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Abstract: Digital transformation has continued to have a remarkable impact on industries, creating
new possibilities and improving the performance of existing ones. Recently, we have seen more
deployments of cyber-physical systems and the Internet of Things (IoT) as in no other time. However,
cybersecurity is often an afterthought in the design and implementation of many systems; therefore,
there usually is an introduction of new attack surfaces as new systems and applications are being
deployed. Machine learning has been helpful in creating intrusion detection models, but it is
impractical to create attack detection models with acceptable performance for every single computing
infrastructure and the various attack scenarios due to the cost of collecting quality labeled data and
training models. Hence, there is a need to develop models that can take advantage of knowledge
available in a high resource source domain to improve performance of a low resource target domain
model. In this work, we propose a novel cross-domain deep learning-based approach for attack
detection in Host-based Intrusion Detection Systems (HIDS). Specifically, we developed a method for
candidate source domain selection from among a group of potential source domains by computing
the similarity score a target domain records when paired with a potential source domain. Then,
using different word embedding space combination techniques and transfer learning approach, we
leverage the knowledge from a well performing source domain model to improve the performance of
a similar model in the target domain. To evaluate our proposed approach, we used Leipzig Intrusion
Detection Dataset (LID-DS), a HIDS dataset recorded on a modern operating system that consists of
different attack scenarios. Our proposed cross-domain approach recorded significant improvement in
the target domains when compared with the results from in-domain approach experiments. Based on
the result, the F2-score of the target domain CWE-307 improved from 80% in the in-domain approach
to 87% in the cross-domain approach while the target domain CVE-2014-0160 improved from 13%
to 85%.

Keywords: deep learning; cybersecurity; HIDS; transfer learning; word embedding; similarity
measure

1. Introduction

The advances in digital transformation are unlocking new capabilities and improving
existing ones across industries. In the automotive industry for example, connected travelers
and autonomous driving are going to be central to the future of the industry [1]. Recently,
the US Army laid out their vision of an Internet of Battlefield Things (IoBT) with a goal
to provide battlefield situational awareness through a network of interconnected sensors,
actuators and analytical devices [2]. In a similar development, the Army Research Lab
in 2020 commenced the Artificial Intelligence (AI) for Command and Control (C2) of
Multi-Domain Operations (MDO) project with the goal of improving the execution and
decision making speed of MDOs by leveraging AI techniques which are lately known for
performing better than humans cognitive ability [3]. Meanwhile, in the healthcare industry,
smart care, care anywhere, empowered care, and intelligent healthcare are some of the
digital transformation ideas with potentials to change how healthcare is delivered going
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forward [1]. The obvious outcome of these is reflected through various metrics, including
how customers are more conveniently able to access services and the improvement of
organizations’ bottom-line. Unfortunately, these positive developments are not without
their unintended negative consequences, such as information security compromises.

In 2014, the Google Security team made a late discovery of the Heartbleed attack; an
attack believed to have affected about 17% of all the websites and arguably the biggest
attack in the history of cyber-attacks [4]. Yahoo reacted to a famous 2013 data breach attack
with a statement that admitted that hackers had gained access to data of at least 500 million
users and therefore encouraged all users who have not changed their passwords since
2014 to please do so [4]. Later recalculation of the impact of this attack revealed that about
three billion user accounts were affected [5]. Recently, SolarWinds was in the news as
the subject of a cyber-attack that went undetected for several months. US government
departments (including Homeland Security and Treasury Department) and some private
companies were the main targets [6].

Just as the frequency of cyber-attack incidents has increased, the cost has also continued
to rise over the years. Within the last ten years, cyber-attack incidents recording financial
losses in excess of $1 Million increased from 21 in 2009 to 105 in 2019 [7]. In their 2021
edition of the Cost of Data Breach Report, IBM and Ponemon Institute reported a data
breach cost of $4.24 Million in 2021, which represents a 10% increase from the previous
year [8]. Cybersecurity Ventures in their research report [9] stated that the global annual
cost of cybercrime damages as of 2015 was $3 trillion with a projected 15% annual increase.
By 2025, the cost is expected to be more than $10 trillion.

Over the years, a lot of research efforts have gone into intrusion prevention and
detection with some notable improvements but the growth of digital transformation has
continued to unfortunately arrive with new attack surfaces that hackers are waiting to
uncover and exploit. Hackers are able to wreak much havoc and make organizations pay
this heavy price, partly because some cyber-attack incidents stay undetected for a long
time after the initial intrusion. Attacks at such stages are called zero-day attacks because
their traces present patterns of interest that does not exactly match existing patterns in the
detection system [10].

Based on source of origin, attacks can be categorized into insider and outsider attack
types. A Firewall is known to provide some degree of protection against outsider attacks
but is powerless against insider attacks [11]. Both Intrusion Prevention Systems (IPS) and
Intrusion Detection Systems (IDS) are helpful against insider attack types. According to the
definition in [12], “An IDS is a type of security tool that monitors network traffic and scans
the system for suspicious activities and alerts the system or network administrator”, while
IPS as described in [13] is a system that can detect intrusion attempts and autonomously
interrupt the attempts, thereby preventing the attack. IDSs are categorized mainly into Host-
based Intrusion Detection Systems (HIDS) and Network Intrusion Detection (NIDS). HIDS
monitors individual hosts and alerts the user should a suspicious activity be detected while
NIDS on the other hand are situated at network points to detect intrusions in the network
traffic [12,14]. Early efforts to categorize types of HIDS identified Audit data OS-level HIDS
and Audit data Application-level HIDS [15,16]. Audit data OS-level HIDS leverages system
calls, file system modifications and user logons in building a detection engine.

Traditional Machine Learning techniques such as Artificial Neural Networks (ANN),
Decision Trees (DT), and Support Vector Machines (SVM) have been quite instrumental
in developing the intrusive behavior and attack detection process [12,14,17] but recording
good performance from these algorithms requires good feature engineering and a good
quantity of high quality data. It has also been observed that there is a limit to benefits
traditional machine learning algorithms could derive from large datasets [18]. Conversely,
deep learning approaches are popular for automatic feature extraction and their tendency
to improve a lot as data size increases, hence they have been gaining a lot of attention
with classification tasks such as intrusion detection model building [19,20]. However,
both traditional machine learning and deep learning algorithms taking the in-domain
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approach make an underlying assumption that training data (source domain) and test data
(target domain) belong to the same feature space and share the same distribution [21]. This
assumption hardly holds in many real-life setups and becomes even more complicated
in multi-class situations. These challenges could regularly lead to degraded performance
of machine learning and deep learning algorithms in solving such problems. Therefore,
whenever we do not have enough data to train models for all individual attack domains
and/or we have varying feature distribution between attack domains, there is a need to
find other ways of achieving good performance in straggling target domains.

Transfer learning in machine learning is a method that aims to reuse the knowledge
obtained between task domain models [22]. The hope of a successful knowledge transfer
rests partly on degree of similarity that exists between domains. Ref. [23] observed in
their work that semantic similarity of domains in Natural Language Processing NLP
largely determines whether a neural network is transferable. In [24], a knowledge transfer
approach, where models are trained on all the source domains and parameters are tuned
on data for the target domain, is called cross-domain.

In this paper, we propose a cross-domain approach to the host-based intrusion de-
tection problem. As opposed to the in-domain approach, where classification models are
trained directly using labeled data from the target domain [25], a cross-domain approach
leverages the knowledge available in a source domain classification model for the benefit
of improving performance of a target domain. Our primary goal is the performance im-
provement of a straggling target domain. We developed a domain selection framework that
computed similarity score across domains in order to identify a candidate source domain.
We implemented different methods of absorbing knowledge from the source domain before
using the fine-tuning strategy of transfer learning to retrain the target domain. Specifically,
we made the following contributions:

• Design and development of a method for HIDS domain similarity score measurement
• Design and development of an approach for selection of candidate source domain to

work with a given HIDS target domain
• Implementation of new cross-domain approaches for Host-Based Intrusion Detection.
• Alleviating the pains of zero-day attacks against host infrastructures.

The rest of the paper is organized as follows: Section 2 illustrates the background
ideas of intrusion detection. In Section 3, we discuss the related work in this area. Section 4
highlights different aspects of our methodology. In Section 5, we present and explain the
experimental results. Finally in Section 6 we focus on a conclusion and future directions.

2. Background

This section presents classification of intrusion detection systems in terms of detection
approach, data sources and existing public benchmark datasets.

2.1. Intrusion Detection Approaches

From the detection approach standpoint, Intrusion Detection Systems can be mainly cate-
gorized into Signature-based and Anomaly-based Intrusion . In [26], a hybrid approach, which
is the combination of Signature-based and Anomaly-based approaches, was also identified.

2.1.1. Signature-Based Detection

Signature-based Detection approaches (sometimes called Misuse-based Detection
approaches) rely on signatures of known attacks for their detection. As seen on the right
hand side of Figure 1, the test samples flow through the signature decision engine for the
detection of a possible match. They tend to perform well against attacks already captured in
their signatures [27], with few to no false alarms. To ensure they continue to perform well,
the database of the signatures has to be updated with new signatures manually. Because of
this, they are powerless against attacks whose signatures are not in the database. Seminal
works on the application of Signature-based Detection approach with supervised machine
learning algorithm includes [28], where Artificial Neural Networks was used to detect
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misuse using a data generated by a RealSecure network monitor, [29], where Bayesian
Networks was used to detect attack signature [30], where Snort’s [31] decision engine was
replaced by Decision Tree [32], where Random Forest was used for misuse detection on
KDD 1999 data set [33], and [17] where Radial Basis Function RBF Kernel of Support Vector
Machines SVM was used on KDD 1999 data set.

Figure 1. Conceptual working of intrusion detection approaches.

2.1.2. Anomaly-Based Detection

Anomaly-based Detection models have a benign network and system behaviors clas-
sifies deviations from these as anomalies. The left hand side of Figure 1 shows that the
anomaly detection engine is trained on only normal samples. The main advantage of
this approach lies in their ability to detect zero-day attacks. They are however prone to
false alarms because unknown network and system behaviors could easily be classified
as anomalies. Most of the seminal work on applications of the Anomaly-based Detection
approach actually took a hybrid approach [26]; examples will be mentioned after discussing
the Hybrid Detection approach.

2.1.3. Hybrid Detection

The Hybrid Detection approach combines the strength of the Signature-based Detec-
tion approach and Anomaly-based Detection approach, such that detection rate improves
with reduced false positive rates. Seminal works that used this approach using supervised
machine learning include [34] that used Bayesian Network to classify events during OS
calls with DARPA 1999 dataset, ref. [35] that used Support Vector Machines on simulated
and real world Netflow data collected using Flame tool [36], and [37] that used two Random
Forest classifiers for signature-based and anomaly-based detection such that results from
anomaly-based step formed part of input to the signature-based step.

2.2. Intrusion Detection Data Sources

Another way to categorize Intrusion Detection Systems is through the target infras-
tructure of attacks they try to detect. From this standpoint we have two categories of IDSs:
Network Intrusion Detection Systems (NIDS) and Host-based Intrusion Detection Systems
(HIDS). NIDS deployed at different locations within a network, in addition to HIDS and
firewalls, can provide a robust protection against attacks [14].

2.2.1. Network Intrusion Detection Systems

NIDS is situated at network points to identify intrusions in the network traffic [12,14],
by monitoring packet capture, Netflow and other network sources of data. One of the
advantages of NIDS is that external malicious events within the network could be detected
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and dealt with before such threats spread to another system [14]. However, NIDS might
struggle with high bandwidth networks containing huge volumes of data.

2.2.2. Host-Based Intrusion Detection Systems

HIDS monitors individual hosts by inspecting data of activities from the system and
audit sources, and alerts the user should suspicious activities be detected [14]. HIDS is
built to be implemented on a single system such that malicious attacks or intrusion that
could harm its operating system or data can be detected. Ref. [16] recognized different
types of HIDS: Audit data OS-level HIDS and Audit data Application-level HIDS. Audit
data OS-level HIDS relates to system calls, file system modifications and user logons.

2.3. IDS Datasets

Cyber-threats have continued to evolve, leading to the changes in the entire cyber-
security landscape including relevance of benchmark datasets. For instance, KDD cup
(Knowledge Discovery in Database) and DARPA (Defense Advanced Research Projects
Agency) datasets are considered outdated [38]. Real IDS datasets are either private or
de-identified because they may contain sensitive and private information [13], so there
are not too many public datasets. This is especially true of HIDS with only six public
system call based HIDS datasets. Details of the public system call-based HIDS datasets are
presented in Table 1.

Table 1. List of HIDS datasets.

Year Created Dataset Operating System Provider

1999 KDD Solaris BSM Massachusetts Institute of Technology
2006 UNM SunOS University of New Mexico
2013 ADFA-LD Linux University of New South Wales
2014 ADFA-WD Windows University of New South Wales
2017 NGIDS-DS Linux University of New South Wales
2019 LID-DS Linux Leipzig University

3. Related Work

This section presents a review of existing works in the area of intrusion detection using
machine learning approaches. We first discuss works that took the in-domain approach in
Sections 3.1 and 3.2. We then discuss works that took the transfer learning approach.

3.1. In-Domain Approaches for Intrusion Detection

The in-domain supervised machine learning approach recorded significant success
in the detection of intrusions in both host-based and network intrusion detection systems
development. In their work on host-based intrusion detection, Simon et al. [39] compared
the performance of Support Vector Machines SVM and Random Forest algorithms on
Windows XP HIDS datasets. Representation of features was performed using Distinct
Dynamic Link Library Count DDLLC, an approach that essentially transformed the trace
sequences to bag of words. To optimize parameters for the machine learning algorithms,
they used 5-fold cross validation and grid search. In the result of their experiment on both
ADFA-WD and ADFA-WD:SAA, they reported a detection rate of 82% with Random Forest
(RF) while SVM recorded 68% for the Radial Basis Function (RBF) kernel and 71% for the
sigmoid kernel.

Vinayakumar et al. [40] in their comprehensive exploration of deep learning algo-
rithms for building flexible and effective IDS, evaluated both traditional machine learning
algorithm and deep learning algorithms on various datasets of HIDS and NIDS. The sec-
tion of their work that focused on HIDS datasets used n-gram, bag of words and keras
embedding for feature representation and compared the performance of detection models
built using SVM and Deep Neural Networks (DNN) algorithms. Experiments on recent
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datasets ADFA-LD (a Linux HIDS dataset) and ADFA-WD recorded the best result with
DNN of 5 layers and keras embedding feature representation. They reported an accuracy
of 83.4% for ADFA-WD and 92.1% for ADFA-LD.

In a comparative study of machine learning algorithms on LID-DS dataset [41], the
impact of considering sequences in building host-based intrusion detection was evaluated.
For sequence consideration, they selected algorithms in the Recurrent Neural Networks
(RNN) family, including RNN and Long Short-term Memory (LSTM), while NB, DT,
LR and MLP (all traditional machine learning algorithms) were selected as those not
considering sequences. The performance of binary classification models built using these
algorithms were compared and results show that RNN and LSTM with accuracies of 88%
and 91% outperformed all the other algorithms. Among those not considering sequence,
NB recorded the best accuracy at 82%.

In their experiment on NIDS datasets, ref. [40] featured many recent datasets, including
UNSW-NB15, CICIDS2017, WSN-DS and Kyoto. Binary and multi-class models were built
using algorithms including Logistic Regression (LR), Naive Bayes (NB), KNN, DT, RF,
SVM, and DNN (1 to 5 layers). It can be seen through the binary classification results that
while DNN achieved better results in few of the experiments, traditional machine learning
algorithms are still very competitive for most of the NIDS datasets. For example, LR and
SVM each recorded an accuracy of 89.5% while the best performance of DNN was 88.5%.
In the multi-class experiments however, RF maintained its good performance while other
traditional machine learning algorithms struggled. The strength of DNN became more
apparent but RF remained competitive. For example, RF recorded an accuracy of 94.4%
on the CICIDS2017 dataset while all DNN of all layer combination outperformed RF with
DNN (3 layers) being the best at 96.2%.

While most of these results show good accuracy scores on binary and multi-class
models evaluation, plotting the confusion matrix to see the actual performance of individual
attack class from experience exposes huge misclassification on some of the attack types.

3.2. Transfer Learning Approaches for Intrusion Detection

It is common among transfer learning-based NIDS works to convert NIDS datasets
into images and treat the problem as a computer vision one. Xu et al. [42] designated
KDD Cup 99 dataset as the source domain and “corrected” KDD Cup 99 dataset (with
17 intrusion types not found in the source domain) as the target. In the preprocessing step,
they transformed the 119 features of the datasets into an 11 × 11 pixel grayscale image. For
the initial training, a deep learning model was built on the source domain data using the
Convolutional Neural Networks (CNN) algorithm. Their result shows that CNN recorded
an accuracy of 97.9%, outperforming other methods such as SVM, DT, K-nearest Neighbor
KNN, and LSTM. Fine-tuning strategy of transfer learning was implemented to adapt to
the target domain. Their result shows that post-fine-tuning test performance improved.
However, the choice of an outdated benchmark dataset that has been criticized for its many
faults [43] is a clear limitation of this work.

Another work by Gangopadhyay et al. [21] took the approach of converting datasets
into images. In their work, with a more recent CICIDS2017 NIDS dataset from the Canadian
Institute for Cybersecurity [44], the data were transformed into a set of 50 × 5 × 3 RGB
images. Five attack types, Botnet, DDoS, Infiltration, Web Attack, and Portscan were
considered, with Portscan designated as the source domain while each of the other four
attack types were taken as the target domain data. To train the source domain model,
transformed input data were fed into a four-layered CNN architecture using A batch size of
32, Stochastic Gradient Descent (SGD) optimizer, and 100 epochs. Evaluation of the model
was performed on 50% validation split achieving over 95% validation accuracy and a loss of
about 0.3. To transfer the knowledge from source domain to target domain, the architecture
of the source domain model was altered by adding an additional dense layer with 32 units
before a minimal fine-tuning of the source domain model was made. The evaluation result
yields exceptional validation accuracies of 100% for both DDoS and Infiltration attack types
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and about 95% for Botnet and Web attacks. The limitation of this work lies in their failure
to check the in-domain performance of the target domains prior to domain adaptation.

Wu et al. [45] in their work also transformed the data into a format that could be
treated like a computer vision problem but instead of having both source and target
domain in the same feature space, they have introduced a heterogeneous feature scenario.
Their approach was to build individual CNN NIDS models of domains and then transfer
knowledge across domains by concatenating CNN source (base) model and CNN target
model. They based their experiments on UNSW-NB15 of Australian Centre for Cyber
Security (ACCS) [46] as the source domain dataset and NSL-KDD dataset of Canadian
Institute for Cybersecurity [47] as the target. They used for their evaluation a dedicated
NSL-KDD test dataset (KDDTest+ and KDDTest-21) which has 17 attacks not present
in the source domain dataset. Results show that their approach recorded a validation
accuracy of 87.30% on the KDDTest+ dataset versus 81.94% on the KDDTest-21 dataset.
This outperformed the ordinary ConvNet without transfer learning at an accuracy of 84%
on KDDTest+ dataset versus 59.92% on KDDTest-21 dataset.

In [48], a domain adaptive host-based intrusion detection method for the homogeneous
feature scenario was developed. Two datasets from the Australian Defense Force Academy
ADFA were used; ADFA-WD with zero-day attacks as the source domain and ADFA-
WD:SAA with stealth attacks as the target domain datasets. We built an LSTM model using
the source domain dataset and using varying portions of the target domain dataset; we
fine-tuned the source domain model. A significant improvement in Area Under the Curve
(AUC) from 83% to 91% was recorded, when we fine-tuned the source domain model with
as little as 20% of the target domain dataset. The limitation of this work lies in the fact
that the ADFA datasets were generated from the Windows XP operating system which as
of April 2014 stopped receiving technical support from Microsoft [49]. Furthermore, the
choice of AUC as a performance metric may not be the best as according to [50], “it weights
omission and commission errors equally” among other problems. Based on our literature
search, there are no other works on HIDS with transfer learning approach.

All the works on transfer learning-based intrusion detection reviewed in this section
were able to demonstrate the benefit of transferring knowledge from one domain to the
other but they all just made an assumption of similarity or dissimilarity of the source and
target domains. No empirical justification was offered to show how the choice of source
and target domain pairs were made. In this work, we propose a methodical approach that
measures the similarity across domains before attempting transfer of knowledge between
similar domains.

4. Proposed Method

The aim of our proposed method is to identify a source domain DS that is in the best
position for knowledge transfer to a given target domain DT from among a set of domains
and then leveraging knowledge available in the DS to improve the performance of the DT .
In this section, we provide a detailed explanation of our proposed method.

4.1. Problem Setting

Before going into the problem definition, it is important to define some fundamental
terms and how it has been used in this work.

Definition 1 (Domain). A Domain D as used in this work denotes an attack scenario.

Brute-force login (improper restriction of excessive authentication attempts) listed as
CWE-307 in the Common Weakness Enumeration (CWE) (https://cwe.mitre.org/ (accessed
on 20 September 2021)) list and Nginx Integer Overflow Vulnerability listed as CVE-2017-
7529 in the Common Vulnerabilities and Exposures (CVE) (https://www.cve.org/ (accessed
on 20 September 2021)) list are examples of attack scenarios.

https://cwe.mitre.org/
https://www.cve.org/
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Definition 2 (Trace). Given a specific domain Di, a (system call) Trace data contains the sequence
of system call invocations during the execution of a program and can provide insight into whether
the execution of the program was benign or malicious.

Operating systems have a list of system calls in a way similar to how natural languages
have a list of words (terms) in their vocabulary. Given an operating system with an entire
list of system calls W, domain Di will only contain WDi , a subset of W.

Definition 3 (Label). Given a domain D and an instance of trace data, a label denotes the
judgment of a domain expert as to whether the trace represents a normal execution of the program or
a malicious one.

Given a set of domains {D1, D2, D3, ... ,Dn} each with corresponding in-domain models
recording a level of performance (e.g., accuracy), it is common to find among these domains
some with inadequate performance, so finding ways to improve the performance of such
domains is desirable.

It can be observed that while each of the domains have their list of invoked system
calls {WD1 , WD2 , WD3 , ... ,WDn }, there are some varying degree of overlaps between two
domains Di and Dj with corresponding list of system calls WDi and WDj . This overlap
can be absolute, partial (intersection) or nothing (disjoint). For example, in the dataset
LID-DS of Leipzig University, domains CWE-307 (Brute-force Login) and CWE-2014-0160
(Heartbleed) both have exactly the same set of system calls while domains CVE-2017-7529
(Nginx Integer Overflow Vulnerability) and CWE-307 as seen in Figure 2 have a partial
overlap. System call numbers in the intersection are the domain independent (DI) features
while those appearing in either of the domains only are the domain specific (DS) features.

Figure 2. Illustration of overlap between domains.

To solve the problem of inadequate performance in some domains, we propose a
framework which aims to achieve two subtasks:

• Source domain selection.
• Improving the performance of the target domain by leveraging the selected source

domain.

In the first subtask, we are going to create in-domain models for D so as to isolate
DT and then compute domain similarity scores of all possible domain pairs to expose a
candidate DS. In the second subtask, we apply different word embedding layer combination
techniques in a way to transfer the knowledge of token representation from the DS model
to the DT model. Finally, we apply transfer learning by fine-tuning the saved in-domain
DT model.
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4.2. Source Domain Selection

In this section, we use a hypothetical example to explain the source domain selection
process as illustrated in Figure 3. We have assumed in this work that there is going to be at
least one domain DT whose in-domain performance is below some acceptable performance
threshold. Generally, the choice of a performance threshold will be based on the situation
of the in-domain models and how much improvement is desired.

Suppose we have D, a set of five elements {D1, D2, D3,D4,D5} which represents
different attack scenarios, our goal is to identify a candidate DS from among potential source
domains. Our approach in this work is to use the knowledge in a similar, well-performing
DS to improve the performance of a domain DT whose model is not performing well.

Figure 3. Source domain selection process flow.

As shown in Figure 3, this involves building in-domain models for each domain in D
and based on a predefined performance threshold, grouping the domains into potential
source domains DPS (domains with performance equal to or greater than the threshold) and
a set of target domain(s). Then for each possible source/target domain pairs DPS → DT ,
a similarity score S is computed using Algorithm 1. The domain pair with the largest S
has the candidate source domain DS. For example, D1 is a target domain in Figure 3 with
possible domain pairs {D2 → D1, D4 → D1, D5 → D1}, Max(SD1) maps to domain pair
D2 → D1. This means D2 is the selected source domain. Further details of in-domain
models and domain similarity score computation are presented in Sections 4.2.1 and 4.2.2,
respectively.

4.2.1. In-Domain Models

System call-based HIDS datasets, as a sequence of tokens, have been approached in
other works in a Natural Language Processing (NLP) fashion [40]. NLP problems in many
areas (including cybersecurity) have benefited from the application of neural network
algorithms and, in recent times, deep learning has consolidated on the gains of neural
networks to provide even more powerful algorithms. In Figure 4, we illustrate the general
in-domain model architecture we are going to follow in this work.

Figure 4. General In-domain model architecture.
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To ensure the input layer obtains the input data in an acceptable format, some preprocess-
ing steps were needed, specifically, tokenization, feature extraction, and padding/truncating.
Tokenization involves breaking down sequences of terms into tokens which are then given
numeric representation. In this work, we represent each term (system call) by their serial number
in the system call table (http://manpages.ubuntu.com/manpages/focal/man2/syscalls.2.html
(accessed on 20 September 2021).) For example, system call “_llseek" in the list has a represen-
tation of 1. To keep things simple, we are going to use an n-gram as our choice for feature
extraction in this work, setting n = 1. Finally, padding/truncating is needed because
sequences are usually of variable length and our case in this work is not different. We are
going to set a maximum length beyond which sequences become truncated and zero pad
sequences shorter than the maximum length. The situation in our dataset will guide us
into picking the correct maximum length that does not lead to loss of important data.

The embedding layer implements the token embedding for the model. Token em-
bedding presents a real-valued low-dimensional vector representation of tokens such that
terms of similar meaning are made to stay close to each other in the vector space and
far apart otherwise. The quality and quantity of data would have a huge impact on how
well the embedding layer is trained. In this work, our embedding consists of the list of
system calls of the operating system (vocabulary)W . During training, a domain model
only optimizes the embedding layer weights of the tokens present in the domain. The
dimension of the embedding vector space and details about other components of Figure 4
are hyperparameters, values of which are going to be set in the course of the experiment.

In our previous paper [48], Long Short-term Memory (LSTM) was our choice of deep
learning architecture. In this work, we have opted for One-dimensional Convolutional
Neural Networks (1D-CNN) over other text classification deep learning algorithms, pri-
marily due to its faster computation [51]. 1D-CNN is similar to the more popular 2D-CNN,
known for its excellent performance on computer vision tasks. Unlike 2D-CNN that ex-
tracts 2D patches from image tensors and applies an identical transformation to every
patch, 1D-CNN extracts local 1D patches from sequences [52] as shown in Figure 5. Setting
of hyperparameter values are based on hyperparameter tuning which is a data-driven
process. Manual hyperparameter tuning has been used in this work to avoid the high
computing cost of other optimization methods. This will be discussed briefly in Section 5
after introducing the data we are using for our experiment.

Figure 5. How 1D-CNN Works: each output timestep is obtained from a temporal patch in the input
sequence [52].

http://manpages.ubuntu.com/manpages/focal/man2/syscalls.2.html
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4.2.2. Domain Similarity Score Computation

The purpose of the domain similarity score is to empirically measure the closeness
between domains. To achieve this, we consider the frequency of occurrence of each token
(system call) in a domain in relation to the frequency of occurrence in all the domains as a
means of measuring the importance of tokens in each domain. As shown in Algorithm 1,
the procedure is supplied with D which contains a set of domains, and for each domain,
the traces are concatenated so that each domain can be taken as a document.

Algorithm 1 Domain Similarity Score Process

input: D ← {D1, D2, D3, ..., Dn}
output: S (a new n× n matrix)

1: E← [] an empty list
2: for d ∈ D do
3: for t ∈ d do
4: E[d].extend(t)
5: end for
6: end for
7: score← TF-IDF(E)
8: S← CosineSimilarity(score, score)

We then use Term Frequency-Inverse Document Frequency (TF-IDF) method [53] as
represented in Equation (1), to compute the score (weight) of individual tokens in each domain.

wt,d = t ft,d×log(
n

d ft
) (1)

wt,d = weight or score of term t in document d
t ft,d = number of occurrences of term t in document d
d ft = number of documents containing term t
n = total number of documents.

Finally, we used cosine similarity [54] to measure S, the closeness between all possible
pairs of domains. Suppose we have two vectors (domain pairs) of attributes, A and B, the
Cosine Similarity is represented as Equation (2).

CosineSimilarity = Sc(A, B) := cos(θ) =
A.B
‖A‖‖B‖ =

∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

(2)

4.3. Target Domain Improvement

Now that a DS has been selected for the DT in needs of performance improvement,
we are going to consider methods of leveraging the knowledge available in the DS before
fine-tuning the DT . As stated earlier, token embedding is able to capture the representation
of the relationship between tokens. To a large extent, the quality of the embedding layer
can affect the model performance. In [55], the main idea behind their work was to take
advantage of different domain-specific embeddings by combining them in order to capture
the peculiarities of a given application domain as closely as possible. We take a similar
approach of combining embedding layers of DS and DT in this work. As this may involve
generating unique token list for domains, we created a function described in Algorithm 2.

We achieve target domain improvement through the following techniques:

• DS Model Embedding Layer (Src_Emb): Here, the embedding layer of DT model is
simply replaced with the embedding layer of DS model and frozen (Algorithm 3)
so the weights of the embedding layer are not adjusted during fine-tuning. The DT
model then is fine-tuned using the train portion of DT data.
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Algorithm 2 Unique Token List

input: D ← {D1, D2, D3, ..., Dn}
output: UniqueList

1: function uniqueToken(D)
2: UniqueList← []
3: for d ∈ D do
4: for t ∈ d do
5: if t /∈ UniqueList then
6: UniqueList.extend(t)
7: end if
8: end for
9: end for

10: return UniqueList
11: end function

Algorithm 3 DS Model Embedding Layer (Src_Emb)

input: ModelDS , ModelDT
output: ModelDTnew

1: ModelDTnew ← ModelDT
2: ModelDTnew [EmbLayer]← ModelDS [EmbLayer]
3: ModelDTnew [EmbLayer].Freeze()

• Domain Independent Tokens of DS Embedding Layer (DIT_Src_Emb): In the previous
technique, our assumption was that the representation of domain independent (DI)
tokens in the DS model embedding layer is so strong that the unoptimized domain
specific (DS) tokens will not matter. This assumption can be true for situations where
DT has a much greater number of DI tokens than DS tokens. In situations where
this is not the case, it may be better to retain the representation of the DS tokens in
DT model. This technique addresses such situation by only replacing the DI tokens
representation in DT model embedding with DI tokens representation in DS model
embedding (Algorithm 4). As with the previous technique, the derived embedding
layer is frozen and DT model is fine-tuned using the train portion of DT data.

Algorithm 4 Domain Independent Tokens of DS Embedding Layer (DIT_Src_Emb)

input: ModelDS , ModelDT , DS, DT
output: ModelDTnew

1: DITokens← uniqueToken(DS) ∩ uniqueToken(DT)
2: ModelDTnew [EmbLayer]← ModelDT [EmbLayer]
3: for i ∈ DITokens do
4: ModelDTnew [EmbLayer][i]← ModelDS [EmbLayer][i]
5: end for
6: ModelDTnew [EmbLayer].Freeze()

• Combination of Embedding Layers using PCA (Comb_PCA): One of their methods
for fusing word embeddings in [55] involved concatenating embedding layers and
using principal component analysis (PCA) to reduce the dimension of the derived em-
bedding layer. We adopt the same approach here but only apply this to the DI tokens.
DS tokens in DT model are retained (Algorithm 5). Again the derived embedding
layer is frozen and DT model is fine-tuned using the train portion of DT data.
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Algorithm 5 Combination of Embedding Layers using PCA (Comb_PCA)

input: ModelDS , ModelDT , DS, DT , EmbDim
output: ModelDTnew

1: EmbConcat← ModelDS [EmbLayer]&ModelDT [EmbLayer]
2: Pca← PCA(EmbDim)
3: EmbPca← Pca.Fit_Trans f orm(EmbConcat)
4: ModelDTnew [EmbLayer]← ModelDT [EmbLayer]
5: DITokens← uniqueToken(DS) ∩ uniqueToken(DT)
6: for i ∈ DITokens do
7: ModelDTnew [EmbLayer][i]← EmbPca[i]
8: end for
9: ModelDTnew [EmbLayer].Freeze()

5. Experimental Results and Analysis
5.1. Datasets

LID-DS is a modern host-based anomaly intrusion detection system (HIDS) data set
recorded on a modern operating system (Ubuntu 18.04) and consists of different attack
scenarios (each of the 10 scenarios represents a real vulnerability) [56]. In addition to the
system call sequence, the dataset also contains metadata such as parameters, return values,
user ids, process/thread ids, file system handles, timestamps, and io buffers.

In this work, we are not going to use ZipSlip as it does not have a definite CVE/CWE
id attached to it. To make things compact going forward, attack scenarios will be aliased as
follows: CVE-2014-0160 (CVE_2014), CWE-434 (PHP_CWE), CWE-307 (CWE_307), CWE-89
(CWE_89), CWE-434 (EPS_CWE), CVE-2012-2122 (CVE_2012), CVE-2017-7952 (CVE_2017),
CVE-2018-3760 (CVE_2018) and CVE-2019-5418 (CVE_2019). We take the attack class as the
positive and the benign class as the negative.

5.2. Performance Metric

The most common performance metric is Accuracy, which estimates the ratio of cor-
rectly classified instances to the entire sample size as represented in Equation (3). However,
accuracy only serves as a good metric for samples that contains balanced classes. LID-DS is
clearly an imbalanced data. As seen from the Benign and Attack columns of Table 2, the
ratio of attacks to benign traces for all the attack scenarios is around 1:10.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative.

Table 2. LID-DS Datasets.

Attack Scenario CVE/CWE Benign Attack

Heartbleed CVE-2014-0160 1000 100
PHP file upload: unrestricted upload of file with dangerous type CWE-434 1009 103

Bruteforce login: improper restriction of excessive authentication attempts CWE-307 994 98
SQL injection with sqlmap CWE-89 978 100

ZipSlip various 1000 100
EPS file upload: unrestricted upload of file with dangerous type CWE-434 972 99

MySQL authentification bypass CVE-2012-2122 1240 155
Nginx integer overflow vulnerability CVE-2017-7952 983 174

Sprockets information leak vulnerability CVE-2018-3760 1084 137
Rails file content disclosure vulnerability CVE-2019-5418 981 98
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Precision and Recall are two popular performance metrics used in imbalanced dataset
situations [57]. As shown in Equation (4), Precision measures the proportion of samples
with positive labels that are indeed positive.

Precision =
TP

TP + FP
(4)

While in Equation (5), Recall measures the proportion of the positive class samples
labeled correctly by the model.

Recall =
TP

TP + FN
(5)

To combine the effects of Precision and Recall into one performance metric, F-Measure
in Equation (6) computes the harmonic mean of these two important performance met-
rics. In this work, we are going to set β = 2 because we are more interested in recall
than precision.

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

(6)

5.3. In-Domain Models

As stated in Section 4.2.1, our deep learning architecture of choice is 1D-CNN. It is
important that we have our input as a sequence of fixed length but we must ensure we are
not losing too much information as we try to achieve this. To have a better understanding
of our data, we represent the variation of sequence length across domains as a quartile and
in Figure 6 we present line plots of median, third quartile and fourth quartile.

Figure 6. Domain Sequence length Plot: 50% Line Represents the Median, the 75% line represents the
third quartile, and max represents the fourth qaurtile.

We noticed that the sequence length varies from one domain to the other. It can be
observed that five domains (CWE_307, CVE_2012, CVE_2018, CVE_2019 and CWE_89)
have their fourth qaurtile sequence length greater than their third quartile sequence length
by more than double while the other domains have their fourth quartile sequence length
close to the third. For all domains, the median and the third quartile sequence lengths
are very close to each other. Consequently, we set a maximum sequence length equal to
the third quartile length for each domain. The preliminary experiment shows that this is
slightly better than median length in terms of model performance.
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Using manual hyperparameter tuning, we settled for the following hyperparameter
values:

• Embedding dimension: 32
• Sequence Maximum Length: third quartile of the domain sequence length
• number of 1D-CNN layers: 2
• number of dense layers: 2
• MaxPooling1D: 5
• Kernel Size: 3
• batch size: 50
• Number of Epochs: 50

Based on these hyperparameter values, we built a 1D-CNN model architecture. The
visualization of the 1D-CNN network architecture is presented in Figure 7.

Figure 7. 1D-CNN model architecture visualization.

For each domain, in-domain models were built using the training portion. In a
stratified manner, we used a train-test split ratio of 75:25. We also built an extra model
that we named LID using a training dataset which is created by concatenating the training
portion of all the individual domains. To address the data imbalance problem, we adjusted
class weights for each of the domains. We achieved this in TensorFlow Keras by passing
class_weight parameter, which was calculated for a binary classification scenario based on
the formula in Equation (7). Each of the in-domain model was saved so they can be reused.

w0, w1 =
n0 + n1

2n0
,

n0 + n1

2n1
(7)

w0 = weight of class 0
w0 = weight of class 1
n0 = number of instances in class 0
n0 = number of instances in class 1.

As shown in Table 3, models of almost all the domains recorded F2-score greater than
90%, except for CWE_307 and CVE_2014. It is, therefore, reasonable to set a performance
threshold of 90% as required for the source domain selection process (Figure 3). This
leaves us with CVE_2014 with F2-score of 13% and CWE_307 with F2-score of 80% as our
target domains. All other domains are potential source domains DPS. Then we compute
similarity scores (SCWE_307, SCVE_2014) for each possible potential source/target domain
pairs DPS → DT .

Table 3. In-doman Models Result.

Test Set Precision Recall F2-Score

CWE_307 0.48 0.96 0.8
CVE_2012 1.00 1.00 1.00
CVE_2014 0.21 0.12 0.13
CVE_2017 1.00 1.00 1.00
CVE_2018 1.00 1.00 1.00
CVE_2019 1.00 1.00 1.00
PHP_CWE 1.00 0.96 0.97

CWE_89 1.00 1.00 1.00
EPS_CWE 1.00 1.00 1.00

LID 0.96 0.91 0.92
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5.4. Similarity Score

By implementing Algorithm 1, we are able to compute similarity scores for all possible
domain pairs. The algorithm assumes that every domain could be the source and every
domain could be the target so the result as seen in Table 4 presents the similarity scores of
every possible pairs. Looking at the fourth row of Table 4, it can be observed that CVE_2014
records a similarity score of 0.935 when paired with CWE_307 which suggests a very close
similarity. To make sense of this, we inspected data of these two domains and discovered
that they both contain exactly the same set of system calls. We also noticed in Figure 6 that
they both have about 50% of their samples with sequence length less than 8000.

Table 4. Domain similarity scores of all possible domain pairs.

Scenarios CWE_307 CVE_2012 CVE_2014 CVE_2017 CVE_2018 CVE_2019 EPS_CWE PHP_CWE CWE_89

CWE_307 1 0.431 0.935 0.328 0.056 0.058 0.564 0.379 0.373

CVE_2012 1 0.311 0.050 0.093 0.100 0.346 0.366 0.369

CVE_2014 1 0.323 0.052 0.054 0.479 0.439 0.426

CVE_2017 1 0.038 0.037 0.187 0.169 0.173

CVE_2018 1 1.000 0.052 0.042 0.041

CVE_2019 1 0.054 0.046 0.045

EPS_CWE 1 0.138 0.133

PHP_CWE 1 0.998

CWE_89 1

Other works observed the similarity between some of the attack scenarios. In a recent
work using Siamese-CNN for building a multi-class model on LID-DS [58], it was observed
through the confusion matrix that (CWE_307, CVE_2014), (CVE_2018, CVE_2019) and
(PHP_CWE,CWE_89) were not properly classified because of the similarity between them.
According to [58], (PHP_CWE,CWE_89), for example, could be grouped together as they
were identified by the Open Web Application Security Project (OWASP) as vulnerabilities
in which a hacker can transmit hostile data to the interpreter. It is of note that all these
domain pairs have a similarity score of approximately 1.

5.5. Target Domain Improvement

As seen in Figure 3, similarity scores S of pairing DT with each of the DPS is required
in order to select the candidate DS for a particular DT . The DS that produced the highest
similarity score Max(ST) when paired with DT is taken as the candidate DS. Given that we
have DT : DCWE_307 and DCVE_2014, we can deduce from Table 4 that Max(SCWE_307) with a
score of 0.564431 points to candidate DS: DEPS_CWE and Max(SCVE_2014) with a score of
0.479089 also points to candidate DS: DEPS_CWE.

In our experiment, for each DT , we picked DLID and the domains with the top three
similarity scores from among DPS as DS. Therefore, for target domain DCWE_307, we are
evaluating the following source domains: DLID, DEPS_CWE, DCVE_2012 and DPHP_CWE. Fur-
thermore, for the target domain DCVE_2014, we are evaluating DLID, DEPS_CWE, DPHP_CWE
and DCWE_89 as our source domains. We apply the techniques outlined in Section 4.3 to
each of the source/target domain pair.

Figures 8 and 9 present the results of our experiments. It can be observed from
the results of both target domains that the embedding layer of the source domain DLID
consistently had better impact on improving the target domains. This makes sense as the
embedding layer produced while training domain DLID has been optimized through access
to larger and more diverse training data.
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Figure 8. Experimental results of pairing different source domains with target domain heartbleed
(CVE-2014-0160) attack scenario.

Figure 9. Experimental results of pairing different source domains with target domain bruteforce
login (CWE-307) attack scenario.

Furthermore, the other three source domains for each of the target domains pro-
duced improvement of the target domain that is consistent with their similarity scores,
especially in the application of DIT_Src_Emb technique. For example, when paired with
DCVE_2014, potential source domain DEPS_CWE recorded the highest similarity score of
0.479089, DPHP_CWE recorded the second-highest score of 0.439176 and DCWE_89 recorded
the third-highest score of 0.425669. As seen in Figure 8, the performance improvement
of DCVE_2014 resulting from these three source domains with DIT_Src_Emb technique are
(EPS_CWE->CVE_2014:0.37, PHP_CWE->CVE_2014:0.33 and CWE_89->CVE_2014:0.11).

It appears that the Comb_PCA technique is only promising if the target domain model
performance is well above average. As seen in Figure 9, the performance of Comb_PCA is
on par with other techniques. Finally, results show that application of Src_Emb technique
is the most rewarding in terms of target domain performance improvement except for
PHP_CWE->CVE_2014 where Src_Emb recorded an F2-score of 0.116 which is even less
than the target domain F2-score.
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6. Conclusions and Future Directions

In this paper, developing cross-domain host-based intrusion detection was proposed.
We developed a method for source domain model selection by quantifying the amount
of similarity existing between individual attack domains. Then, using different word em-
bedding space modification techniques and transfer learning, we leverage the knowledge
from a well performing attack source domain to improve the performance of a similar
attack target domain. Our experiment on LID-DS using the in-domain approach exposed
two straggling domains, CWE_307 with 80% F2-score and CVE_2014 with 0.13. Using our
source domain selection method, we were able to select the top three source domain models
from which we can transfer some knowledge to improve the straggling target domains.
For the selected source/target domain pair, we applied embedding space modification
techniques and observed improvement of the target domain which is consistent with the
similarity score of the source domains.

In the future, we will look into developing cross-domain network intrusion detection.
Ultimately, we will carry out engineering implementation of the cross-domain intrusion
detection ideas from this paper and the network version we are working on, for attack
detection in IoT/edge security especially collaborative uncrewed assets and smart devices.
Lastly, in order to take advantage of similarities between attack scenarios of different
operating systems, we will explore the cross-lingual intrusion detection direction.
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