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Abstract: In this work, we propose a new test case generation approach that can cover behavioural
scenarios individually in a multi-agent system. The purpose is to identify, in the case of the detection
of an error, the scenario that caused the detected error, among the scenarios running in parallel. For
this, the approach used, in the first stage, the technique of mutation analysis and parallel genetic
algorithms to identify the situations in which the agents perform the interactions, presented in the
sequence diagram, of the scenario under test only; these situations will be considered as inputs of the
test case. In the second stage, the approach used the activities presented in the activity diagram to
identify the outputs of the test case expected for its inputs. Subsequently, the generated test cases
will be used for the detection of possible errors. The proposed approach is supported by a formal
framework in order to automate its phases, and it is applied to a concrete case study to illustrate and
demonstrate its usefulness.

Keywords: multi-agent systems; system level testing; mutation analysis; test scenario; parallel genetic
algorithms; sequence diagram; activity diagram

1. Introduction

The development of a system follows several stages, including requirement definition,
design, implementation, testing, and deployment. In order to guarantee the quality of
our developed system, we must have an effective testing strategy. Testing can be highly
useful in identifying failures and validating the system being tested [1,2]. Unlike other
types of systems, testing multi-agent systems (MAS) is a complex task due to the distinctive
characteristics of the agents, such as responsiveness, proactivity, autonomy, and social abil-
ity [3]. Consequently, despite the rapid evolution of MAS, only a few proposals addressing
MAS testing exist in the literature. Moreover, most of these propositions are related to
unit-level tests [4–9] and agent-level tests [10–14]. Unit-level testing involves testing all the
units that compose an agent, including code blocks, and implementing agent units such as
goals, plans, knowledge base, reasoning engine, rule specification, and so on, in addition
to ensuring that they work as expected. For the agent-level test, it consists of, on the one
hand, testing the integration of the different units, tested at the unit level, inside an agent;
on the other hand, it consists of testing the possibility of the agent achieving its goal within
its environment. These two levels of testing, unit and agent, can ensure that agents operate
correctly if they are run separately, but they cannot detect faults that might be created if
agents are pooled.

The system-level testing ensures that, for its part, all agents in the system operate
according to specifications and interact correctly. This level of testing, until now, aroused
little interest from researchers compared to the interest shown in the first testing levels [15].
In fact, in recent years, only a few approaches have been proposed in the literature for
system-level testing [16–20]. At this level of testing, the interactions between agents of the
system under test can be performed in parallel, which causes, in the latter, the execution
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of several behavioural scenarios, also, in a parallel direction. The possibility of executing
several behavioural scenarios in parallel, by the agents of the system under test, complicates
the test phase. Indeed, in the event of error detection during the test of a given scenario, it
would be difficult or even impossible to locate and recognise the scenario that caused the
detected error among the scenarios executed in a parallel manner.

To overcome this problem, it is mandatory to test each scenario individually to ensure
that each error detected in a given scenario is not associated with another scenario operating
in parallel. Therefore, it is necessary to generate test cases, where the inputs ensure the
execution of the scenario under test only, namely, all the set of its interactions and all the
set of its activities. These inputs should not perform any interactions or activities involved
in the other scenarios. This represents the focal point of our approach.

The problem related to the possibility of executing several interactions and behavioural
scenarios in parallel by the agents of the system under test was mentioned in the work [18].
The proposed approach, in this work, consists of using the constraints expressed in Object
Constraint Language (OCL), necessary for the execution of each interaction to introduce
plugs that can minimise the interval of inputs, so that one ensures the retrieved inputs
cover only the desired interaction or the desired scenario. This work has brought promising
results, but the use of OCL constraints necessary for the execution of each interaction
complicated the testing process due to the unavailability of this latter, especially for some
systems. Consequently, we propose, in this work, a new test approach based on muta-
tion analysis, parallel genetic algorithms, a sequence diagram, and an activity diagram
which can test each behavioural scenario individually. The aim is to pinpoint, in the
case of error detection, the scenario that caused the detected error among the scenarios
running in parallel.

Mutation analysis, proposed by [21], is the main technique used to validate and
improve test data. It is based on fault injection (different types of programming errors).
The first step of this technique is to create a set of erroneous versions of the program under
test, called mutants (exact copy of the program under test in which a single simple error
was injected), generated from the definition of a set of mutation operators automatically,
and running a set of test cases on each of these faulty programs. The result of the execution
of the test cases with the mutants allows, on the one hand, to evaluate the effectiveness of
the set of test cases by the proportion of mutants detected; on the other hand, the analysis
of the undetected errors helps to guide the generation of new test cases. This consists
of covering the areas where these errors are located and generating specific test data to
cover the particular cases. Mutation analysis was originally designed for testing procedural
software, but for several years, many works have been interested in this technique in the
context of object-oriented software [22–24]. For the MAS test, mutation analysis was used
in two works. In the first work [25], the authors propose a testing approach based on
mutation analysis to test the goals of an agent. In the second work [26], the authors propose
error patterns to test the agent of the platform Jason.

The remainder of this paper is organised as follows. In Section 2, we provide a brief
overview of major-related work. We describe, in Section 3, the proposed approach and its
different phases. Section 4 illustrates the proposed approach using a concrete case study.
Some conclusions and future work directions are given in Section 5.

2. Related Work

In recent years, only a few approaches have been proposed in the literature for testing
multi-agent systems. We present, in what follows, some selected approaches:

De Wolf et al. [16]: This paper proposes an empirical analysis approach combining
agent-based simulations and numerical algorithms for analysing the global behaviour
of a self-organizing system. The initial values of macroscopic variables (those related to
the properties that are studied) are supplied; a certain number of simulations are then
initialised accordingly. Simulations are then executed for a predefined duration, and the
average values of these variables on all the simulations are then given as results to the
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analysis algorithm; this latter processes these results to compute the next initial values.
The algorithm also decides on the configuration of the next simulations (initial conditions,
durations), and the cycle is repeated until the algorithm reaches its goal (for instance,
converge towards a value and find a steady state).

In Dehimi 2015 [17], we proposed a new model-based testing technique for holonic
agents. The technique uses genetic algorithms and takes into account the evolution (suc-
cessive versions) of an agent. The approach is organised into two main phases conducted
iteratively. The first phase focuses on the detection of a new version of an agent under test.
The second phase addresses the testing of each newly detected version. The new version
of the agent is analysed in order to generate a behavioural model in which it is based on
the generation of test cases. The test case generation process focuses on the new (and/or
changed) parts of the agent behaviour. In this way, the technique supports an incremental
update of the test cases, which is a crucial issue.

In Dehimi and Mokhati 2019 [18], we proposed a new test case generation approach
based on the sequence diagram that could cover interactions between agents individually
as well as possible scenarios that can be performed in an inclusive, exclusive, or parallel
way. For this, we introduce plugs using the constraints, expressed in OCL, necessary for the
execution of each interaction. The proposed approach is supported by a formal framework
and applied to a concrete case study to illustrate and show its usefulness.

Thangarajah et al. [19] proposed an approach to quantify the goal’s completeness
in the BDI agent system. Completeness has been measured by considering resources
consumed by a goal and measuring the effect of the goal in terms of the achieved desired
outcomes. Factors that have been considered to quantify goal completeness include efforts,
accomplishments, the number of actions performed by the agent, and the time taken for
the action. Authors have taken the idea of a goal-plan tree, in which goals with relevant
plans have been annotated to form a tree.

Bakar and Selamat [27] examined testing methods for agent systems in general, map-
ping the various properties and faults that existing techniques may detect. The objective was
to identify research gaps and future research direction regarding agent systems verification.

Barnier et al. [28] compared software testing and multi-agent systems testing, more par-
ticularly in an embedded context. In this work, major multi-agent system testing techniques
were analysed, with the AEIO facets for multi-agent systems. The objective was to provide
a specific approach for testing MAS on embedded systems. The proposed approach was
built on three basic levels: agent test, collective resources test, and acceptance test.

Winikoff [29] proposed a method for testability assessment on BDI (belief–desire–
intention) agents, where two different adequacy criteria were compared: the all-edges
criterion, which is satisfied if the set of tests covers all edges in a control-flow graph, and
the all-paths criterion, where a test set is adequate if the test covers all paths in the control-
flow graph of the program. The degree of testability obtained was used to indicate the
number of test cases needed to validate a BDI program.

Gonçalves et al. [20] presented a whole framework for analysing and testing the
MAS social level under the organisational model Moise+. This framework uses a Moise+
specifications set as an information artefact mapped in a coloured Petri net (CPN) model,
named CPN4M, as a test case generation mechanism. CPN4M uses two different test
adequacy criteria: all-paths and state-transition path. In this paper, we have formalised the
transition from Moise+ to CPN, the procedures for test case generation, and executed some
tests in a case study. The results indicate that this methodology can increase the correction
degree for a social level in a multi-agent system specified by a Moise+ model, indicating
the system context that can lead the MAS to failure.

Savarimuthu et al. [25]: This paper proposes a set of mutation operators for a cognitive
agent-oriented programming language, specifically Goal. The proposed mutation operators
are derived and guided systematically by an exploration of the bugs found in a collection
of undergraduate programming assignments written in Goal. In fact, in exploring these
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programs, the authors also provide an additional contribution: evidence of the extent to
which the two foundational hypotheses of mutation testing hold for Goal’s programs.

Huang et al. [26]: This paper applies SMT (semantic mutation testing) to three rule-
based agent programming languages, namely Jason, GOAL, and 2APL, providing several
contexts in which SMT is useful for these languages. It also proposes three sets of semantic
mutation operators (i.e., rules to make semantic changes) for these languages, respectively,
and a systematic approach to the derivation of semantic mutation operators for rule-based
agent languages. This paper then shows that, through the preliminary evaluation of the
proposed semantic mutation operators for Jason, SMT has some potential to assess the tests,
robustness, and reliability of semantic changes.

Although these works have considerably forwarded the domain by proposing novel
strategies for MAS testing, they avoided, on the one hand, considering the problem of
testing a multi-agent system while having multiple behavioural scenarios running in
parallel. On the other hand, using OCL constraints to solve this problem is not always
valid due to their unavailability, especially for some systems. We present in this paper a
new test case generation approach, essentially based on mutation analysis, parallel genetic
algorithms, sequence diagrams, and activity diagrams, which is able to cover behavioural
scenarios individually in a multi-agent system. This is to pinpoint, in the case of the
detection of an error, the scenario that caused the detected error among the scenarios
running in parallel.

3. The Proposed Approach

The proposed approach consists of generating test cases, composed of test case inputs and
test case outputs, that can cover each behavioural scenario individually. The aim is to identify
exactly, in the case of error detection, the scenario that originated the detected error, among the
scenarios running in parallel. The approach consists of three phases (Figure 1), namely:

The first phase consists of generating, for each scenario Si, the test case inputs Inputsi
with which we must be sure that the agents of the system execute the scenario Si with
only, namely, the set of its interactions Intj and the set of its activities Activitysj triggered
by those interactions. This phase uses the technique of mutation analysis. It consists of
generating, for each interaction, a mutant, where each generated mutant Mutantj associated
with the interaction Intj represents an exact copy of the system in which only one error
Errorj is injected at the level of the interaction Intj. The generation of mutants facilitates
the generation of inputs that ensure the execution of each Si scenario individually. Indeed,
knowing the detection of the error Errorj injected into the interaction Intj during the
execution of mutant Mutantj by given inputs means that these inputs allowed the execution
to pass through the interaction Intj. This means that to find the inputs which ensure the
execution of a given scenario Si individually, it suffices to find, the inputs allowing to
detect during the execution, all the errors of the mutants associated with the interactions
of this scenario Si. These inputs should not detect errors of other mutants associated with
interactions of other scenarios. To identify these inputs, this phase uses parallel genetic
algorithms, where each of these algorithms Ai is responsible for finding the inputs Inputsi
that ensure the execution of the scenario Si only. For this, each algorithm must find among
a set of given inputs those which best satisfy its fitness function F_Si which is defined
as follows:

F_Si = A/B + A/C

where:

- A is the number of killed mutants associated with Si
- B is the number of killed mutants
- C is the total number of mutants associated with Si

The satisfaction of the fitness function F_Si, generation after generation, means that
the algorithm Ai (responsible for finding the inputs Inputsi that ensure the execution of the
scenario Si only) is progressively becoming closer to identifying the inputs that can detect
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the maximum number of errors injected into the interactions of this scenario, in addition to
the minimum number of errors injected into the interactions of other scenarios. The fitness
function F_Si is completely satisfied if the algorithm Ai locates the inputs that can detect all
the errors injected into the interactions of this scenario without the detection of any errors
injected into the interactions of any other scenarios. These inputs represent the desired
inputs of the test cases that ensure covering the scenario Si only.

The second phase consists of finding the expected outputs Outputsi for the inputs
Inputsi generated in the first phase. This phase uses the activity diagram to determine
the activities that will be triggered by the interactions of each scenario. This facilitates
the generation of test case outputs. Indeed, for this, it suffices to apply to the generated
inputs Inputsi, for each scenario Si, the set of activities Activitysi that will be triggered by
the interactions of this latter. Here, it is assumed that these activities are tested in the unit
level test, and they do not contain errors.

The third phase aims to detect possible errors in each scenario. For a given scenario
Si, the detection of errors (injected into its interactions to generate mutants) using Intputsi
(generated in the first phase for the scenario Si using parallel genetic algorithms), ensures
that the execution passes through this scenario only, but it does not ensure that the scenario
is errorless. To detect real errors presented in a given scenario Si, this phase consists of
running the original system with the inputs Intputsi and comparing the obtained results
with the expected outputs Outputsi (generated in the second phase for the same scenario
Si). Any difference (more or less) between the obtained outputs and the expected outputs
means that there are errors in the scenario Si. The errors detected are surely included in the
scenario Si under test because the Inputsi used for the test of this scenario assured us that it
was executed individually.

Figure 1. The phases of the proposed approach.
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In order to automate the phases of our approach, we have used the sequence diagram
and the activity diagram to generate a graph G. In this graph, each path Pi represents
a scenario Si for which we must find the inputs Inputsi that ensure the execution of the
interactions of this scenario only and the outputs Outputsi expected for these inputs. Each
node nj in the graph G represents an interaction between two agents in the sequence
diagram. It contains the necessary information for the generation of the inputs of the test
case, namely, the error to be injected into the interaction Intj represented by this node to
obtain a mutant Mutantj (incorrect version of the system at the level of the interaction Intj).
It also contains the information necessary for the generation of the expected outputs for the
generated inputs, namely, the activities to be performed by the receiving agent following
the receipt of the interaction Intj represented by the node nj. In the following, we will
present a formal definition of the proposed graph as well as the processes of the three
phases of the proposed approach.

3.1. Formal Definition of the Proposed Graph G

According to our approach, the graph G is defined as follows: G = {Pi}/0 ≤ i ≤ N where:

� Pi represents a path i in the graph associated with the scenario Si. Each path Pi is
defined as follows: Pi = {n0, ni, nf} where:

� n0 is the initial node representing a state from which an operation begins (the precon-
dition of the scenario Si corresponding to Pi).

� nf is the final node representing a state where an operation end (the post-condition of
the scenario Si corresponding to Pi).

� ni is the set of all the nodes of the path Pi where each node nj/0 ≤ j ≤ Mi belongs to ni
is defined as follows: nj = <Intj, Activitysj, Errorj> where:

• Intj represents the interaction represented by node nj. It is defined as follows:
Intj = {m, from_Agent, to_Agent} where:

# m is the name of the message with its signature,
# from_Agent is the sender of the message,
# to_Agent is the recipient of the message.

• Activitysj: represents all the activities to be performed following the interaction
Intj by the receiving agent. Each Activityk belonging to Activitysj is defined
as follows: Activityk = < Inputsk, Outputsk, Operationk> where:

# Inputsk: represents the inputs of activity k.
# Outputsk: represents the outputs of activity k.
# Operationk: represents the operations of activity k which will be executed

on Inputsk to obtain Outputsk.

• Errorj: represents the error to be introduced at the level of the interaction Intj to
obtain the mutant Mutantj.

3.2. Generation of Test Case Inputs

The generation of the inputs of the test case begins with the generation of mutants.
For that, it is enough to go through all of the graph G, node by node, and for each node nj,
a version of the system is generated, in which the error nj.errorj associated with this node is
injected at the level of the interaction Intj. Algorithm 1 summarises the generation of the
mutants’ process.
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After the generation of mutants, we move on to the generation of the test case inputs
for each scenario Si using parallel genetic algorithms (Figure 2). To do this, we start with
the generation of an initial population Pop0, in which a large number of individuals is
constructed. Each individual of this population is represented as an input vector Vk. The
generation of the initial population is performed randomly.

From the initial population, each algorithm Ai begins to search for the individuals
(the inputs vectors) that satisfy its fitness function F_Si. In order to find a more efficient
population Pop1 that can best meet its fitness function, each algorithm applies the following
steps to the Pop0:

� First, each individual Vk of the population Pop0 is evaluated. For this, the value of the
fitness function F_Si is calculated.

� Then, a selection step is applied. This step eliminates the worst individuals from Pop0
and keeps only the best ones according to their evaluation. Here, according to the
formula of the fitness function F_Si, the individuals (the vectors of inputs) kept
are characterised by the possibility of killing the maximum number of mutants
associated with the interactions of the scenario Si and the minimum number of
mutants associated with the interactions of the other scenarios.

� The next step is to crossbreed the previously selected individuals to obtain the new
Pop1 population. For this, every two individuals (parents) will be crossed in order to
obtain a new individual (descendant). The latter is composed of part of parent 1 and
part of parent 2 (one-point crossover).

� To diversify the solutions over the generations, a mutation step is used. This
mutation consists of modifying a small part in certain individuals of the new
generation randomly.

From the obtained population Pop1, the steps described above will be reapplied within
the limit of the number of possible generations. This is in order to obtain a population in
which there are individuals (input’s vectors) who fully satisfy the fitness function. If these
individuals were not obtained within the limit of possible generations, the best individuals
obtained in the last generation (Popn) will be taken. Figure 2 summarises the test case
inputs generation process.



Electronics 2022, 11, 3642 8 of 23

Figure 2. Test case inputs generation process.
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3.3. Generation of the Expected Test Case Outputs

For the generation of the expected outputs Outputsi for the inputs Inputsi of the
scenario Si, it suffices to go through all the paths Pi of the graph G node by node, and
for each node nj of the path Pi, we calculate the results of the application of the activities
nj.Activitysj of this node on the inputs Inputsi. Algorithm 2 summarises the generation of
the test case outputs process.

Algorithm 2: Expected_Outputs_Generation
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3.4. Detection of Errors

For the detection of errors, it is sufficient to compare, for each scenario Si, the expected
outputs outputsi and the outputs obtained after the execution of the original system. The
non-conformance between the obtained results and the expected outputs implies that there
is an interaction error and non-conformance between the obtained post-condition and
the expected one, which implies that there is a scenario error. An interaction error can
be a bad reply to a message, a correct message sent to an incorrect agent, or an incorrect
message sent to the correct agent, an invocation message with inappropriate or incorrect
arguments, wrong or missing output, and so on. However, a scenario error can be an
abnormal shutdown, a sequence of messages that do not follow the desired trajectory, and
so on. Figure 3 summarises the errors’ detection process.
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Figure 3. Error detection process.



Electronics 2022, 11, 3642 11 of 23

4. Case Study

To validate our approach, we apply it to a concrete case study that will represent
the interest of the proposed approach. The system chosen for this study is an Airport
management system. The purpose of this system is to provide management at an airport by
automatically assigning a pilot as well as a plane to a request, taking into account several
variants such as the quantity to be transported as well as the type of transport, which
influences the category of the plane, the final destination, which influences the choice of
the pilot, and the availability of planes and pilots.

The airport management system is composed of several interacting agents, namely:

- Agent MainGui: This is an interface agent which aims to receive, control, and verify
warning requests from the customer; it is considered an intermediary between the
user and the system.

- Agent Plane: This is the agent responsible for all categories of planes and its job
is to determine which agent (Agent Heavy Plane Commodity, Agent Light Plane
Commodity or Agent Civil) is most appropriate to handle the request. For this, it must
verify the quantity requested as well as the type of transport required, and then it will
transmit the request to the agent in question.

- Agent Heavy Plane Commodity: Responsible for processing requests for heavy com-
modity planes.

- Agent Light Plane Commodity: Responsible for processing requests for light commod-
ity planes.

- Agent Civil: Responsible for processing requests for planes that carry civilians; the
quantity here will serve as the number of passengers on the plane.

- Agent Pilot: This is the agent responsible for all pilots and its job is to determine,
depending on the city of destination, which agent (Agent Pilot Europe or Agent Pilot
Local) is most appropriate to handle the request.

- Agent Pilot Europe: Responsible for processing requests for destinations in Europe.
- Agent Pilot Local: Responsible for processing requests for local destinations only.

Depending on the overall quantity to be transported (Qo ≥ 1000 or Qo < 1000) and
the type of transport (Commodity or Civil), Agent Plane sends a request to specialised
light, heavy, or civilian plane agents. These agents, depending on the availability of the
planes that they manage, can accept or reject requests. In the event that (Qo = 0), a refusal
message will be returned immediately. At the same time, depending on the European or
local destination zone, the Agent Pilot agent sends a request to the agents: Agent Pilot
Europe and/or Agent Pilot Local. These agents, depending on the availability of their
resources, can accept or reject the request. In the event that the destination is not supported,
a rejection message will be sent immediately.

Once the requested quantity is properly assigned to the planes and pilots, the agents,
Agent Plane and Agent Pilot, each establish a transportation plan. The transportation plan
includes the following elements:

- The request ID.
- A Plane object containing information specific to the affected plane.
- A Pilot object containing information specific to the affected pilots.
- A trace of the request path from the sender to the receiver.
- Unique messages are exchanged to differentiate the type of response request be-

tween agents.
- Everything is encapsulated in a Response Plan for each pilot/plane.

These plans will then be merged to return a response plan to the query knowing that
in the case of failure, the plans may be empty.
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In the following, we will describe the different phases of our approach necessary for
the test of this system, namely, the generation of the graph G, the generation of the inputs
of the test cases, the generation of the expected outputs of the test cases, and the detection
of errors. The results shown in each phase are obtained automatically following the use of
a software tool that we have developed.

4.1. Generation of the Graph G

The generation of the graph G represents the first step in the process of our approach.
It consists of transforming automatically the sequence diagram (Figure 4) and the activity
diagram (Figure 5) into a graph. The generation of the graph goes through an intermediate
step, which consists of transforming the sequence diagram and the activity diagram into
an XML file. The purpose of this is to simplify the creation and the filling of the various
nodes of the graph.

Figure 4. Sequence diagram.
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Figure 5. Activity diagram.

The graph G, obtained following the transformation of the XML file, is presented in
Figure 6. It contains 19 nodes, namely, (i) node 0, which represents the initial node n0,
(ii) nodes 11 and 19, which represent final nodes nf, (iii) and the other nodes, presented in
blue, which represent interaction nodes nj. Each interaction node nj contains the following
information: the identifier of the interaction, the sender and the receiver of the interaction,
the message exchanged, the activities triggered by this interaction, and finally, the error
that will be injected into this interaction to generate the corresponding mutant.

Figure 6. The obtained graph G.
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Each path Pi of the graph G represents a possible behaviour scenario Si for the system
under test. The generation of the Pi paths led us to 14 paths, in total, as shown in Table 1.
Here, the detail of the information stored in the nodes is presented.

Table 1. Graph paths Pi (System scenarios Si).

Paths Pi
(Scenarios Si)

The Nodes of the Generated Paths

P1 Initial N1 :(
(AgentGui,
Aplane), Main-
GuiToAPlane,
Action1,
Error//1).

N2 :(
(AgentPlane,
AgentHeavy-
Commodity),
APlaneToA-
PlaneH,
Action2,
Error//2).

N6 :( (AgentPlane,
AgentHeavy-
Commodity,
AgentPlane),
APlaneHToA-
PlaneF,
Action6, Error//6).

N11 :(
(AgentPlane,
AgentGui),
APlaneToMain-
Gui,
Action11,
Error//11)
Final_1.

P2 Initial N1 :(
(AgentGui,
Aplane), Main-
GuiToAPlane,
Action1,
Error//1).

N2 :(
(AgentPlane,
AgentHeavy-
Commodity),
APlaneToA-
PlaneH,
Action2,
Error//2).

N5 :( (AgentPlane,
AgentHeavy-
Commodity,
AgentPlane),
APlaneHToA-
PlaneI,
Action5, Error//5).

N11 :(
(AgentPlane,
AgentGui),
APlaneToMain-
Gui,
Action11,
Error//11)
Final_1.

P3 Initial N1 :(
(AgentGui,
Aplane), Main-
GuiToAPlane,
Action1,
Error//1).

N3 :(
(AgentPlane,
AgentLight-
Commodity),
APlaneToA-
PlaneL,
Action3,
Error//4).

N8 :( (AgentPlane,
AgentLightCom-
modity,
AgentPlane),
APlaneLToA-
PlaneF,
Action8, Error//8).

N11 :(
(AgentPlane,
AgentGui),
APlaneToMain-
Gui,
Action11,
Error//11)
Final_1.

P4 Initial N1 :(
(AgentGui,
Aplane),
MainGuiToA-
Plane,Action1,
Error//1).

N3 :(
(AgentPlane,
AgentLight-
Commodity),
APlaneToA-
PlaneL,
Action3,
Error//4).

N7 :( (AgentPlane,
AgentLightCom-
modity,
AgentPlane),
APlaneLToAPlaneI,
Action7, Error//7).

N11 :(
(AgentPlane,
AgentGui),
APlaneToMain-
Gui,
Action11,
Error//11)
Final_1.

P5 Initial N1 :(
(AgentGui,
Aplane),
MainGuiToA-
Plane,Action1,
Error//1).

N4 :(
(AgentPlane,
AgentCivil),
APlaneToA-
PlaneC,
Action4,
Error//4).

N10 :(
(AgentCivil,
AgentPlane),
APlaneCToA-
PlaneF,
Action10,
Error//10).

N11 :(
(AgentPlane,
AgentGui),
APlaneToMain-
Gui,
Action11,
Error//11)
Final_1.

P6 Initial N1 :(
(AgentGui,
Aplane), Main-
GuiToAPlane,
Action1,
Error//1).

N4 :(
(AgentPlane,
AgentCivil),
APlaneToA-
PlaneC,
Action4,
Error//4).

N9 :(
(AgentCivil,
AgentPlane),
APlaneCToA-
PlaneI,
Action9, Error//9).

N11 :(
(AgentPlane,
AgentGui),
APlaneToMain-
Gui,
Action11,
Error//11)
Final_1.

P7 Initial N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N13 :(
(AgentPilot,
AgentPilotEU),
APilotToAPilotEU,
Action13,
Error//13).

N16 :(
(AgentPilotEU,
AgentPilot), APilo-
tEUToAPilotF,
Action16,
Error//16).

N19 :(
(AgentPilot,
AgentGui), APi-
lotToMainGui,
Action19,
Error//19)
Final_2.
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Table 1. Cont.

Paths Pi
(Scenarios Si)

The Nodes of the Generated Paths

P8 Initial N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N13 :(
(AgentPilot,
AgentPilotEU),
APilotToAPilotEU,
Action13,
Error//13).

N16 :(
(AgentPilotEU,
AgentPilot), APilo-
tEUToAPilotF,
Action16,
Error//16).

N14 :(
(AgentPilot,
AgentPilotLocal),
APilotToAPilotL,
Action14,
Error//14).

N18 :( (Agent-
PilotLocal,
AgentPilot),
APilotLToAPi-
lotF,
Action18,
Error//18).

N19 :(
(AgentPilot,
AgentGui),
APilotToMain-
Gui,
Action19,
Error//19)
Final_2.

P9 Initial N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N13 :(
(AgentPilot,
AgentPilotEU),
APilotToAPilotEU,
Action13,
Error//13).

N16 :(
(AgentPilotEU,
AgentPilot), APilo-
tEUToAPilotF,
Action16,
Error//16).

N14 :(
(AgentPilot,
AgentPilotLocal),
APilotToAPilotL,
Action14,
Error//14).

N17 :( (Agent-
PilotLocal,
AgentPilot),
APilotLToAPi-
lotI,
Action17,
Error//17).

N19 :(
(AgentPilot,
AgentGui),
APilotToMain-
Gui,
Action19,
Error//19)
Final_2.

P10 N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N13 :(
(AgentPilot,
AgentPilotEU),
APilotToAPilotEU,
Action13,
Error//13).

N15 :(
(AgentPilotEU,
AgentPilot), APilo-
tEUToAPilotI,
Action15,
Error//15).

N19 :(
(AgentPilot,
AgentGui), APi-
lotToMainGui,
Action19,
Error//19)
Final_2.

P11 Initial N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N13 :(
(AgentPilot,
AgentPilotEU),
APilotToAPilotEU,
Action13,
Error//13).

N15 :(
(AgentPilotEU,
AgentPilot), APilo-
tEUToAPilotI,
Action15,
Error//15).

N14 :(
(AgentPilot,
AgentPilotLocal),
APilotToAPilotL,
Action14,
Error//14).

N18 :( (Agent-
PilotLocal,
AgentPilot),
APilotLToAPi-
lotF,
Action18,
Error//18).

N19 :(
(AgentPilot,
AgentGui),
APilotToMain-
Gui,
Action19,
Error//19)
Final_2.

P12 Initial N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N13 :(
(AgentPilot,
AgentPilotEU),
APilotToAPilotEU,
Action13,
Error//13).

N15 :(
(AgentPilotEU,
AgentPilot), APilo-
tEUToAPilotI,
Action15,
Error//15).

N14 :(
(AgentPilot,
AgentPilotLocal),
APilotToAPilotL,
Action14,
Error//14).

N17 :( (Agent-
PilotLocal,
AgentPilot),
APilotLToAPi-
lotI,
Action17,
Error//17).

N19 :(
(AgentPilot,
AgentGui),
APilotToMain-
Gui,
Action19,
Error//19)
Final_2.

P13 Initial N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N14 :(
(AgentPilot,
AgentPilotLo-
cal),
APilotToAPi-
lotL,
Action14,
Error//14).

N18 :(
(AgentPilotLocal,
AgentPilot),
APilotLToAPilotF,
Action18,
Error//18).

N19 :(
(AgentPilot,
AgentGui), APi-
lotToMainGui,
Action19,
Error//19)
Final_2.

P14 Initial N12 :(
(AgentGui,
AgentPilot),
MainGui-
ToAPilot,
Action12,
Error//12).

N14 :(
(AgentPilot,
AgentPilotLo-
cal),
APilotToAPi-
lotL,
Action14,
Error//14).

N17 :(
(AgentPilotLocal,
AgentPilot),
APilotLToAPilotI,
Action17,
Error//17).

N19 :(
(AgentPilot,
AgentGui), APi-
lotToMainGui,
Action19,
Error//19)
Final_2.
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4.2. Generation of Mutants and Test Case Inputs
4.2.1. Generations of Mutants

The generation of mutants is necessary for the generation of the test case inputs. It
consists of applying the algorithm of the generation of mutants, mentioned previously, on
the generated graph G. The algorithm generates for each node nj of the graph an exact
copy of the system into which it injects, at the level of the interaction corresponding to
this node, the error stored in this latter. The injected error will be a modification in the
message of the interaction in question. In fact, the erroneous interaction message becomes
the following form:

Message + // + Error + // + « id » where Message represents the original message of
the interaction and Error + id represents the change made.

In our case, the graph contains “19” nodes which bring us to “19” mutants; each,
according to its identifier, will have an erroneous interaction; for example, mutant “2” will
have the message of the interaction “2”: APlaneToAHC modified to APlaneToAHC//Error//2.

4.2.2. Generation of Test Case Inputs

The generation of test case inputs consists of finding, for each scenario Si, the inputs
Inputsi which ensure the execution of this scenario individually. It starts by generating
randomly an initial population Pop0 of an input’s vectors where each vector Vk is defined as
follows: Vk = (Quantity, Transport Type (Merchandise/Civil), Destination Town (European/Local),
Planes (Heavy Planes (name, companyName, transportSize, isFree (true, false))/Light Planes(name,
companyName, transportSize, isFree (true, false))/Civil Planes(name, companyName, transport-
Size, isFree (true, false))), Pilots (Pilots Local (name, companyName, workingDest, isFree (true,
false))/Pilots Europe (name, companyName, workingDest, isFree (true, false)).

From the initial population, each genetic algorithm Ai, responsible for finding the
inputs Inputsi of the scenario Si, reapplies on all input vectors of each generation a set of
steps presented previously. This is performed until the desired test case inputs Inputsi are
obtained. The desired test case inputs are those that have a high satisfaction rate for the
fitness function. In fact, the higher the rate, the more accurate the results are because if the
rate is 100%, this means that the inputs Inputsi of the test cases ensure the execution of the
scenario Si only, and they will not trigger any other system interaction. If the rate is not
100%, this means that there are some interactions that do not belong to the scenario Si but
are still in execution.

The results of the application of the parallel genetic algorithms are presented in the
form of a curve in the table (Table 2), where the pinnacles represent inputs that will fully
satisfy the fitness function F_Si of the scenario Si. The values of some of these inputs are
presented with their expected outputs in Table 3 of the following section.

Table 2. Obtained results for the inputs of the test cases.

Si Curves Si Curves

S1
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of the interaction in question. In fact, the erroneous interaction message becomes the fol-
lowing form: 

Message + // + Error + // + « id » where Message represents the original message of 
the interaction and Error + id represents the change made. 

In our case, the graph contains “19” nodes which bring us to “19” mutants; each, 
according to its identifier, will have an erroneous interaction; for example, mutant “2” will 
have the message of the interaction “2”: APlaneToAHC modified to APlaneToAHC//Er-
ror//2. 

4.2.2. Generation of Test Case Inputs 
The generation of test case inputs consists of finding, for each scenario Si, the inputs 

Inputsi which ensure the execution of this scenario individually. It starts by generating 
randomly an initial population Pop0 of an input’s vectors where each vector Vk is defined 
as follows: Vk = (Quantity, Transport Type (Merchandise/Civil), Destination Town (Euro-
pean/Local), Planes (Heavy Planes (name, companyName, transportSize, isFree (true, false))/Light 
Planes(name, companyName, transportSize, isFree (true, false))/Civil Planes(name, company-
Name, transportSize, isFree (true, false))), Pilots (Pilots Local (name, companyName, working-
Dest, isFree (true, false))/Pilots Europe (name, companyName, workingDest, isFree (true, false)). 

From the initial population, each genetic algorithm Ai, responsible for finding the 
inputs Inputsi of the scenario Si, reapplies on all input vectors of each generation a set of 
steps presented previously. This is performed until the desired test case inputs Inputsi are 
obtained. The desired test case inputs are those that have a high satisfaction rate for the 
fitness function. In fact, the higher the rate, the more accurate the results are because if the 
rate is 100%, this means that the inputs Inputsi of the test cases ensure the execution of the 
scenario Si only, and they will not trigger any other system interaction. If the rate is not 
100%, this means that there are some interactions that do not belong to the scenario Si but 
are still in execution. 

The results of the application of the parallel genetic algorithms are presented in the 
form of a curve in the table (Table 2), where the pinnacles represent inputs that will fully 
satisfy the fitness function F_Si of the scenario Si. The values of some of these inputs are 
presented with their expected outputs in Table 3 of the following section. 

Table 2. Obtained results for the inputs of the test cases. 

Si Curves Si Curves 
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Table 3. Results of the generation of test cases (inputs and expected outputs) obtained for some scenarios.

Si Inputsi Outputsi

S1 ID: d4b1be08-e62f-44da-bb88-33f0bf6c00b0
Quantity: 1273
Transport Type: Merchandise
Destination Town: [Ville [name=, pays=, location=Asie]]
Planes:

Heavy Planes: [Plane [name=plane, companyName=company,
transportSize=1500, tt=Merchandise, isFree=false]]

Light Planes: [Plane [name=plane, companyName=company,
transportSize=999, tt=Merchandise, isFree=true]]

Civil Planes: [Plane [name=plane, companyName=company,
transportSize=100, tt=Civil, isFree=true]]

Pilots:
Pilots Local: [Pilot [name=pilot, companyName=company,

workingDest=Local, isFree=true]]
Pilots Europe: [Pilot [name=pilot, companyName=company,

workingDest=Europe, isFree=true]]
Fitness Value: 2 Percent:100%

ID: d4b1be08-e62f-44da-bb88-33f0bf6c00b0
Trace:[MainGuiToPlane, APlaneToAHC,
AHCToAPlaneF, APlaneToMainGui]
Plane: null
Pilot: []

S2 ID: 957b7f77-f8bd-4ff9-8ad7-75affcdb9ce2
Quantity: 1310
Transport Type: Merchandise
Destination Town: [Ville [name=, pays=, location=Asie]]
Planes:

Heavy Planes: [Plane [name=plane, companyName=company,
transportSize=1500, tt=Merchandise, isFree=true]]

Light Planes: [Plane [name=plane, companyName=company,
transportSize=999, tt=Merchandise, isFree=true]]

Civil Planes: [Plane [name=plane, companyName=company,
transportSize=100, tt=Civil, isFree=true]]

Pilots:
Pilots Local: [Pilot [name=pilot, companyName=company,

workingDest=Local, isFree=true]]
Pilots Europe: [Pilot [name=pilot, companyName=company,

workingDest=Europe, isFree=true]]
Fitness Value: 2 Percent:100%

ID: 957b7f77-f8bd-4ff9-8ad7-75affcdb9ce2
Trace:[MainiToPlane,APlaneToAHC,AHCToAPlaneI,
APlaneToMainGui]
Plane: Plane [name=plane, companyName=company,
transportSize=1500, tt=Merchandise, isFree=false]
Pilot: []
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Table 3. Cont.

Si Inputsi Outputsi

S5 ID: 6ee25abd-dabd-4f75-b923-73a1354ab493
Quantity: 21
Transport Type: Civile
Destination Town: [Ville [name=ville5, pays=pays5,

location=Amerique]]
Planes:

Heavy Planes: [Plane [name=plane1, companyName=Company,
transportSize=1401, tt=Merchandise, isFree=false], Plane [name=plane2,
companyName=Company, transportSize=1349, tt=Merchandise, isFree=false]]

Light Planes: [Plane [name=plane1, companyName=Company,
transportSize=789, tt=Merchandise, isFree=false], Plane [name=plane2,
companyName=Company, transportSize=561, tt=Merchandise, isFree=true], Plane
[name=plane3, companyName=Company, transportSize=802, tt=Merchandise,
isFree=true], Plane [name=plane4, companyName=Company, transportSize=568,
tt=Merchandise, isFree=false]]

Civil Planes: [Plane [name=plane1, companyName=Company,
transportSize=27, tt=Civile, isFree=false]]

Pilots:
Pilots Local: [Pilot [name=pilot0, companyName=company,

workingDest=Local, isFree=false]]
Pilots Europe: [Pilot [name=pilot0, companyName=company,

workingDest=Europe, isFree=true]]
Fitness Value: 2 Percent:100%

ID: 6ee25abd-dabd-4f75-b923-73a1354ab493
Trace:[MainGuiToPlane, APlaneToAC, ACToAPlaneF,
APlaneToMainGui]
Plane: null
Pilot: []

S6 ID: 5b5ac228-693e-4477-aa59-5828bc4c9265
Quantity: 69
Transport Type: Civile
Destination Town: [Ville [name=ville5, pays=pays5, location=Asie]]
Planes:

Heavy Planes: [Plane [name=plane1, companyName=Company,
transportSize=1286, tt=Merchandise, isFree=false], Plane [name=plane2,
companyName=Company, transportSize=1272, tt=Merchandise, isFree=true]]

Light Planes: [Plane [name=plane1, companyName=Company,
transportSize=952, tt=Merchandise, isFree=true]]

Civil Planes: [Plane [name=plane1, companyName=Company,
transportSize=46, tt=Civile, isFree=false], Plane [name=plane2,
companyName=Company, transportSize=61, tt=Civile, isFree=false], Plane
[name=plane3, companyName=Company, transportSize=84, tt=Civile,
isFree=true], Plane [name=plane4, companyName=Company, transportSize=12,
tt=Civile, isFree=true], Plane [name=plane5, companyName=Company,
transportSize=84, tt=Civile, isFree=false], Plane [name=plane6,
companyName=Company, transportSize=7, tt=Civile, isFree=true], Plane
[name=plane7, companyName=Company, transportSize=25, tt=Civile,
isFree=false], Plane [name=plane8, companyName=Company, transportSize=22,
tt=Civile, isFree=false]]

Pilots:
Pilots Local: [Pilot [name=pilot0, companyName=company,

workingDest=Local, isFree=false], Pilot [name=pilot1, companyName=company,
workingDest=Local, isFree=true], Pilot [name=pilot2, companyName=company,
workingDest=Local, isFree=true], Pilot [name=pilot3, companyName=company,
workingDest=Local, isFree=true]]

Pilots Europe: [Pilot [name=pilot0, companyName=company,
workingDest=Europe, isFree=false], Pilot [name=pilot1, companyName=company,
workingDest=Europe, isFree=false], Pilot [name=pilot2, companyName=company,
workingDest=Europe, isFree=true]]

Fitness Value: 2 Percent:100%

ID: 5b5ac228-693e-4477-aa59-5828bc4c9265
Trace:[MainGuiToPlane, APlaneToAC, ACToAPlaneI,
APlaneToMainGui]
Plane: Plane [name=plane3, companyName=Company,
transportSize=84, tt=Civile, isFree= false]
Pilot: []
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Table 3. Cont.

Si Inputsi Outputsi

S9 ID: e19d46eb-a534-4891-a51a-7e5fcc4f9f3f
Quantity: 0
Transport Type: Merchandise
Destination Town: [Ville [name=, pays=, location=Local], Ville [name=,

pays=, location=Europe]]
Planes:

Heavy Planes: [Plane [name=plane, companyName=company,
transportSize=1500, tt=Merchandise, isFree=true]]

Light Planes: [Plane [name=plane, companyName=company,
transportSize=999, tt=Merchandise, isFree=true]]

Civil Planes: [Plane [name=plane, companyName=company,
transportSize=100, tt=Civil, isFree=true]]

Pilots:
Pilots Local: [Pilot [name=pilot, companyName=company,

workingDest=Local, isFree=false]]
Pilots Europe: [Pilot [name=pilot, companyName=company,

workingDest=Europe, isFree=true]]
Fitness Value: 1.75 Percent:87.5%

ID: e19d46eb-a534-4891a51a-7e5fcc4f9f3f
Trace: [MainGuiToPilot, APilotToAPL, APLToAPilotF,
APilotToAPEU, APEUToAPilotI, APilotToMainGui]
Plane: null
Pilot: [null, Pilot [name=pilot,
companyName=company, workingDest=Europe,
isFree=false]]

S14 ID: 3299f371-b01d-4edb-a439-d141936dac13
Quantity: 0
Transport Type: Civile
Destination Town: [Ville [name=, pays=, location=Europe]]
Planes:

Heavy Planes: [Plane [name=plane, companyName=company,
transportSize=1500, tt=Merchandise, isFree=true]]

Light Planes: [Plane [name=plane, companyName=company,
transportSize=999, tt=Merchandise, isFree=true]]

Civil Planes: [Plane [name=plane, companyName=company,
transportSize=100, tt=Civil, isFree=true]]

Pilots:
Pilots Local: [Pilot [name=pilot, companyName=company,

workingDest=Local, isFree=true]]
Pilots Europe: [Pilot [name=pilot, companyName=company,

workingDest=Europe, isFree=true], Pilot [name=pilot, companyName=company3,
workingDest=Europe, isFree=true], Pilot [name=pilot1,
companyName=company1, workingDest=Europe, isFree=true]]

Fitness Value: 2 Percent:100%

ID: 3299f371-b01d-4edb-a439-d141936dac13
Trace: [MainGuiToPilot, APilotToAPEU,
APEUToAPilotI, APilotToMainGui]
Plane: null
Pilot: Pilot [name=pilot, companyName=company,
workingDest=Europe, isFree=false]

4.3. Generation of the Expected Outputs

This phase consists of finding the expected outputs Outputsi for the inputs Inputsi
generated for each scenario Si. For this, it suffices to apply to the inputs Inputsi generated for
each scenario Si and the set of activities Activitysi that will be triggered by the interactions
of this latter. These activities are stored in the nodes of the graph G. Table 3 represents a
subset of test case inputs with their expected outputs (one test case for some scenarios),
obtained as a result of applying our approach for testing the airport management system.

4.4. Detection of Errors in the System

The last phase of the proposed approach consists of running the original system with
the inputs Intputsi presented in Table 3 and comparing the results obtained with those
expected Outputsi also presented in Table 3. As an example, Figures 7 and 8, respectively,
represent the end of the test operation for the two scenarios S1 and S2, wherein in the
second scenario, an error is detected.

The detection of this error was carried out following the comparison between the
expected outputs for the system’s execution with the test case inputs generated for scenario
S2 and the outputs of the system’s execution with the same inputs. Figure 9 shows that the
execution outputs are incompatible with the expected outputs. In fact, in the execution
outputs, the system’s agents have executed two more interactions. The execution of these
additional interactions is not caused by the execution of other scenarios in parallel with
scenario S2 which is under test. Indeed, despite the possibility of the execution of scenario
S2, in parallel with other scenarios, these latter were not executed. This is guaranteed by



Electronics 2022, 11, 3642 20 of 23

the test case inputs generated for each scenario in the first phase of our approach. Indeed,
the test case inputs generated for scenario S2 only permit the execution of the interactions
and activities of this scenario, not those of any other scenarios. Consequently, during the
execution of the system with these inputs, to test scenario S2, the agents find themselves
forced to only execute scenario S2, which is under test. In this way, it will be possible to
ensure that the error detected in the latter is not associated with another scenario operating
in parallel.

Figure 7. End of the test of scenario 1 (no errors).

Figure 8. End of the test of scenario 2 (detection of an error).
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Figure 9. Comparison between expected outputs and execution outputs.

4.5. Discussion and Limitations

Applying our testing approach to the selected case study allowed us to demonstrate
the necessity of testing behavioural scenarios individually. In fact, this has enabled us
to identify, among the scenarios running in parallel, the scenario that caused the ob-
served error in the event of error detection and, therefore, to facilitate the correction of the
detected errors.

This example has also allowed us to show that our approach has several advantages, namely:

- The use of the mutation analysis technique has allowed us to facilitate and optimise
the generation of test case inputs that may cover each scenario under test individually.
As a result, this enables us to exceed the traditional test methodologies, which include
introducing plugs and employing sophisticated and complex algorithms to generate
test case inputs.

- The use of parallel genetic algorithms allows us to speed up the time required for
the generation of test case inputs. Indeed, compared to the usage of non-parallel
genetic algorithms, our approach ensures higher speed because each algorithm Ai is
responsible for discovering the test case inputs associated with a single scenario Si.
Therefore, the size of the system under test and the number of behaviour scenarios it
contains do not affect the calculation of the time required to generate test case inputs.

- The use of the sequence and activity diagram has allowed us to automate the genera-
tion of test case outputs. As a result, the method may be (i) very useful for software
that uses models in the analysis and design phases and (ii) easily adapted to systems
providing the execution of several behavioural scenarios simultaneously.

As for limitations, our approach cannot be applied to open multi-agent systems
where new scenarios can be introduced following the participation of new agents in
the system [30,31]. In fact, test case inputs generated using our approach to ensure the
individual coverage of behavioural scenarios available when testing the system may not
be relevant with new scenarios introduced as a result of the participation of new agents.
Moreover, the generation of test case outputs will be difficult because it will be based on
meta-models that describe the behaviour that will be acquired by new agents participating
in the system.
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5. Conclusions

The testing activity represents an important task in the software quality assurance
process. Although it is laborious and costly, the importance of this activity in terms of
the reliability and quality of the software as well as economically encourages us to give
particular interest to the development of tools allowing the automation of its different
phases. Despite the rapid evolution of MAS, the testing of these systems is still a key
open area. Despite the fact that only a few proposals for MAS testing are available in the
literature, they could contribute significantly to the progress of the field of MAS testing.
However, most of these proposals are related to unit-level testing and agent-level tests. This
leaves several issues related to system-level tests unresolved, such as the problem of the
possibility of executing several behavioural scenarios at the same time by the agents of the
system under test. In this work, we presented a new test case generation approach capable
of covering behavioural scenarios individually in a multi-agent system. The objective is to
know exactly, in the case of detection of an error, the scenario that caused the detected error,
among the scenarios running in parallel. The proposed approach, supported by the tool
that we have developed, has been validated in a concrete case study: Airport management
system. According to the obtained results, it would be interesting to incorporate our tool
into agent development platforms as a separate library to support the process of testing
behavioural scenarios in MAS. In prospect, we plan in the short and medium terms to
adapt our approach with open multi-agent systems.

Author Contributions: Conceptualization, N.E.H.D.; methodology, N.E.H.D.; software, A.H.B. and
N.E.H.D.; validation, N.E.H.D., A.H.B. and Z.T.; formal analysis, N.E.H.D.; investigation, N.E.H.D.;
resources, N.E.H.D. and A.H.B.; data curation, N.E.H.D. and A.H.B.; writing—original draft prepara-
tion, N.E.H.D.; writing—review and editing, N.E.H.D. and Z.T.; visualization, N.E.H.D.; supervision,
N.E.H.D.; project administration, N.E.H.D.; funding acquisition, N.E.H.D. and Z.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kiran, A.; Butt, W.H.; Anwar, M.W.; Azam, F.; Maqbool, B. A Comprehensive Investigation of Modern Test Suite Optimization

Trends, Tools and Techniques. IEEE Access 2019, 7, 89093–89117. [CrossRef]
2. Zardari, S.; Alam, S.; Al Salem, H.A.; Al Reshan, M.S.; Shaikh, A.; Malik, A.F.K.; Rehman, M.M.U.; Mouratidis, H. A Comprehen-

sive Bibliometric Assessment on Software Testing (2016–2021). Electronics 2022, 11, 1984. [CrossRef]
3. Nguyen, C.D.; Perini, A.; Bernon, C.; Pavón, J.; Thangarajah, J. Testing in multi-agent systems. In Proceedings of the International

Workshop on Agent-Oriented Software Engineering, Budapest, Hungary, 11–12 May 2009; pp. 180–190.
4. Zhang, Z.; Thangarajah, J.; Padgham, L. Automated unit testing for agent systems. In Proceedings of the 2nd International Working

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), Barcelona, Spain, 23–25 July 2007; pp. 10–18.
5. Zhang, Z.; Thangarajah, J.; Padgham, L. Automated unit testing intelligent agents in pdt. In Proceedings of the AAMAS, Estoril,

Portugal, 12–16 May 2008; pp. 1673–1674.
6. Zhang, Z.; Thangarajah, J.; Padgham, L. Model based testing for agent systems. In Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems, Budapest, Hungary, 10–15 May 2009; pp. 1333–1334.
7. Ekinci, E.E.; Tiryaki, A.M.; Cetin, O.; Dikenelli, O. Goal-Oriented Agent Testing RevisitedIn Proceedings of the 9th Int. Workshop

on Agent-Oriented Software Engineering, Estoril, Portugal, 12–13 May 2008; pp. 85–96.
8. Nguyen, C.D.; Perini, A.; Tonella, P. Goal-oriented testing for MASs. Int. J. Agent-Oriented Softw. Eng. 2010, 4, 79–109. [CrossRef]
9. Padgham, L.; Zhang, Z.; Thangarajah, J.; Miller, T. Model-Based Test Oracle Generation for Automated Unit Testing of Agent

Systems. IEEE Trans. Softw. Eng. 2013, 39, 1230–1244. [CrossRef]
10. Coelho, R.; Kulesza, U.; Von Staa, A.; Lucena, C. Unit testing in multi-agent systems using mock agents and aspects. In International

Workshop on Software Engineering for Large-Scale Multi-Agent Systems; ACM Press: New York, NY, USA, 2006; pp. 83–90.
11. Lam, D.N.; Barber, K.S. Debugging agent behaviour in an implemented agent system. In Proceedings of the Second International

Workshop ProMAS, New York, NY, USA, 20 July 2004; pp. 104–125.
12. Nguyen, C.D.; Miles, S.; Perini, A.; Tonella, P.; Harman, M.; Luck, M. Evolutionary testing of autonomous software agents. Auton.

Agents Multi-Agent Syst. 2011, 25, 260–283. [CrossRef]
13. Nguyen, C.D.; Perini, A.; Tonella, P. Ontology-based Test Generation for Multi Agent Systems. In Proceedings of the 7th

International Conference on Autonomous Agents and Multi Agent Systems, Estoril, Portugal, 12–16 May 2008; pp. 1315–1320.

http://doi.org/10.1109/ACCESS.2019.2926384
http://doi.org/10.3390/electronics11131984
http://doi.org/10.1504/IJAOSE.2010.029810
http://doi.org/10.1109/TSE.2013.10
http://doi.org/10.1007/s10458-011-9175-4


Electronics 2022, 11, 3642 23 of 23

14. Núñez, M.; Rodríguez, I.; Rubio, F. Specification and testing of autonomous agents in e-commerce systems. Softw. Test. Verif.
Reliab. 2005, 15, 211–233. [CrossRef]

15. Clark, A.G.; Walkinshaw, N.; Hierons, R.M. Test case generation for agent-based models: A systematic literature review. Inf. Softw.
Technol. 2021, 135, 106567. [CrossRef]

16. De Wolf, T.; Samaey, G.; Holvoet, T. Engineering self-organising emergent systems with simulation-based scientific analysis. In Proceedings
of the Third International Workshop on Engineering Self-Organising Application, Utrecht, The Netherlands, 25 July 2005; pp. 146–160.

17. Dehimi, N.E.H.; Mokhati, F.; Badri, M. Testing HMAS-based applications: An ASPECS-based approach. Eng. Appl. Artif. Intell.
2015, 46, 232–257. [CrossRef]

18. Dehimi, N.E.H.; Mokhati, F. A Novel Test Case Generation Approach based on AUML sequence diagram. In Proceedings of the
International Conference on Networking and Advanced Systems (ICNAS), Annaba, Algeria, 26–27 June 2019. [CrossRef]

19. Thangarajah, J.; Harland, J.; Morley, D.N.; Yorke-Smith, N. Towards quantifying the completeness of BDI goals. In Proceedings of the
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’14), Paris, France, 5–9 May 2014; pp. 1369–1370.

20. Gonçalves, E.M.N.; Machado, R.A.; Rodrigues, B.C.; Adamatti, D. CPN4M: Testing Multi-Agent Systems under Organizational
Model Moise+ Using Colored Petri Nets. Appl. Sci. 2022, 12, 5857. [CrossRef]

21. Papadakis, M.; Kintis, M.; Zhang, J.; Jia, Y.; Le Traon, Y.; Harman, M. Chapter Six—Mutation Testing Advances: An Analysis and
Survey. Adv. Comput. 2019, 112, 275–378. [CrossRef]

22. Alexander, R.; Bieman, M.; Sudipto, G.; Bixia, J. Mutation of Java Objects. In Proceedings of the 13th International Symposium on
Software Reliability Engineering, Annapolis, MD, USA, 12–15 November 2002.

23. Chevalley, P. Applying mutation analysis for object-oriented programs using a reflective approach. In Proceedings of the Eighth
Asia-Pacific Software Engineering Conference, Macao, China, 4–7 December 2001.

24. Ghosh, S.; Mathur, A. Interface Mutation to assess the adequacy of tests for components and systems. In Proceedings of the 34th
International Conference on Technology of Object-Oriented Languages and Systems—TOOLS, Santa Barbara, CA, USA, 4 August 2000.

25. Savarimuthu, S.; Winikoff, M. Mutation Operators for the Goal Agent Language. In Proceedings of the International Workshop
on Engineering Multi-Agent Systems, St. Paul, MN, USA, 6–7 May 2013.

26. Huang, Z.; Alexander, R.; Clark, J. Mutation Testing for Jason Agents. In Proceedings of the International Workshop on
Engineering Multi-Agent Systems, Second International Workshop, EMAS 2014, Paris, France, 5–6 May 2014.

27. Abu Bakar, N.; Selamat, A. Agent systems verification: Systematic literature review and mapping. Appl. Intell. 2018, 48, 1251–1274.
[CrossRef]

28. Barnier, C.; Aktouf, O.-E.-K.; Mercier, A.; Jamont, J.P. Toward an Embedded Multi-agent System Methodology and Positioning on
Testing. In Proceedings of the 2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW),
Toulouse, France, 23–26 October 2017; pp. 239–244.

29. Winikoff, M. BDI agent testability revisited. Auton. Agents Multi-Agent Syst. 2017, 31, 1094–1132. [CrossRef]
30. Hendrickx, J.M.; Martin, S. Open multi-agent systems: Gossiping with deterministic arrivals and departures. In Proceedings of

the 54th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 27–30 September 2016.
31. Hendrickx, J.M.; Martin, S. Open multi-agent systems: Gossiping with random arrivals and departures. In Proceedings of the

2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 12–15 December 2017.

http://doi.org/10.1002/stvr.323
http://doi.org/10.1016/j.infsof.2021.106567
http://doi.org/10.1016/j.engappai.2015.09.013
http://doi.org/10.1109/icnas.2019.8807874
http://doi.org/10.3390/app12125857
http://doi.org/10.1016/bs.adcom.2018.03.015
http://doi.org/10.1007/s10489-017-1112-z
http://doi.org/10.1007/s10458-016-9356-2

	Introduction 
	Related Work 
	The Proposed Approach 
	Formal Definition of the Proposed Graph G 
	Generation of Test Case Inputs 
	Generation of the Expected Test Case Outputs 
	Detection of Errors 

	Case Study 
	Generation of the Graph G 
	Generation of Mutants and Test Case Inputs 
	Generations of Mutants 
	Generation of Test Case Inputs 

	Generation of the Expected Outputs 
	Detection of Errors in the System 
	Discussion and Limitations 

	Conclusions 
	References

