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Abstract: In the 6G aerial network, all aerial communication nodes have computing and storage
functions and can perform real-time wireless signal processing and resource management. In order
to make full use of the computing resources of aerial nodes, this paper studies the mobile edge com-
puting (MEC) system based on aerial base stations (AeBSs), proposes the joint optimization problem
of computation the offloading and deployment control of AeBSs for the goals of the lowest task
processing delay and energy consumption, and designs a deployment and computation offloading
scheme based on federated deep reinforcement learning. Specifically, each low-altitude AeBS agent
simultaneously trains two neural networks to handle the generation of the deployment and offload-
ing strategies, respectively, and a high-altitude global node aggregates the local model parameters
uploaded by each low-altitude platform. The agents can be trained offline and updated quickly online
according to changes in the environment and can quickly generate the optimal deployment and
offloading strategies. The simulation results show that our method can achieve good performance in
a very short time.

Keywords: aerial network; mobile edge computing; 6G; computation offloading

1. Introduction

Due to the explosive development of various intelligent applications in the 6G era,
user’s demand for computing and communication is expected to increase dramatically. To
meet this challenge, mobile edge computing (MEC) is considered as an efficient paradigm,
which can improve network computing capability and user experience [1]. At the same
time, the aerial network based on new mobile communication systems such as high-altitude
platforms (HAPs) is considered as a potential architecture for 6G and has aroused much
attention recently. The aerial network acts as a supplement and extension of the terrestrial
mobile communication network to provide collaborative and efficient information services
for various network applications in a wide spatial area [2]. The aerial network primarily
consists of low-altitude platforms and high-altitude platforms and plays a key role in
enhancing coverage, enabling edge services, and enabling flexible network reconfiguration.
Communication, computing, caching, sensing, and navigation services will be possible on
a global scale through the fusion of aerial networks and edge computing [3].

Nevertheless, there are numerous obstacles to integrating aerial networks with MEC
systems. A classic MEC system typically deploys edge servers using the ground infras-
tructure. The aerial base station (AeBS) can be formed by carrying the MEC server and
other communication equipment on the aerial platform. An aerial edge computing node
differs from its terrestrial counterpart, since it is capable of flexibly adjusting its deployment
position to achieve better communication conditions [4]. The traditional offloading strategy
for terrestrial MEC networks may not be appropriate for aerial edge computing. In addition,

Electronics 2022, 11, 3641. https://doi.org/10.3390/electronics11213641 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213641
https://doi.org/10.3390/electronics11213641
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1049-4668
https://orcid.org/0000-0001-6031-590X
https://orcid.org/0000-0002-4158-6517
https://doi.org/10.3390/electronics11213641
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213641?type=check_update&version=2


Electronics 2022, 11, 3641 2 of 17

in order to extend the coverage or increase the number of users served, a single AeBS is not
feasible and multiple AeBSs can be cooperatively deployed to complete the task [5]. How
to coordinate the deployment of multiple AeBSs is also a critical issue. On the other hand,
although the flexibility of AeBSs brings a higher degree of freedom to the deployment
design of MEC nodes, they often suffer from resource and energy constraints. Therefore,
how to make the AeBSs better provide communication and computing services under the
condition of limited resources is also a problem that needs to be solved [1].

Edge computing and deep learning can naturally be combined with each other. On the
one hand, they complement each other technically [6]. Some recent work has focused
on the generalization problem of deep neural network (DNN) models [7] or designing
resource-friendly models [8,9] to help the DNN model be better applied in actual edge
deployment scenarios. On the other hand, their application and popularization are mu-
tually beneficial. The combination of the two technologies has promoted a wide range
of intelligent applications, from face recognition [10] and drone navigation [11] to the
Industrial Internet of Things [12]. Deep learning has strong perception and expression
ability, while reinforcement learning has decision-making ability. Deep reinforcement learn-
ing (DRL), which introduces deep neural networks in deep learning into reinforcement
learning, holds promise for generating network optimization decisions in complex and
dynamic environments.

Traditional single-agent DRL approaches usually follow a centralized paradigm, per-
forming poorly in scalability and flexibility due to their large state space and action
space [13]. Recently, researchers have discovered that multi-agent deep reinforcement
learning (MADRL), which handles modeling and computation in a distributed manner,
can obtain better performance in solving multi-AeBS cooperation tasks [14]. However,
in MADRL, agents need to interact with each other to exchange state and action informa-
tion in order to maintain the stability of the environment. In practical situations, frequent
communication between AeBSs will consume the communication resources of AeBSs and
increase the complexity of the optimization problem. As a distributed training framework,
federated learning can simplify the model and improve the convergence speed in large-scale
MADRL models. The benefits of applying federated learning to MADRL can be mainly
summarized as follows: (1) federated learning avoids direct data leakage and, thus, can
protect data privacy [15,16], (2) federated learning can make DRL models converge quickly,
so it performs well in some scenarios sensitive to model training time [17], (3) incorporating
federated learning into DRL can improve system scalability [18], (4) federated learning can
also address the data island problem [16,18].

In this paper, we focus on the joint optimization of a mobile device (MD) offload-
ing scheme and AeBS deployment to fully utilize the resources of AeBSs. Considering
the dynamic nature of communication networks and computational tasks, we propose a
federated DRL-based scheme that simultaneously addresses AeBS deployment and MD
computational offloading. The contributions of our work can be concluded as:

1. A federated DRL algorithm was designed to jointly optimize the AeBSs’ deploy-
ment and computation offloading to achieve lower energy consumption and task
processing delay.

2. A new training mechanism is presented in the aerial edge computing network where
low-altitude AeBSs are controlled by their own agents and cooperate in a distributed
manner, and an HAP acts as a global node for model aggregation to improve the
training efficiency.

3. Two neural networks trained together were set up for each agent to deploy the AeBSs
and generate the computation offloading policies, respectively.

The content of this paper is organized as follows. Section 2 introduces some related
work. Section 3 shows the system model of the aerial edge computing network and analyzes
the joint deployment and offloading optimization problem that needs to be addressed.
Section 4 describes the detailed flow and architecture of our proposed federated deployment
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and computational offloading (FedDCO) algorithm. Section 5 presents the results and
analysis of our simulation for FedDCO. Section 6 is a summary of the full paper.

2. Related Work

Several works on integrating edge computing into aerial networks have been con-
ducted. In [3], the survey introduced several desirable attributes and enabling technologies
of aerial computing. In [19], Jia et al. studied the offloading problem in a hierarchical aerial
computing framework composed of HAPs and AeBSs, and the flexible mobility of AeBSs
was ignored. Reference [20] adopted an AeBS to provide computation offloading services
for mobile users, but they did not study the dynamic computation offloading strategy.
In [21], Truong et al. investigated an aerial edge computing network where an HAP plays
the role of MEC and an offloading optimization problem is formulated, aiming to minimize
the cost for task completion.

Researchers have adopted some heuristic algorithms to solve the offloading decision
problem. To increase the system’s weighted computing efficiency, Reference [4] proposed a
heuristic algorithm for maximizing computational efficiency. In order to reduce the energy
used by the AeBSs, Reference [22] jointly optimized the offloading of computation bits and
the trajectory of the AeBS in an AeBS-enabled MEC system. In Reference [19], a matching
game-theory-based algorithm and a heuristic approach for offloading optimization were
presented. However, considering the dynamic nature of the multi-AeBS scenario, network
optimization decisions are expected to be real-time. These aforementioned algorithms
usually take many iterations to reach a local optimum, which makes them unsuitable for
practical computation offloading situations. Besides, their computational complexity tends
to rise significantly with the expansion of MEC network scale.

Recently, deep learning has made a series of achievements in the field of wireless
communication, and researchers have also investigated some advanced models to help the
deep neural network be better applied in practice. To address the generalization issue of
the deep neural network, a two-stage training method was devised to optimize the feature
boundary of the convolution neural network (CNN) to reduce the over-fitting problem in [7].
Several works were devoted to designing a resource-friendly edge artificial intelligence
model. Reference [8] designed a graphics processing unit (GPU)-accelerated faster mean-
shift algorithm, which is valuable for accelerating the speed of the training of the DNN
model and saving computing resources. Reference [9] implemented a classification system
based on the multi-channel CNN, which can work in a hardware environment with limited
computing resources. Some researches also discussed the application of deep learning
in MEC networks. Reference [23] utilized distributed deep learning to make offloading
decisions for MEC networks in parallel. Reference [24] developed a hierarchical deep
learning task distribution framework to deal with the tradeoff between latency and energy
consumption, where the unmanned Aerial Vehicles are embedded with lower layers of the
pretrained CNN model, while the MEC server handles the higher layers. These studies
demonstrate the potential of combining deep learning with edge computing and also reveal
the importance of generalization and resource issues in practical applications.

DRL, a combination of the DNN and reinforcement learning, aims to create an in-
telligent agent that can execute effective strategies and maximize the return of long-term
tasks through controllable actions. Reference [25] designed a fast deep-Q-network (DQN)-
based offloading approach to boost computation performance. Reference [26] provided a
DQN-based online computation offloading policy with random task arrivals in a similar
network setup. The authors in [27] adopted a centralized DRL algorithm to settle the
offloading issue and a differential-evolution-based approach to address the deployment
issue. The optimization issue of maximizing the migration throughput of user workloads
in aerial MEC systems was solved with a DRL method in [28]. Reference [21] utilized the
deep deterministic policy gradient (DDPG) to reduce the overall cost of performing the
tasks. DRL was also used to jointly tackle the optimization problem of user association and
resource allocation in aerial edge computing systems [29].
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MADRL has numerous advantages over single-agent DRL. It enables agents to work
cooperatively to handle high-complexity tasks in a distributed manner. Different MADRL
algorithms have different agent-to-agent interaction forms and communication costs. A
multi-agent imitation learning technique was presented in [30] to reduce the average task
completion time in edge computing networks. To reduce overall energy usage, Refer-
ence [31] employed a multi-agent path planning strategy for energy consumption mini-
mization. Reference [32] devised an MADRL-based trajectory control approach, which
plans the trajectory of each AeBS individually. To reduce the overall computation and
communication cost, Reference [33] developed a decentralized value-iteration-based rein-
forcement learning approach to make joint computation offloading and resource allocation
decisions. The above research discovered that the multi-agent algorithm performs effec-
tively in the multi-AeBS control scenario. This is because the MADRL framework considers
the system as a whole and can jump out of the local optimal solution, which maximizes the
benefit of each agent.

Some researchers have introduced federated learning into the DRL algorithm. Fed-
erated learning can accelerates the convergence speed of the model and enhances the
generalization ability of the model by aggregating parameters. Reference [34] jointly opti-
mized resource allocation, user association, and power control in a multi-AeBS MEC system
via a federated DQN approach. In a multi-AeBS MEC system, massive amounts of data
have to be transmitted from UEs to the parameter center. The practical deployment and
operation of the algorithm are challenging because of the corresponding communication
delay. To solve this problem, the authors fused federated learning (FL) with the MADRL
framework and proposed a semi-distributed multi-agent federated reinforcement learning
algorithm with the integration of FL and DRL. The proposed algorithm enables the UEs
to quickly learn models by keeping their data training locally. In [35], an edge federated
multi-agent actor–critic approach for resource management, collaborative trajectory plan-
ning, and data scheduling was provided. For cooperation in MEC systems, a federated
heterogeneous multi-agent actor–critic algorithm was designed in [36]. Reference [37]
designed a federated DRL-based cooperative edge caching architecture, which enables base
stations to cooperatively learn a shared model and addresses the complicated and dynamic
control concerns. A hierarchical federated DRL approach was described in [38] in a content
replacement scenario.

The aforementioned works inspired us to design a federated deep reinforcement
learning algorithm in which each AeBS is managed by a separate agent and cooperates in a
distributed way, aiming to reduce the overall task processing time and energy consumption.
Table 1 lists a comparison of our work to the relevant research.

Table 1. Comparison between our work and the existing literature.

Reference Optimization Goal Offloading Deployment Method

[4] Maximize the weighted computational
efficiency of the system Proportional X

Alternative computational
efficiency maximization

[19] Maximize the total IoT data computed by the
aerial MEC platforms Binary /

Matching game-theory-based
algorithm and a heuristic

algorithm

[20] Minimize the total energy consumption / X
Successive convex

approximation (SCA)

[21] Minimize the total cost function of the system Proportional / Deep deterministic policy
gradient (DDPG)

[22] Minimize the energy consumed at the AeBS Binary X Alternative optimization
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Table 1. Cont.

Reference Optimization Goal Offloading Deployment Method

[23]
Minimize overall system utility including both
the total energy consumption and the delay in

finishing the task
Binary X DNN

[24]
Minimize the delay and energy consumption,
while considering the data quality input into

the DNN and inference error

Binary and
proportional / CNN

[25] Optimal offloading policy Proportional / Fast deep-Q-network (DQN)

[26] Maximize the long-term utility performance Binary / Double DQN

[27] Average slowdown for offloaded tasks One-to-one
correspondence X DQN

[28] Maximize the migration throughput of user
tasks Binary / DQN

[29] Maximize the average throughput of user tasks Binary X Q-learning

[30] Minimize average task completion time Binary / Multi-agent imitation
learning

[31] Minimize the total energy consumption of
AeBSs Binary X

Multi-agent deep
deterministic policy gradient

(MADDPG)

[32]
Maximize the fairness among all the user

equipment (UE) and the fairness of the UE load
of each AeBS

Binary X MADDPG

[33]

Minimize the total computation and
communication overhead of the joint

computation offloading and resource allocation
strategies

Binary / Multi-agent double-deep
Q-learning

[34] Minimize the overall consumed power Binary / Federated DQN

[35] Minimize the average source age (elapsed time) Binary X
Federated multi-agent

actor–critic

[36] Minimize the average age of all data sources Binary X
Federated multi-agent

actor–critic

[37] Maximize the expected long-term reward Three-way X Federated DQN

[38] Improve the hit rate Binary / Federated DQN

Our work Jointly minimize overall task latency and
energy consumption Binary X Federated DQN

Notes: Binary: tasks can be offloaded to the AeBSs or not; proportional: tasks have the offloading rate, and tasks
can be offloaded partially; one-to-one correspondence: tasks must be offloaded to an associated AeBS; three-way:
tasks can be offloaded to the AeBSs, processed locally, or processed by their neighbors.

3. System Model

Figure 1 depicts our scenario in an aerial edge computing network. There are M
MDs, N low-altitude AeBSs, and an HAP in the system. For simplicity, we abbreviate
low-altitude AeBSs as AeBSs and consider all AeBSs and MDs to be computationally
capable, and additionally, we used a binary offloading strategy for the computational tasks,
i.e., offloading to AeBSs or executing them locally [39]. AeBSs perform local training, and
the model parameters are uploaded to an HAP for federated model aggregation. We chose
an HAP as a global node because of its powerful computing power and lower latency
compared to satellites. In addition, there are almost no other obstacles in the air except
the aircraft itself, which makes the communication link better and more reliable than the
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ground communication. AeBS n trains its own two networks Qn
1 and Qn

2 together, in which
Qn

1 is responsible for deployment and Qn
2 is responsible for the offloading policy.

Figure 1. Federated deep-reinforcement-learning-based joint computation offloading and deploy-
ment control.

3.1. Communication Model

Since the line-of-sight (LoS) channel is dominant in air-to-ground links, we only consid-
ered the LoS propagation characteristics between AeBSs and MDs. Therefore, the channel
gain between MD i and AeBS j can be obtained as:

hi,j = g0d−2
i,j , (1)

where di,j is the distance between MD i and AeBS j, which can be calculated by the locations
of MD i and AeBS j. g0 represents the channel gain at the reference distance of 1 m.

The data transmission rate between MD i and AeBS j is

Ri,j = Blog
(

1 +
Pihi,j

σ2

)
, (2)

where Pi denotes the transmit power of MD i and σ2 represents the noise power.

3.2. Computation Model

For MD i with a computation task, Di represents the size of the input data and Si
represents the CPU cycles required to process 1 bit of data. Let A = {ai,j}M×(N+1) represent
the offloading decision of MDs. If the computation task in MD i is offloaded to AeBS j for
computing, ai,j = 1. If the computation task in MD i is computed locally, ai,0 = 1. Therefore,
there are two kinds of computation modes that each MD can choose: local execution and
offloading execution.

3.2.1. Local Execution

According to the definition of a task, the total CPU cycles required to execute the task
is Si × Di. Then, the time required to process a task in MD i is

Tlocal
i =

Si × Di

f MD
i

, (3)
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where f MD
i is the computational capacity of MD i.

3.2.2. Offloading Execution

In this case, processing the task requires the following three steps. Firstly, MD i
transmits the task data that need to be processed to AeBS j, which takes time Ttran

i,j . Secondly,

AeBS j computes the data, which takes time TAeBS
j . Thirdly, AeBS j transmits the result back

to MD i, which takes a tiny amount of time Tback
j,i , and we usually neglect it. Thus, we have

Ttran
i,j =

Di
Ri,j

, (4)

TAeBS
j =

Si × Di

f AeBS
j

, (5)

where f AeBS
j denotes the computational capacity of AeBS j. Therefore, the total time cost of

offloading execution can be obtained as:

To f f
i,j =

Di
Ri,j

+
Si × Di

f AeBS
j

. (6)

3.3. Energy Model

For local execution, only the computation energy consumption needs to be considered
as there is no data transmission. The energy consumption can be calculated as [40]:

Elocal
i = δ f MD2

i SiDi, (7)

where δ is an energy efficiency parameter, which is related to the chip architecture.
For offloading execution, the energy consumption includes transmission consumption

and computation consumption, which can be written as:

Eo f f
i,j = PiTtran

i,j + δ f AeBS2

j SiDi. (8)

3.4. Problem Formulation

In order to provide better service while taking into account the limited energy of AeBSs,
it is necessary to minimize the system task processing delay and energy consumption. In
this paper, we jointly optimized the AeBSs deployment and offloading strategy, aiming to
minimize the weighted sum of task processing time and AeBS energy consumption, which
can be written as:

min
X,Y,A

w1

N

∑
j=1

M

∑
i=1

(
ai,0Tlocal

i + ai,jT
o f f
i,j

)
+ w2

N

∑
j=1

M

∑
i=1

(
ai,0Elocal

i + ai,jE
o f f
i,j

)
,

C1 : xmin < xj < xmax,

C2 : ymin < yj < ymax,

C3 :
N

∑
j=0

ai,j = 1,

C4 : ai,j ∈ {0, 1}, ∀i, j,

(9)

where ∀i ∈ {1, 2, . . . , M} and ∀j ∈ {1, 2, . . . , N}. w1 and w2 denote the weights of the task
processing time and energy consumption, respectively. Constraints C1 and C2 limit the
range of movement of the AeBSs, and C3 and C4 indicate that each MD can either offload its
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task to an AeBS or execute the task locally and cannot partially offload its task. It is worth
mentioning that, for such mixed-integer programming problems, with multi-objective
optimization, it is difficult for traditional optimization algorithms to find the optimal
solution in a short time, which is unacceptable for user computing tasks that change in
real-time. To meet the real-time and complexity requirements, we propose FedDCO based
on deep reinforcement learning, which can complete the deployment of AeBSs and obtain
the offloading solution in a short time.

4. Federated Deep-Reinforcement-Learning-Based AeBS Deployment and
Computation Offloading

The optimization problem in Equation (9) is defined as a mixed-integer programming
problem, which is often difficult to find solutions to quickly. We designed an algorithm
based on federated deep reinforcement learning called FedDCO, where each AeBS is
equipped with a Qn

1 network responsible for generating deployment schemes and a Qn
2

network responsible for generating offloading policies. For an AeBS, it is unnecessary to
focus on the MDs with weak channel gain, which will lead to information redundancy. Each
AeBS only needs to pay attention to the information of the MDs that are within a certain
distance. Therefore, we used the K-nearest-neighbor algorithm to divide the association
between AeBSs and MDs. Then, each AeBS first moves to the optimal location using the Qn

1
network, followed by using the Qn

2 network to generate the offloading policies for nearby
MDs. The basic components of FedDCO are as follows.

State: For Qn
1 of AeBS n, the state sn

1 (t) includes the computational capacity of AeBS
n and its associated MDs, the amount of computational tasks for its associated MDs, and
the channel gain between AeBS n and MDs. The state s1(t) is the collection of each AeBS’s
state sn

1 (t).
For Qn

2 of AeBS n, the state sn
2 (t) also consists of the computational capacity of AeBS

n and its associated MDs, the amount of computational tasks for its associated MDs,
the channel gain between AeBS n and MDs, the number of MDs, which still have not
generated a computation offloading decision, and a vector indicating the computation
offloading policy for each MD. The state s2(t) is the collection of each AeBS state sn

2 (t).
Action: For Qn

1 , the action an
1 (t) is the movement of AeBS n, including moving back-

ward or forward, left or right, or remaining stationary. For Qn
2 , the action is the offloading

policy of one MD, i.e., local execution or offloading execution.
Reward: We combine the impact of task latency and energy consumption in the overall

task and define the reward function as rc−w1 ∑N
j=1 ∑M

i=1

(
ai,0Tlocal

i + ai,jT
o f f
i,j

)
− w2 ∑N

j=1 ∑M
i=1

(
ai,0Elocal

i + ai,jE
o f f
i,j

)
, where rc is a nonnegative constant.

We let θn
L,1 represent the weight of Qn

1 , which is responsible for generating deployment
decisions. θn

L,2 represents the weight of Qn
2 , which generates the offloading policies. The up-

dating processes of the two networks follow the strategy and principle of the classical DQN.
The optimal Q function for AeBS n can be defined as:

Q∗(sn, an) = maxn
π

E
[
rt + γrt+1 + γ2rt+2 + . . . | st = sn, at = an, πn

]
, (10)

which denotes the maximum expectation of the sum of the future reward at each time step
t that can be obtained by the strategy πn = P(an | sn) after observing state sn and taking
action an and γ is the discount factor. The DQN algorithm adopts the neural network to
parameterize the approximation function Q(sn, an; θn), where θn

L,ζ is the weight parameter
of the local neural network of AeBS n. The DQN utilizes the experience pool and stores the
experiences of the agent at each time step t all in the dataset. During algorithm learning,
the minibatches of the experiences are randomly sampled from the pool of stored samples
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to update the network. The loss function is calculated to measure the error between the
prediction and the target value, which is:

Ln

(
θn

L,ζ

)
= E

{[
yn −Q

(
sn, an; θn

L,ζ

)]2
}

, ζ ∈ {1, 2}, (11)

where Q
(

sn, an; θn
L,ζ

)
is the Q value in the Q-network with the current state sn as the input;

yn is the target value and can be calculated as yn = r + γ ·maxa′n Q
(

sn, a′n; θn
L,ζ
′
)

. The Q-
network is optimized in each iteration to minimize the loss function. We adopted the
stochastic gradient descent method to optimize the loss function and update the weight
parameters of the Q-networks. The DQN algorithm introduces two neural networks,
the Q-network and the target Q-network, which have the same structure, but different
parameters, and the parameters of the target Q-network are periodically updated according
to the parameters in the Q-network.

After each AeBS trains its two networks based on its state, it uploads the parameters
of Q1 and Q2 to the HAP for model aggregation at regular intervals fa. The parameter fa is
set because it is unnecessary for AeBSs to upload model parameters to the HAP for each
episode of training to save costs. The weight of the global model can be obtained as follows:

θG,ζ =
1
N

N

∑
n=1

θn
L,ζ , ζ ∈ {1, 2}, (12)

where θG,ζ is the weight of the global network and N is the number of AeBSs. The global
network parameters are sent back to the AeBSs for updating their own local networks.

The detailed steps of the FedDCO algorithm are shown in Algorithm 1. We also depict
the whole training process of the proposed FedDCO algorithm in Figure 2.

Figure 2. Flow chart of FedDCO.
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Algorithm 1: Proposed FedDCO algorithm

1 Input: maximum number of episodes, states of AeBSs, locations of AeBSs and
MDs

2 Output: deployment and offloading policy for each AeBS and MD
3 Initialize: replay memory size M1, M2, online network Qn

1 , Qn
2 and target network

Qn,

1 , Qn,

2 for each AeBS n, the distribution of MDs, and the aggregation frequency
of federated learning fa

4 Initialize:
5 for episode← 1 : max_episode do
6 Initialize the locations of AeBSs, and obtain the initial state s1(t), s2(t)
7 for step← 1 : max_step do
8 Obtain the AeBS-MD association via the K-nearest-neighbor algorithm
9 for AeBS← 1 : N do

10 Choose an action an
1 (t) according to the ε-greedy policy: with

probability 1− ε; AeBS n selects action
an

1 (t) = argmaxQn
1 (s

n
1 (t), an

1 (t); θn
L,1), otherwise it selects a random

action
11 Execute action an

1 (t)

12 for MD ← 1 : M do
13 Choose an action an

2 (t) according to the ε-greedy policy: with
probability 1− ε; its associated AeBS selects action
an

2 (t) = argmaxQn
2 (s

n
2 (t), an

2 (t); θn
L,2), otherwise it selects a random

action
14 Execute action an

2 (t)
15 Observe reward r, and obtain the new state
16 Store (s2(t), a2(t), r(t), s2(t + 1)) in replay memory M2

17 Store (s1(t), a1(t), r∗(t), s1(t + 1)) in replay memory M1 (r∗ is the best
reward in the current episode)

18 for AeBS← 1 : N do
19 Perform a gradient descent step on the loss function according to

Equation (11)
20 Every C steps, update the target network for each AeBS n

21 if episode mod fa=0 then
22 Each AeBS uploads its θn

L,1 and θn
L,2 weights to the global node for model

aggregation according to Equation (12), respectively.
23 The global node sends the aggregated global model weight of θG,1 and θG,2

back to the AeBSs, and each AeBS updates its own model.

5. Simulation Results and Discussions

We selected a 1 km × 1 km area for simulation, and the performance metrics of
the simulation were the total task processing time and energy consumption. The main
simulation parameters are given in Table 2, which refer to [41]. The Q1- and Q2-networks
of each AeBS were three-layer fully connected neural networks and used ReLU as the
activation function. The simulation environment was Python 3.7 and Pytorch 1.9.1 and was
run on a computer with i5-12500H processor from Intel and an RTX3060 GPU from Nvidia.
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Table 2. Main simulation parameters.

Simulation Parameters Values

AeBS altitude H 100 m
Transmit power Pi 0.5 W

Channel bandwidth B 1 MHz
Reference channel gain g0 10,096

Energy efficiency parameter δ 2
Noise σ2 5× 10−5 W

ε in ε-greedy 0.1
Memory size 10,000

Batch size 512
Discount factor 0.97

We compared our FedDCO scheme with three other approaches named MADCO, K-
means-based, and throughput-first, to observe the performance gain brought by federated
learning, simultaneous training of two deep Q-networks, and location adjustment of the
AeBSs, respectively [41]. The description of these schemes is listed as follows:

1. FedDCO: Each AeBS has two deep Q-networks, Q1 and Q2, and they are trained
simultaneously to generate deployment and offloading policies. During the training
process, AeBSs upload the Q1 and Q2 weights instead of the raw state and action data
to the global node for model aggregation, and the global node sends the aggregated
global model weight of Q1 and Q2 back to the AeBSs, then each AeBS updates its
own model.

2. MADCO: MADCO optimizes the AeBS deployment schemes and offloading strate-
gies by training two neural networks together to minimize the latency and energy
consumption of computational task processing. Each AeBS exchanges action and state
information with each other when making decisions. Its settings for the input/output,
parameters, and DNN structure are consistent with FedDCO.

3. K-means: AeBSs are deployed based on the MD distribution through the K-means al-
gorithm. The number of clusters of K-means was set as the number of AeBSs, and then,
each AeBS is deployed directly above each cluster center of MDs. Specifically, the max-
imum number of iterations of K-means was 300, and if the sum of squares within
all clusters between two iterations is less than 1 × 10−4, the iteration is terminated.
After the location of AeBSs is fixed, the offloading policy is generated through the
Q2-network, whose input/output settings, parameter settings, and network structure
are the same as Q2 in FedDCO.

4. Throughput-first: AeBSs are first deployed based on the Q1-network with the goal
of maximizing throughput, and the offloading policy is later generated through the
Q2-network. The settings of the input/output, parameters. and DNN structure in
throughput-first are also consistent with FedDCO.

Figure 3 describes the convergence process of the above four algorithms, in the case
that the number of AeBSs is 8 and the number of MDs is 60. We normalized the reward to re-
duce the magnitude difference between the task processing delay and energy consumption.
The average reward of the proposed FedDCO increased rapidly in the first 100 episodes.
After 150 episodes, the algorithm converged, and the reward became stable. It can be found
that the convergence speed of FedDCO was faster than that of MADCO, which indicates
that federated learning can improve the convergence speed of the model. K-means uses
a clustering algorithm to deploy AeBS positions; although its training time was fast, its
performance was the lowest. This is because it does not take advantage of the mobility and
self-adjustment of the deployment location of AeBSs to obtain better performance.

In Figure 4, we mainly evaluate the effect of different algorithms with different num-
bers of MDs in the following three typical scenarios:
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Figure 3. The reward curve of the four algorithms in the training process.

Figure 4. Comparison of network performance metrics at different MD quantities in different
communication scenarios. (a–c) are the task processing delay in the general communication sce-
nario, delay-sensitive scenario, and energy-sensitive scenario, respectively. (d–f) are the energy
consumption in the general communication scenario, delay-sensitive scenario, and energy-sensitive
scenario, respectively.

1. General communication scenario: In this scenario, we regarded delay and energy
consumption as equally important indicators. Thus, we set (w1, w2) = (1, 1) in
the simulation.

2. Delay-sensitive scenario: There may be some real-time services in the network, which
makes the MDs sensitive to delay. For this scenario, we set (w1, w2) = (2, 1) in the
simulation.

3. Energy-sensitive scenario: For some aerial platforms with limited payload capacity,
such as small multi-rotor unmanned aerial vehicles, the battery capacity is limited, so
it is necessary to reduce the energy consumption as much as possible to ensure the
completion of the mission. For this scenario, we set (w1, w2) = (1, 2) in the simulation.

Figures 4a–c depict the task processing delay for the three different scenarios, with dif-
ferent numbers of MDs ranging from 10 to 100 [42]. By comparing different algorithms, it
can be observed that our proposed FedDCO obtained the lowest task processing latency
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in all of three cases. It can be seen that K-means had a longer task processing time in
most cases, which may be due to the fact that it does not use a neural network to obtain
a better deployment position. Figure 4d–f show the energy consumption under each
scenario. FedDCO still achieved the best results compared to the other three algorithms.
K-means and throughput-first performed similarly, probably because Q2 is effective in
minimizing energy consumption, leading them to make similar offloading strategies. By
comparing the network performance metrics in different scenarios, it can be discovered
that the delay of each scheme in the delay-sensitive scenario was basically smaller than
that in the general communication scenario, but at the cost of more energy consumption. In
the energy-constrained scenario, the agent’s strategy prefers a lower energy consumption,
and the task processing latency in this scenario increases slightly. To sum up the above
figures, with the increase of the MDs’ number, the key indicators, task processing delay,
and energy consumption of the system were all on the rise. Taking the three indicators
into consideration, the proposed FedDCO achieved the optimal performance in various
communication scenarios compared to the other algorithms. The K-means-based scheme
performed worst among these algorithms since it does not take advantage of adjusting the
position of the AeBSs. This indicates that the deployment design of the AeBSs is a very
important factor to be considered in the aerial edge computing network.

Figure 5 shows the performance of the four algorithms described in this article at
different data sizes of the tasks. It can be noticed that, with the increasing data size of
computing tasks, task processing delay and energy consumption both showed an upward
trend. This was attributed to the fact that there were more data to be transmitted and
processed, which brought a burden to the system and led to the degradation of the system
performance. In the case of different data sizes of the tasks, our proposed FedDCO had a
lower delay and energy consumption than the other three algorithms.

Figure 5. Comparison of network performance metrics at different data sizes of the tasks. (a) Task
processing delay. (b) Energy consumption.

Figure 6 illustrates the performance of the four algorithms described in this article at
different computational capacities of the AeBSs. With the enhancement of the computing
capability of the AeBSs, the delay of the system decreased, but the system consumed more
energy. This is because, when the computational power of the AeBSs increased, the tasks
on the MDs tended to be offloaded to the AeBSs, which resulted in an increase in both
the signal transmission energy consumption and AeBS computation energy consumption.
By comparing the four algorithms, it can be found that our proposed algorithm FedDCO
had the best performance, while the traditional machine learning algorithm K-means had a
relatively poor performance.
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Figure 6. Comparison of network performance metrics at different computational capacities of the
AeBSs. (a) Task processing delay. (b) Energy consumption.

Figure 7 shows the training time of FedDCO, MADCO, K-means, and throughput-first
with different numbers of AeBSs. As the number of AeBSs in the system increased, the prob-
lem complexity increased, so the training time of FedDCO and MADCO also increased. The
training time of FedDCO was smaller than that of MADCO and throughput-first, which
indicates that federated learning can accelerate convergence and improve algorithm effi-
ciency. This is owed to the fact that federated learning can solve the problem of the difficult
convergence of agents by exchanging experience through parameter aggregation. In the
K-means-based scheme, the K-means algorithm was adopted to decide the deployment
position of the AeBSs instead of training a DRL model, which made its training speed
relatively fast. Especially when the number of AeBSs increased, this gap became larger.
However, the performance of the K-means-based scheme was not as good as FedDCO.

Figure 7. Training time of different algorithms.

Generally speaking, the simulation results above proved that the proposed FedDCO
outperformed the other algorithms in different communication scenarios. Moreover, Fed-
DCO also had the advantages of fast convergence and a short training time, which is very
suitable for the dynamic network environment in aerial edge computing networks.

6. Conclusions

In this paper, we proposed an approach called FedDCO to address the joint opti-
mization problem of AeBSs’ deployment and computation offloading in an aerial edge
computing network with the goal of minimizing the task processing time and energy
consumption. We designed a training mechanism based on federated deep reinforcement
learning, where low-altitude AeBSs train their local neural networks individually and an
HAP plays the role of a global node for model aggregation. The simulation results showed
that our proposed approach can achieve better performance in various communication
scenarios compared with other benchmark schemes.
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