuna following the
optimal individual is higher, which makes the whole tuna population better explore the
whole space. When the weight parameter is small, ordinary tuna individuals do not follow
the optimal individuals. They will swim around a small part of the space, which facilitates
the ordinary tuna individual to develop the field around itself. To sum up, the exploration
and the exploitation capabilities of TSO depend on the changes of weight parameters α1,
α2, and p.
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From Equations (5) and (6), it can be seen that the weight parameters α1 and α2 are
linear changes. However, the optimization process of TSO is very complex, and the linear
changes of weight parameters α1 and α2 cannot reflect the actual optimization process of
the algorithm. Nowadays, in order to overcome the drawbacks caused by linear control
weights, many scholars use nonlinear adaptive weights to improve the swarm intelligence
optimization algorithms [49–51]. Repeated experiments indicate that the optimization
effect of the nonlinear adaptive weight strategy is better than the linear weight strategy.
Therefore, two improved nonlinear weight parameters α1i and α2i are introduced in this
paper. Their mathematical models are as follows:

α1i(t) = α1ini − (α1ini − α1 f in) · sin(
t

µ · TMax
· π) (20)

α2i(t) = α2ini − (α2ini − α2 f in) · sin(
t

µ · TMax
· π) (21)

where µ = 2, α1ini denotes the initial value of α1, α1 f in denotes the final value of α1, α2ini
denotes the initial value of α2, and α2 f in denotes the final value of α2. We compared the
improved weight parameters α1i and α2i with the original weight parameters α1 and α2.
The results are displayed in Figure 4. In the experiment, TMax = 500.
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Figure 4. Comparison of weight coefficients α1 and α2 before and after improvement.

It can be clearly seen from Figure 4 that the improved weight parameters α1i and α2i
change rapidly in the early stage, which makes ordinary tuna individuals more closely fol-
low the optimal individual. It increases the global exploration capability of TSO. The weight
parameters α1i and α2i change slowly in the late stage, which enables tuna individuals to
explore their surrounding areas. It increases the local search capability of TSO.

In the spiral foraging strategy, a new nonlinear weight parameter pi is proposed. Its
mathematical model is as follows:

pi(t) = pini − (pini − p f in) · sin(
t

µ · TMax
· π) (22)

where pini represents the initial value of p, and p f in represents the final value of p. We
compare the improved weight parameter pi

2 with the original weight parameter p2. The
comparison curves are displayed in Figure 5. In the comparison curve, TMax = 500.
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As can be seen from Figure 5, the improved weight parameter pi
2 decreases rapidly

in the early stage, so a tuna individual can follow its previous individual more closely. It
increases the global exploration capability of TSO. The improved weight parameter pi

2

decreases slowly in the late iteration, so tuna individuals can swim and explore in the
surrounding space. It increases the local exploration capability of TSO.

3.4. Improved Nonlinear Tuna Swarm Optimization Algorithm Based on Circular Chaotic Map and
Levy Flight Operator

The TSO algorithm usually uses random data to initialize population in solving func-
tion optimization problems, which may lead to the phenomenon that candidate solutions
are clustered together. However, this phenomenon will lead to poor population diversity,
which eventually leads to poor optimization results of the algorithm. Circle chaotic map
has the advantages of randomness and ergodicity. In the optimization process of TSO, these
advantages make it easier for the algorithm to escape the attraction of local extremum, and
helps the algorithm to maintain the diversity of the swarm. Therefore, an improved Circle
chaotic map strategy is introduced to initialize the tuna swarm. The swarm initialization
mechanism is upgraded from Equations (1)–(10).

For the swarm intelligence optimization algorithm, how to get rid of the influence of
local attraction points is a very important issue. The Levy flight strategy is an operator
that can strengthen the global capability of TSO. This mechanism often uses short steps to
walk and occasionally uses long steps to jump. The low-frequency use of long step length
can ensure that TSO can extensively search the entire search area. The high-frequency use
of short step length can ensure that TSO can locally search its nearest scope. Therefore,
this paper introduces the Levy operator to modify the swarm update strategy of TSO.
Considering that the jump of the Levy operator is too intense, and it may jump out of the
main range in the process of operation, this paper adds step control parameters on the
basis of the original Levy operator. The small step size control parameters can control the
search of TSO in a small scope, which can enhance the local exploration ability of TSO
without weakening the global exploration ability. The step size control parameters with
large values can control the exploration of TSO in a large scope, which is conducive to
solving the complex optimization problem.
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The original TSO designed the parabolic foraging strategy and the spiral foraging
strategy to balance the global exploration and the local exploitation capabilities of TSO.
However, in the spiral foraging strategy, the linear changes of the weight parameters α1
and α2 cannot solve the actual complex problems well. In the parabolic foraging strategy,
the change of the weight parameter p cannot effectively provide the solution to TSO
for the global and the local exploration abilities. This paper uses nonlinear adaptive
weight to modify the spiral foraging strategy and parabolic foraging strategy in TSO. The
mathematical model of weight parameter pi is upgraded from Equation (3) to Equation (22),
and the mathematical models of α1i and α2i are upgraded from Equations (5) and (6) to
Equations (20) and (21), respectively.

The mathematical model of the improved spiral foraging strategy based on the Levy
operator and nonlinear adaptive weight strategy is as follows:

Xt+1
i =



α1i · (Xt
rand + Lτ ·

∣∣Xt
rand − Xt

i

∣∣+ α2i · Xt
i ),

i = 1
α1i · (Xt

rand + Lτ ·
∣∣Xt

rand − Xt
i

∣∣+ α2i · Xt
i−1),

i = 2, 3, . . . , NP
α1i · (Xt

best + Lτ ·
∣∣Xt

best − Xt
i

∣∣+ α2i · Xt
i ),

i = 1
α1i · (Xt

best + Lτ ·
∣∣Xt

best − Xt
i

∣∣+ α2i · Xt
i−1),

i = 2, 3, . . . , NP

, i f rand < t
tmax

, i f rand < t
tmax

(23)

where Lτ is an improved distance control parameter combined with the Levy operator. Its
mathematical model is as follows:

Lτ = eα·Levy(s)·l · cos(2π · Levy(s) · α) (24)

where Levy(s) is the step size of the Lévy operator, and α is the step size control coefficient.
In this article, α = 0.01. The mathematical model of improved parabolic foraging strategy
based on the Levy operator and nonlinear adaptive weight strategy is as follows:

Xt+1
i =

{
Xt

best + α · Levy(s) · (Xt
best − Xt

i ) + TF · p2 · (Xt
best − Xt

i ), if rand < 0.5

TF · pi
2 · Xt

i , if rand ≥ 0.5
(25)

Based on the above improvement strategies, an improved TSO is proposed, called
CLTSO. The pseudocode of CLTSO is shown in Algorithm 2, and the process diagram of
CLTSO is shown in Figure 6.

Algorithm 2 Pseudocode of CLTSO Algorithm

Initialization: Set parameters NP, Dim, a, z and TMax. Initialize the position of tuna Xi (i = 1, 2,
. . . , NP) by (10)
Counter t = 0
while T < TMax do

Calculate the fitness value of all tuna
Update the position and value of the best tuna Xt

best
for (each tuna) do

Update α1i, α2i, pi by (20), (21), (22)
if (rand < z) then

Update Xt+1
i by (10)

else if (rand ≥ z) then
if (rand < 0.5) then

Update Xt+1
i by (23)

else if (rand ≥ 0.5) then
Update Xt+1

i by (25)
t = t + 1
return the best fitness value f (Xbest) and the best tuna Xbest
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Comparing Algorithms 1 and 2, it is clear that the overall structures are similar. The
update strategies have been changed. Therefore, the improved operator proposed in this
paper does not destroy the structural simplicity of the original TSO algorithm.

3.5. Time Complexity Analysis

Time complexity is an important measurement tool for evaluating the efficiency of an
algorithm. In much of the research literature, it is represented by the symbol O. The time
complexity is closely related to the number of instruction operations of the algorithm. The
time complexity of TSO is closely related to iteration times, location update mechanism,
and the evaluation times of fitness value function. The time complexity of CLTSO is closely
related to the number of iterations, the number of fitness function evaluations, and the
improvement operator. To compare the time cost differences between TSO and CLTSO, the
time complexity of TSO and CLTSO is evaluated as follows. The time complexity of each
operation instruction in the TSO is discussed below.

1. Initialize N individuals in the TSO, each with a dimension of D, so N · D calculations
are required.

2. Calculate the fitness value of each individual in the tuna population and select
the optimal individual in the current population. Therefore, it needs to calculate
[N · (N − 1)]/2 times.

3. Update the values of parameters α1, α2, and p, which are computed 3 times.
4. Update all tuna individuals in the search space, which are computed N · D times.
5. Return the best individual, Xbest, in the tuna population, which requires this code to

be executed 1 time.
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The instructions in steps 2 to 4 need to be iteratively run TMax times. Combining
the above analysis process, the time complexity of TSO can be expressed as O(TSO) =
TMax · [(N2 − N)/2 + N · D + 3].

The time complexity of each operation instruction in CLTSO is analyzed as follows.

1. Initialize N individuals in the CLTSO, each with a dimension of D, so N · D calcula-
tions are required.

2. Calculate the fitness value of each individual in the tuna population and select the
optimal individual in the current population. Therefore, it needs to be calculated
[N · (N − 1)]/2 times.

3. Update the values of parameters α1i, α2i, and pi, which needs to be calculated 3 times.
4. Update all tuna individuals in the search space, which needs to be calculated N · D

times.
5. When each individual in the tuna population is updated, the Levy operator needs to

be calculated 1 time. Therefore, it needs to be run N times in total.
6. Return the best individual, Xbest, in the tuna population, which requires this code to

be executed 1 time.

Steps 2 to 5 require a total of TMax iterations. Therefore, the time complexity of CLTSO
can be expressed as O(CLTSO) = TMax · [(N2 − N)/2 + N · D + 3 + N].

Compared with the tuna swarm optimization algorithm, the three operators pro-
posed in this paper slightly increase the time cost. CLTSO and TSO have very close time
complexity.

4. Simulation Experiments and Results Analysis

To verify the effectiveness of the proposed CLTSO in solving different optimization
problems, in this section, 22 benchmark functions are applied to design a series of exper-
iments to compare CLTSO with other famous meta-heuristic algorithms. In addition, to
illustrate the outstanding performance of CLTSO, we compared it against the tuna swarm
optimization algorithm (TSO), the improved TSO based on the Levy flight operator (LTSO),
the improved TSO based on the Circle chaotic map, and nonlinear adaptive weights (CTSO).
Finally, this section provides a detailed analysis of the experimental results.

4.1. Benchmark Function

Twenty-two different types of benchmark functions are selected to evaluate the capa-
bility of CLTSO, which cover unimodal, multimodal, fixed-dimension multimodal, and
combined functions in the CEC2014 [52]. Through a survey of relevant literature, we find
that CEC2014 is a classic test function, so it can be used as a benchmark to evaluate the
performance of the proposed algorithm. Its mathematical model is given in Table 2. F1~F7
are unimodal functions, which are used to evaluate the convergence rate of the algorithm.
F8~F14 are multimodal functions, which are applied to verify whether the algorithm has
good global exploration capability. F15~F22 are the CEC2014 functions, which are applied
to test the comprehensive capability of these algorithms.

4.2. Comparison Algorithm and Parameter Setting

Based on these 22 benchmark functions, a series of comparative experiments are de-
signed to test the selected algorithms, which include Accelerated Particle Swarm Optimiza-
tion (APSO) [53], WOA, the Fitness-Distance Balance based adaptive guided differential
evolution (FDB-AGDE) algorithm [54], Covariance Matrix Adaptation Evolutionary Strate-
gies (CMA-ES) [55], TSO, and CLTSO. The parameter values of the algorithms involved in
these experiments are shown in Table 3. The symbol ‘ ~ ’ indicates that the algorithm does
not set parameter values. Functions F1~F13 are tested in 30 and 100 dimensions, respectively,
and F14 is tested in its suitable dimension. Eight CEC2014 benchmark functions are tested
in 50 dimensions. The maximum number of evaluations of F1~F14 are 1000. Because CEC
benchmark functions are complex, the number of evaluations of 8 CEC2014 functions are
simplified to 5000 without losing representativeness. The swarm size of each algorithm is
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30. To avoid accidental interference, we run each algorithm 30 times independently in each
experiment.

Table 2. Benchmark functions.

Function Dim Range fmin

F1(x) = ∑D
i=1 x2

i 30,100 [−100, 100] 0

F2(x) =
D
∑

i=1
|xi |+

D
∏
i=1
|xi | 30,100 [−10, 10] 0

F3(x) =
D
∑

j=1

(
j

∑
i=1

xi

)2
30,100 [−100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ D} 30,100 [−100, 100] 0

F5(x) = ∑D
i=1 100(x2

i+1 − x2
i )

2
+ (xi − 1)

2
30,100 [−30, 30] 0

F6(x) =
D
∑

i=1
(bxi + 0.5c)2 30,100 [−100, 100] 0

F7(x) =
D
∑

i=1
ixi

4 + random[0, 1) 30,100 [−1.28, 1.28] 0

F8(x) = ∑D
i=1−xi sin(

√
|xi |) 30,100 [−500, 500] −418.

9829 × D

F9(x) = ∑D
i=1 (x2

i − 10 cos(2πxi) + 10) 30,100 [−5.12, 5.12] 0

F10(x) = −20 exp
(
−0.2

√
(1/D)∑D

i=1 x2
i

)
− exp

(
(1/D)∑D

i=1 cos(2πxi)
)
+ 20 + exp(1) 30,100 [−32, 32] 8.8818 × 10−16

F11(x) = (1/4000)∑D
i=1 x2

i −∏D
i=1 cos

(
xi/
√

i
)
+ 1 30,100 [−600, 600] 0

F12(x) = π/D
{

10 sin2(πyi) + ∑D
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yD − 1)

}
+∑D

i=1 u(xi , 10, 100, 4)

yi = 1 + [(xi + 1)/4]u(xi , a, k, m) =


k(xi − a)m, xi > a

0,−a < xi < a

k(−xi − a)m, xi < a

30,100 [−50, 50] 0

F13(x) = 0.1
{

sin2(3πxi) + ∑D
i=1 (xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xD − 1)2[1 + sin2(2πxD)]

}
+∑D

i=1 u(xi , 5, 100, 4)
} 30,100 [−50, 50] 0

F14(x) = ((1/500) + ∑25
j=1 (1/(j + ∑2

i=1 (xi − aij)
6)))−1 2 [−65.53, 65.53] 0.998004

F15(x)(CEC2014 1 : Rotated High Conditioned Elliptic Function) 50 [−100, 100] 100

F16(x)(CEC2014 2 : Rotated Bent Cigar Function) 50 [−100, 100] 200

F17(x)(CEC2014 3 : Rotated Discus Function) 50 [−100, 100] 300

F18(x)(CEC2014 5 : Shifted and Rotated Rosenbrock) 50 [−100, 100] 500

F19(x)(CEC2014 18 : Shifted and Rotated Expanded Scaffer′s F6 Function) 50 [−100, 100] 1800

F20(x)(CEC2014 20 : Hybrid Function 4 (N = 4)) 50 [−100, 100] 2000

F21(x)(CEC2014 21 : Hybrid Function 5 (N = 5)) 50 [−100, 100] 2100

F22(x)(CEC2014 30 : Composition Function 8 (N = 3)) 50 [−100, 100] 3000

Table 3. Parameter values of the algorithms.

Algorithm Parameter Value

APSO α = 1, β = 0.5, γ = 0.95
WOA l ∈ (−1, 1)

FDB-AGDE µCR = 0.5
CMA-ES µ = 2

TSO a = 0.7, z = 0.05
CLTSO a = 0.7, z = 0.05
CTSO a = 0.7, z = 0.05
LTSO a = 0.7, z = 0.05
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4.3. Results and Analysis

Table 4 shows the experimental results of CLTSO and other algorithms in low dimen-
sional benchmark functions (dimension = 30), where Std is standard deviation and Mean is
mean value. Mean represents the solution accuracy of these algorithms. Std reflects the
stability of these algorithms in the solution process. F14 is tested in its own dimension.
Table 5 displays the experimental results of CLTSO and other algorithms in high dimen-
sional benchmark functions (dimension = 100). The experimental results of eight composite
functions in CEC2014 are displayed in Table 6.

Table 4. Experimental results in 30 dimensions.

Function Performance APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F1
Mean 5.09 × 10−39 4.82 × 10−150 1.23 × 10−8 5.99 × 10−15 0 0

Std 1.05 × 10−39 2.59 × 10−149 1.34 × 101 3.94 × 10−15 0 0

F2
Mean 4.38 × 10−1 8.02 × 10−103 4.49 × 10−6 1.83 × 10−7 1.71 × 10−252 0

Std 5.79 × 10−1 3.63 × 10−102 5.61 × 101 4.53 × 10−8 0 0

F3
Mean 1.32 × 101 2.01 × 104 1.08 × 10−96 6.14 × 10−6 0 0

Std 4.84 × 100 9.41 × 103 6.35 × 104 1.16 × 10−5 0 0

F4
Mean 4.96 × 10−1 3.61 × 101 1.64 × 100 8.37 × 10−6 6.42 × 10−249 0

Std 1.75 × 10−1 2.69 × 101 1.45 × 101 2.29 × 10−6 0 0

F5
Mean 5.02 × 101 2.72 × 101 1.50 × 102 6.64 × 101 2.94 × 10−4 2.12 × 10−4

Std 4.56 × 101 4.96 × 10−1 1.14 × 102 1.52 × 102 7.65 × 10−1 3.82 × 10−5

F6
Mean 4.01 × 10−32 8.72 × 10−2 1.09 × 10−8 6.59 × 10−15 1.37 × 10−9 2.04 × 10−10

Std 1.60 × 10−32 9.95 × 10−2 1.33 × 101 3.44 × 10−15 8.89 × 10−6 2.40 × 10−10

F7
Mean 1.54 × 10−1 1.53 × 10−3 2.36 × 10−2 2.44 × 10−2 2.16 × 10−5 1.81 × 10−5

Std 2.03 × 10−2 2.05 × 10−3 9.40 × 100 6.71 × 10−3 2.19 × 10−4 6.32 × 10−5

F8
Mean –1.09 × 102 –1.16 × 104 –1.26 × 104 –4.41 × 1011 –8.38 × 102 –1.26 × 104

Std 3.25 × 100 1.50 × 103 3.32 × 10−1 2.34 × 1012 1.17 × 104 6.00 × 10−8

F9
Mean 7.42 × 101 0 3.11 × 101 5.60 × 101 0 0

Std 5.96 × 100 0 1.62 × 101 6.32 × 101 0 0

F10
Mean 5.36 × 10−1 4.56 × 10−15 6.78 × 10−7 7.01 × 10−1 8.88 × 10−16 8.88 × 10−16

Std 5.28 × 10−1 2.15 × 10−15 3.73 × 10−1 3.78 × 100 8.29 × 10−16 0

F11
Mean 8.49 × 10−3 1.61 × 10−3 2.85 × 10−7 3.29 × 10−4 0 0

Std 1.67 × 10−2 8.69 × 10−3 1.64 × 101 1.77 × 10−3 0 0

F12
Mean 1.08 × 10−1 6.17 × 10−3 1.74 × 10−25 2.01 × 10−15 2.65 × 10−10 6.75 × 10−14

Std 1.21 × 10−1 6.67 × 10−3 2.01 × 101 1.14 × 10−15 1.14 × 10−7 3.87 × 10−11

F13
Mean 2.38 × 10−3 3.11 × 10−1 1.87 × 10−19 3.77 × 10−14 5.12 × 10−8 1.24 × 10−9

Std 4.42 × 10−3 2.72 × 10−1 1.54 × 101 3.15 × 10−14 2.84 × 10−3 3.77 × 10−9

F14
Mean 1.27 × 101 2.27 × 100 9.98 × 10−1 7.65 × 100 9.98 × 10−1 9.98 × 10−1

Std 1.12 × 10−13 2.91 × 100 2.71 × 100 3.59 × 100 9.31 × 10−1 2.69 × 10−16
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Table 5. Experimental results in 100 dimensions.

Function Performance APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F1
Mean 1.84 × 101 1.03 × 10−149 7.27 × 101 1.83 × 10−3 0 0

Std 1.40 × 100 4.01 × 10−149 1.98 × 101 4.15 × 10−4 0 0

F2
Mean 4.13 × 101 6.59 × 10−102 7.95 × 100 2.99 × 10−1 8.66 × 10−235 0

Std 2.74 × 100 2.42 × 10−101 7.89 × 100 1.09 × 10−1 0 0

F3
Mean 2.23 × 102 8.92 × 105 7.05 × 10−86 4.80 × 105 0 0

Std 1.40 × 101 2.09 × 105 1.05 × 101 1.31 × 105 0 0

F4
Mean 2.29 × 100 7.06 × 101 5.91 × 101 1.73 × 100 5.52 × 10−229 0

Std 8.35 × 10−2 2.77 × 101 6.11 × 100 3.03 × 10−1 0 0

F5
Mean 6.22 × 103 9.77 × 101 1.30 × 105 3.59 × 102 1.08 × 10−1 1.89 × 10−3

Std 2.28 × 103 4.05 × 10−1 9.66 × 105 1.49 × 103 1.99 × 10−1 4.41 × 10−3

F6
Mean 2.66 × 101 1.76 × 100 5.27 × 10−5 1.71 × 10−3 5.10 × 10−5 4.65 × 10−5

Std 7.14 × 100 6.30 × 10−1 1.37 × 101 3.09 × 10−4 2.37 × 10−2 7.68 × 10−5

F7
Mean 1.83 × 103 1.67 × 10−3 2.81 × 10−1 1.39 × 10−1 2.76 × 10−4 1.04 × 10−4

Std 6.20 × 102 1.19 × 10−3 1.37 × 101 1.83 × 10−2 3.08 × 10−4 1.13 × 10−4

F8
Mean −2.35 × 102 −3.73 × 104 −3.45 × 104 −1.81 × 105 −2.79 × 103 −4.19 × 104

Std 9.35 × 100 5.59 × 103 4.00 × 103 3.12 × 104 3.91 × 104 2.95 × 10−3

F9
Mean 4.33 × 102 0 2.25 × 102 6.69 × 102 0 0

Std 2.60 × 101 0 1.18 × 102 1.64 × 102 0 0

F10
Mean 3.58 × 100 4.20 × 10−15 5.86 × 100 9.41 × 10−3 8.88 × 10−16 8.88 × 10−16

Std 3.04 × 10−1 2.23 × 10−15 4.11 × 100 1.04 × 101 8.29 × 10−16 0

F11
Mean 4.39 × 10−1 0 1.71 × 100 3.49 × 10−2 0 0

Std 6.34 × 10−2 0 1.12 × 101 6.78 × 10−3 0 0

F12
Mean 5.46 × 10−1 1.80 × 10−2 6.02 × 10−3 2.12 × 10−4 2.49 × 10−8 2.78 × 10−9

Std 1.09 × 10−1 7.22 × 10−3 9.60 × 100 5.70 × 10−5 5.86 × 10−5 2.19 × 10−7

F13
Mean 8.73 × 100 1.65 × 100 5.93 × 10−1 3.76 × 10−3 2.02 × 10−4 6.80 × 10−6

Std 2.13 × 100 7.21 × 10−1 1.53 × 101 2.83 × 10−3 4.38 × 10−3 7.14 × 10−6

Table 6. Simulation results of CEC2014 functions.

Function Performance APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F15
Mean 1.19 × 1010 8.85 × 108 3.36 × 105 1.84 × 107 2.22 × 106 4.35 × 105

Std 3.12 × 107 3.34 × 108 7.01 × 107 3.94 × 106 1.21 × 106 4.35 × 105

F16
Mean 1.65 × 1011 7.71 × 1010 3.36 × 102 2.02 × 104 1.00 × 104 2.75 × 102

Std 3.25 × 108 7.86 × 109 1.20 × 101 5.08 × 104 4.94 × 109 1.15 × 104

F17
Mean 1.99 × 108 9.77 × 104 7.36 × 102 8.33 × 105 8.38 × 103 3.59 × 102

Std 3.10 × 103 9.92 × 103 1.09 × 101 1.18 × 105 7.60 × 103 3.29 × 101

F18
Mean 5.20 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.20 × 102

Std 9.69 × 102 8.62 × 10−2 1.14 × 101 4.43 × 10−2 3.13 × 102 1.06 × 10−1

F19
Mean 1.39 × 109 4.83 × 105 2.96 × 103 5.07 × 104 2.27 × 103 1.98 × 103

Std 1.98 × 104 4.22 × 105 2.00 × 103 2.89 × 104 2.91 × 103 1.56 × 103

F20
Mean 3.17 × 103 3.04 × 105 3.13 × 103 8.77 × 105 4.66 × 103 2.67 × 103

Std 5.98 × 102 2.31 × 105 1.56 × 101 3.70 × 105 4.86 × 103 2.25 × 102

F21
Mean 9.39 × 108 1.12 × 107 3.56 × 104 5.20 × 106 4.10 × 104 6.27 × 103

Std 1.14 × 106 5.43 × 106 1.05 × 105 2.42 × 106 2.33 × 105 6.06 × 104

F22
Mean 3.20 × 103 3.79 × 105 1.26 × 104 4.00 × 103 3.20 × 103 3.20 × 103

Std 7.83 × 10−4 2.41 × 105 9.53 × 100 2.93 × 102 1.92 × 103 0
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As can be seen from Table 3, in low-dimensional functions, the optimization accuracy
of CLTSO is only slightly weaker than its competitors in F6, F8, F12, and F13. Among
the remaining 10 benchmark functions, CLTSO not only has significantly better solution
accuracy than its competitors, but also has better robustness. This shows that the Circle
chaotic map operator can help CLTSO obtain more diverse candidate solutions, and each
candidate solution can continuously update and finally select the optimal solution during
the iteration.

When the dimension of the benchmark function is 100, CLTSO has better optimization
performance in dealing with higher dimensional and more complex problems. Only in the
F8 test function is the optimization accuracy of CLTSO slightly worse than that of CMA-ES.
In the remaining 12 functions, CLTSO has the best optimization accuracy, and CLTSO can
find the theoretical optimal value in F1, F2, F3, F4, F9, F10, and F11. From the robustness of
the algorithm, CLTSO obtains the minimum Std value in all benchmark functions, which
indicates that CLTSO has more stable exploration ability than other competitors. This
is due to the fact that the Circle chaotic map strategy helps CLTSO to obtain a richer
population diversity, which allows the initial tuna to be evenly distributed in the search
space. In addition, during the execution of CLTSO, the Levy flight operator strengthens the
exploration capability of the algorithm, and the nonlinear adaptive weight operator can
well balance the exploration and exploitation capability of CLTSO.

The experimental results of the CEC2014 function indicate that all algorithms do not
obtain the theoretical optimal value, but CLTSO can still achieve more excellent optimiza-
tion accuracy than other competitors in F16~F22. This effectively proves that the improved
nonlinear tuna swarm optimization algorithm based on the Circle chaotic map strategy
and the Levy flight operator can adapt to more complex and challenging optimization
problems.

To more intuitively observe the convergence ability of CLTSO and the competitors,
Figure 7 draw their operating curves. The images of F1~F13 are drawn in 100 dimensions,
the image of F14 is drawn in its suitable dimension, and the images of F15~F22 are drawn in
50 dimensions.

The convergence curves of these algorithms indicate that CLTSO has a better conver-
gence performance than the competitors. For simple optimization problems, CLTSO can
obtain theoretical optimal values within 500~600 iterations. For complex and challenging
problems, CLTSO can also maintain a faster convergence rate and get rid of the influence of
local attraction points, and ultimately achieve higher optimization accuracy.

In order to further show whether CLTSO has obvious advantage over other algorithms,
this paper uses the Wilcoxon [56] statistical method and the Friedman method to analyze
the experimental results of these algorithms in 100-dimensional benchmark functions. The
results of F14 is based on its suitable dimensions. The experimental data of eight CEC2014
benchmark functions are measured in 50 dimensions. The results of the Friedman test and
the p-value of the Wilcoxon test are listed in Tables 7 and 8, respectively.

Table 7. Results of Friedman test.

Algorithm Rank Mean

CLTSO 1.39
TSO 2.48

FDB-AGDE 3.68
CMA-ES 4.09

WOA 4.14
APSO 5.23
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The Friedman test is a nonparametric statistical analysis method, which uses rank
mean to test whether there are significant differences in multiple population distributions.
Because the problem in this paper is to find the minimum value, a smaller rank mean value
in the Friedman test results indicates better performance of the algorithm. As can be seen
from Table 6, CLTSO has the smallest rank mean and TSO ranks the second, followed by
CMA-ES, WOA, DE, and APSO.

In the Wilcoxon statistical test results, if the p-value is less than 0.05 and close to 0, this
indicates that the experimental results of the two algorithms are significantly different. If the
p-value exceeds 0.05, this indicates that the experimental results of the two algorithms are
not significantly different. If the p-value is equal to NaN, this means that the experimental
results of the two algorithms are not different. As can be seen from Table 7, except for
the last column, the p-values of CLTSO are basically less than 0.05 and close to 0, which
indicates that CLTSO has significant advantages compared with other algorithms. It is not
difficult to find that half of the p-values for Wilcoxon analysis of CLTSO vs. TSO are greater
than 0.05. This is because both CLTSO and TSO can find the theoretical optimal value in
these functions, or the optimal value found by TSO is not much different from that found
by CLTSO. From the optimization curves of TSO and CLTSO, we can see that although the
calculation results of these two algorithms are not very different in those functions with
p-values greater than 0.05, the speed of CLTSO is generally much faster than that of TSO.
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Table 8. Results of Wilcoxon test.

Function
CLTSO

vs.
WOA

CLTSO
vs.

APSO

CLTSO
vs.

FDB-AGDE

CLTSO
vs.

CMAES

CLTSO
vs.

TSO

F1 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F2 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 1.21 × 10−12

F3 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F4 1.21 × 10−12 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 1.21 × 10−12

F5 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 4.18 × 10−9

F6 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 2.78 × 10−7

F7 3.82 × 10−10 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 6.20 × 10−4

F8 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 3.65 × 10−8

F9 NaN 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F10 3.06 × 10−9 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F11 NaN 1.21 × 10−12 7.94 × 10−3 1.21 × 10−12 NaN
F12 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 6.53 × 10−8

F13 3.02 × 10−11 3.02 × 10−11 7.94 × 10−3 3.02 × 10−11 1.69 × 10−9

F14 1.57 × 10−11 1.39 × 10−4 NaN 1.57 × 10−11 1.22 × 10−1

F15 7.94 × 10−3 7.94 × 10−3 1.59 × 10−2 7.94 × 10−3 1.51 × 10−1

F16 7.94 × 10−3 7.94 × 10−3 8.41 × 10−1 4.21 × 10−1 6.90 × 10−1

F17 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3

F18 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3

F19 7.94 × 10−3 7.94 × 10−3 8.41 × 10−1 7.94 × 10−3 8.41 × 10−1

F20 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3

F21 7.94 × 10−3 7.94 × 10−3 4.21 × 10−1 7.94 × 10−3 1.51 × 10−1

F22 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 7.94 × 10−3 1.00 × 100

Finally, this paper quantitatively analyzes all the algorithms in the experiment. The
quantitative analysis of these algorithms is based on the mean absolute error (MAE) of
22 benchmark functions. In mathematics, MAE is a measure of the error between paired
observations expressing the same phenomenon. The mathematical model of MAE is as
follows:

MAE =
∑N

i=1|mi − oi|
N

(26)

where N is the total amount of benchmark functions used for testing, mi is the average of
the optimal results calculated by the algorithm, and oi is the theoretical optimal value of
the ith benchmark function.

Table 9 shows the MAE ranking results of these algorithms. The MAE value of CLTSO
ranks the first among all competitors, and FDB-AGDE ranks the second. The above data
intuitively illustrate the advantage of CLTSO.

Table 9. MAE ranking results of each algorithm.

Algorithm MAE

CLTSO 2.06 × 104

FDB-AGDE 2.70 × 104

CMA-ES 1.21 × 106

TSO 3.82 × 106

WOA 3.55 × 109

APSO 9.60 × 109

The time consumed by these algorithms in functions F1~F22 are shown in Table 10.
The numerical unit is second. The analysis of the time they consumed indicates that the
time complexity of CLTSO is slightly higher than that of TSO, but the increase is trivial.
The improved operator proposed in this paper only increases the time complexity a little
but greatly enhances the optimization performance of the CLTSO algorithm.
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Table 10. The execution time of each algorithm.

Function APSO WOA FDB-AGDE CMA-ES TSO CLTSO

F1 0.5014 0.2206 8.2466 2.6347 0.2277 0.2603
F2 0.4465 0.3333 8.7963 2.8552 0.2389 0.27260
F3 0.5782 1.3826 8.4424 4.0751 1.2743 1.2819
F4 4.3284 0.2083 8.8472 2.4857 0.1960 0.1942
F5 0.7193 0.2458 3.586 2.7163 0.2440 0.3442
F6 0.8572 0.1921 8.8967 2.4867 0.1879 0.1946
F7 0.7557 0.4226 13.6329 2.7073 0.3906 0.3860
F8 1.0016 0.2599 23.6696 2.6709 0.2689 0.2698
F9 0.5113 0.2074 26.1973 2.5678 0.2126 0.2246
F10 0.5619 0.2370 21.3863 3.9514 0.3425 0.3350
F11 0.5321 0.4213 20.6873 2.9784 0.3491 0.4298
F12 1.9510 0.9889 19.5429 3.5528 0.8823 0.8381
F13 1.8874 0.8468 11.6196 6.1577 2.2185 1.5804
F14 2.0775 3.0364 4.9752 4.7462 2.2598 2.2449
F15 1.9327 2.3167 15.5858 21.6152 2.4425 2.6542
F16 1.4227 1.9362 14.8224 21.4082 1.9444 2.0605
F17 1.4958 2.0395 14.6579 22.1484 2.0020 1.9974
F18 1.2775 2.2311 15.6855 21.5255 2.1373 2.2258
F19 1.7849 2.1867 15.3276 22.2718 2.0847 2.2293
F20 2.5258 2.2063 29.3849 20.9746 2.1806 2.2839
F21 3.0010 2.4824 30.1273 23.3055 2.4337 2.5681
F22 6.1130 6.2426 49.8559 27.5203 5.9850 6.0176

4.4. Effectiveness Analysis of Improved Operators

This paper makes three improvements to the original tuna swarm optimization algo-
rithm. Firstly, the improved Circle chaotic mapping strategy is introduced in the initializa-
tion phase, which expands the swarm diversity. Secondly, the Levy operator is introduced
in the position update phase, which strengthens the global swimming ability of tuna. Fi-
nally, the nonlinear adaptive weight strategy is introduced in the TSO iteration stage, which
can effectively balance the exploration and the exploitation capabilities of the tuna swarm.
Section 3 of this chapter proves that the proposed operator significantly improves the opti-
mization performance of TSO. In addition, to verify the effectiveness of the improvements
proposed in this paper, we selected the tuna swarm optimization algorithm (TSO), the
improved TSO based on the Levy flight operator (LTSO), the improved TSO based on the
Circle chaotic map and nonlinear adaptive weights (CTSO), and CLTSO to conduct a set of
comparative experiments. Functions F1~F22 are used to test these algorithms in this section,
and each algorithm runs 30 times independently. F1~F13 are experiments in 100 dimensions,
F15~F22 are experiments in 50 dimensions.

The experimental results of various versions of the improved tuna swarm optimization
algorithm are displayed in Table 11. Their convergence curves are displayed in Figure 8.

Table 11. Experimental results of various versions of the improved TSO.

Function Performance TSO LTSO CTSO CLTSO

F1
Mean 0 0 0 0

Std 0 0 0 0

F2
Mean 9.66 × 10−237 0 0 0

Std 0 0 0 0

F3
Mean 0 0 0 0

Std 0 0 0 0

F4
Mean 1.26 × 10−233 0 0 0

Std 0 0 0 0
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Table 11. Cont.

Function Performance TSO LTSO CTSO CLTSO

F5
Mean 2.52 × 10−3 4.84 × 10−4 2.35 × 10−3 1.27 × 10−5

Std 3.37 × 10−4 2.47 × 10−2 6.09 × 10−3 5.71 × 10−5

F6
Mean 9.33 × 10−4 6.07 × 10−5 2.92 × 10−4 3.07 × 10−5

Std 2.93 × 10−3 8.82 × 10−5 1.76 × 10−2 2.78 × 10−5

F7
Mean 1.34 × 10−4 4.20 × 10−5 8.46 × 10−5 4.07 × 10−5

Std 1.62 × 10−4 6.46 × 10−5 1.41 × 10−4 3.07 × 10−5

F8
Mean −4.19 × 104 −4.19 × 104 −4.19 × 104 −4.19 × 104

Std 2.51 × 104 2.51 × 104 7.54 × 103 5.30 × 10−8

F9
Mean 0 0 0 0

Std 0 0 0 0

F10
Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 0 0 0 0

F11
Mean 0 0 0 0

Std 0 0 0 0

F12
Mean 5.26 × 10−5 1.41 × 10−6 7.65 × 10−7 5.14 × 10−10

Std 2.72 × 10−5 2.04 × 10−7 8.98 × 10−5 1.52 × 10−7

F13
Mean 7.86 × 10−4 7.47 × 10−6 9.84 × 10−6 3.60 × 10−7

Std 7.73 × 10−4 5.16 × 10−3 1.58 × 10−3 2.08 × 10−5

F14
Mean 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

Std 5.99 × 10−1 5.99 × 10−1 5.99 × 10−1 1.72 × 10−16

F15
Mean 1.15 × 106 1.69 × 106 2.32 × 106 9.51 × 105

Std 1.45 × 106 6.65 × 105 2.06 × 106 3.35 × 105

F16
Mean 1.38 × 104 1.12 × 104 1.61 × 103 3.40 × 102

Std 7.08 × 103 1.93 × 103 8.20 × 103 2.05 × 103

F17
Mean 3.16 × 103 4.72 × 102 4.57 × 103 3.71 × 102

Std 6.55 × 103 2.28 × 102 1.62 × 104 4.36 × 101

F18
Mean 5.21 × 102 5.20 × 102 5.21 × 102 5.20 × 102

Std 3.13 × 102 3.12 × 102 3.13 × 102 4.47 × 10−2

F19
Mean 5.54 × 103 8.74 × 103 4.22 × 103 3.78 × 103

Std 2.93 × 103 3.42 × 103 2.35 × 103 1.34 × 103

F20
Mean 6.52 × 103 3.09 × 103 5.49 × 103 2.62 × 103

Std 3.39 × 103 1.59 × 103 4.34 × 103 1.85 × 102

F21
Mean 2.15 × 104 7.56 × 104 1.95 × 104 1.90 × 104

Std 1.30 × 105 3.01 × 104 6.81 × 104 3.08 × 104

F22
Mean 3.20 × 103 3.20 × 103 3.20 × 103 3.20 × 103

Std 0 0 0 0

As can be seen from Table 10 and Figure 8, CLTSO has higher optimization accuracy
than the competitors. In benchmark functions F1, F2, F3, F4, F9, F10, F11, and F14, CLTSO,
CTSO, and LTSO can calculate the theoretical optimal values, but CLTSO converges much
faster than CTSO and LTSO. The above data indicate that the optimization performance of
CTSO and LTSO is more enhanced than the original tuna swarm optimization algorithm,
which further confirms the validity of the three modified operators in CLTSO. To demon-
strate that the optimization capability of CLTSO is greatly enhanced compared to CTSO
and LTSO, Friedman statistical analysis and MAE ranking are conducted based on the data
in Table 11. The analysis and ranking results are listed in Tables 12 and 13.
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Table 12. Results of Friedman statistical analysis.

Algorithm Rank Mean

CLTSO 1.80
LTSO 2.25
CTSO 2.84
TSO 3.11

Table 13. MAE ranking results.

Algorithm MAE

CLTSO 4.42 × 104

LTSO 8.06 × 104

CTSO 1.08 × 105

TSO 1.18 × 105

According to the above two tables, it is clear that CLTSO has the smallest rank mean
in the Friedman analysis test, LTSO ranks the second, and CTSO ranks the third, followed
by TSO. According to the MAE value of each algorithm, CLTSO ranks the first. The above
ranking shows that CLTSO can better approximate the theoretical optimal value when
dealing with optimization problems. CLTSO has shown much better performance than the
competitors. Therefore, the above data and analysis results confirm that the three improved
operators proposed in this paper are effective.

Electronics 2022, 11, x FOR PEER REVIEW 26 of 33 
 

 

10F  
Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 

Std 0 0 0 0 

11F  
Mean 0 0 0 0 

Std 0 0 0 0 

12F  
Mean 5.26 × 10−5 1.41 × 10−6 7.65 × 10−7 5.14 × 10−10 

Std 2.72 × 10−5 2.04 × 10−7 8.98 × 10−5 1.52 × 10−7 

13F  
Mean 7.86 × 10−4 7.47 × 10−6 9.84 × 10−6 3.60 × 10−7 

Std 7.73 × 10−4 5.16 × 10−3 1.58 × 10−3 2.08 × 10−5 

14F  
Mean 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 

Std 5.99 × 10−1 5.99 × 10−1 5.99 × 10−1 1.72 × 10−16 

15F  
Mean 1.15 × 106 1.69 × 106 2.32 × 106 9.51 × 105 

Std 1.45 × 106 6.65 × 105 2.06 × 106 3.35 × 105 

16F  
Mean 1.38 × 104 1.12 × 104 1.61 × 103 3.40 × 102 

Std 7.08 × 103 1.93 × 103 8.20 × 103 2.05 × 103 

17F  
Mean 3.16 × 103 4.72 × 102 4.57 × 103 3.71 × 102 

Std 6.55 × 103 2.28 × 102 1.62 × 104 4.36 × 101 

18F  
Mean 5.21 × 102 5.20 × 102 5.21 × 102 5.20 × 102 

Std 3.13 × 102 3.12 × 102 3.13 × 102 4.47 × 10−2 

19F  
Mean 5.54 × 103 8.74 × 103 4.22 × 103 3.78 × 103 

Std 2.93 × 103 3.42 × 103 2.35 × 103 1.34 × 103 

20F  
Mean 6.52 × 103 3.09 × 103 5.49 × 103 2.62 × 103 

Std 3.39 × 103 1.59 × 103 4.34 × 103 1.85 × 102 

21F  
Mean 2.15 × 104 7.56 × 104 1.95 × 104 1.90 × 104 

Std 1.30 × 105 3.01 × 104 6.81 × 104 3.08 × 104 

22F  
Mean 3.20 × 103 3.20 × 103 3.20 × 103 3.20 × 103 

Std 0 0 0 0 

 

Figure 8. Cont. Figure 8. Cont.



Electronics 2022, 11, 3678 25 of 30Electronics 2022, 11, x FOR PEER REVIEW 27 of 33 
 

 

 

Figure 8. Convergence curves of each version of improved TSO. 

As can be seen from Table 10 and Figures 8, CLTSO has higher optimization accuracy 

than the competitors. In benchmark functions 1F , 2F , 3F , 4F , 9F , 10F , 11F , and 14F , 

CLTSO, CTSO, and LTSO can calculate the theoretical optimal values, but CLTSO con-

verges much faster than CTSO and LTSO. The above data indicate that the optimization 

performance of CTSO and LTSO is more enhanced than the original tuna swarm optimi-

zation algorithm, which further confirms the validity of the three modified operators in 

CLTSO. To demonstrate that the optimization capability of CLTSO is greatly enhanced 

compared to CTSO and LTSO, Friedman statistical analysis and MAE ranking are 

Figure 8. Convergence curves of each version of improved TSO.

5. Optimization Engineering Example Using CLTSO

The original intention of meta-heuristic algorithms is to optimize the engineering
problems encountered. How to improve the precision of engineering practice is the concern
of researchers. To verify the effectiveness of CLTSO for real engineering problems, CLTSO
is applied to the modification design of a BP neural network. The BP neural network is a
model proposed by McCulloch to train the network based on error back propagation. It is
one of the most mature and widely used artificial neural network modules. The BP neural
network is widely used in pattern recognition, classification and prediction, nonlinear
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modeling, etc. Figure 9 shows a BP neural network topology with d input neurons, l output
neurons, and q hidden layer neurons.
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vih is the weight between the ith node in the input layer and the hth node in the hidden
layer. whj is the weight between the hth node in the input layer and the jth node in the
hidden layer. The threshold of the jth node in the output layer is expressed by θj. Therefore,
the input value received by the hidden layer hth neurons in the network model is as follows:

αh = ∑d
i=1 vihxi (27)

The value received by the jth node in the output layer is as follows:

β j = ∑q
h=1 wihbh (28)

where bh is the output value of the hth neuron in the hidden layer. Taking training case (xk,
yk) as an example, we assume that the output of the network model is as follows:

ŷk = (ŷk
1, ŷk

2, · · · , ŷk
l ) (29)

ŷk
j = f (β j − θj) (30)

Therefore, the mean square error of the network on example (xk, yk) is as follows:

Ek = 1/2∑l
j=1 (ŷ

k
j − yk

j )
2

(31)

where n is the total amount of training samples, m is the total amount of input nodes, xk
i is

the output value of the network model, and dk
i is the real value of training samples.

In the training process of the model, the error will be transmitted back to the hidden
nodes. The model will adjust the weights and thresholds between each layer of nodes
based on the error, and finally make the error achieve satisfactory accuracy. At present,
the training methods of the BP neural network are mostly gradient descent. The training
accuracy of the network model is extremely sensitive to the initial weight value and the
learning rate. Therefore, when the objective function has multiple extreme values, the
neural network is easily attracted by local extreme values. This will lead to a serious
degradation in the performance of the algorithm. In order to optimize the performance of
the BP network model and verify the optimization ability of CLTSO, a CLTSO-BP neural
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network model is proposed. The basic idea of the model is to use the weights and thresholds
of each node in the BP model as the tuna individual in the CLTSO algorithm and use MSE
as the fitness function in the CLTSO algorithm. CLTSO optimizes the MSE of the model to
obtain the optimized initial value weight and the threshold.

To compare the capability of the CLTSO-BP neural network with the original BP model,
three popular datasets from the UCI machine learning and intelligent system center, Iris,
Wine, and Wine Quality, are selected to design a comparative experiment. This experiment
compares the classification accuracy of the CLTSO-BP neural network model and the BP
model on the above three datasets.

In the experiment, the total amount of tuna is 30, the CLTSO algorithm is executed
30 times in total, and the neural network is executed 500 times in total. Table 14 shows the
comparison results of the CLTSO-BP neural network model and the original BP model.

Table 14. The comparison results of the two models.

Dataset Model Classification Accuracy

Iris
CLTSO-BP neural network 100%

BP neural network 95.2%

Wine
CLTSO-BP

neural network 100%

BP neural network 94.4%

Wine Quality CLTSO-BP neural network 65.6%
BP neural network 45.2%

By comparing the result of the CLTSO-BP neural network and the original BP model
on three datasets, it is found that the new model can obtain more ideal classification results.
It also indicates that CLTSO can show excellent performance in multi-layer perceptron
training difficulties.

6. Conclusions

The tuna swarm optimization algorithm is widely recognized by scholars because of its
simple structure and low number of parameters. The tuna swarm optimization algorithm
has excellent optimization performance, but it can still be further improved. When dealing
with simple problems, the solving speed of TSO can still be further improved. When facing
complex problems, it is difficult for TSO to escape the attraction of local optimal value.
Therefore, this article proposes a modified nonlinear tuna swarm optimization algorithm
based on Circle chaotic map and Levy flight operator. The optimization performance of
CLTSO has been fully verified in 22 benchmark functions. The results show that CLTSO out-
performs the comparable algorithms. Comparation data based on 22 benchmark functions
were analyzed using Wilcoxon’s test, Friedman’s test, and MAE. The analysis conclusion
indicates that the rank mean and MAE value of CLTSO are superior to other advanced
algorithms such as CMA-ES. Finally, this paper optimizes the BP neural network based on
CLTSO. The CLTSO-BP neural network model is tested using three popular datasets from
the UCI Machine Learning and Intelligent System Center. Compared with the original BP
model, the new model optimizes the classification accuracy. However, for the optimization
problem of more complex datasets, the classification ability of the CLTSO-BP neural net-
work still needs to be improved. Possible directions include increasing the swarm size of
the algorithm and the total number of CLTSO operations to obtain a higher quality solution,
which is also the target of continuous research in the future. In addition, the advantages
of CLTSO in solving some complex multimodal functions can still be further improved,
which is also one of the key research directions in the future. CLTSO has the advantages of
fast convergence and high convergence accuracy, which can be applied in practical projects
such as workshop scheduling and distribution network reconstruction.
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