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Abstract: Interest in chaotic time series prediction has grown in recent years due to its multiple
applications in fields such as climate and health. In this work, we summarize the contribution of
multiple works that use different machine learning (ML) methods to predict chaotic time series.
It is highlighted that the challenge is predicting the larger horizon with low error, and for this
task, the majority of authors use datasets generated by chaotic systems such as Lorenz, Rössler and
Mackey–Glass. Among the classification and description of different machine learning methods,
this work takes as a case study the Echo State Network (ESN) to show that its optimization can lead
to enhance the prediction horizon of chaotic time series. Different optimization methods applied
to different machine learning ones are given to appreciate that metaheuristics are a good option
to optimize an ESN. In this manner, an ESN in closed-loop mode is optimized herein by applying
Particle Swarm Optimization. The prediction results of the optimized ESN show an increase of about
twice the number of steps ahead, thus highlighting the usefulness of performing an optimization to
the hyperparameters of an ML method to increase the prediction horizon.

Keywords: chaotic system; time series prediction; machine learning; echo state network; recurrent
neural network; optimization; particle swarm optimization

1. Introduction

There are a wide variety of natural phenomena in science and engineering applications
that exhibit chaotic behavior, such as weather [1–3], turbulent flows [4], reacting flows [5,6],
health-related pathologies [7], etc. All these phenomena are known for their complexity
as they are modeled by all the variables involved, and the evolution of the time series is
highly sensitive to the initial conditions. Due to this chaotic characteristic, the prediction of
the future behavior of the time series becomes quite difficult, even by applying Machine
Learning (ML) methods, which can predict future data from known data without the need
to use a mathematical model [8].

Among the ML methods that have been applied to predict the evolution of chaotic
time series, those related to neural networks have shown good prediction capabilities.
For instance, Recurrent Neural Networks (RNNs) were developed to perform tasks related
to data prediction [9], their introduction also improved the Feed Forward Neural Networks
(FFNN), which are traditionally more used for classification and regression problems.
From its introduction, a lot of work has been performed using RNN for chaotic time series
prediction [10–16]. However, RNNs have well-known drawbacks, such as a complicated
training process, large amount of calculation, and slow convergence [17,18]. In order
to overcome these disadvantages, and to enhance the time series prediction, the Echo
State Network (ESN) [19,20] and Liquid State Machine (LSM) [21] appeared, but still, the
challenge of predicting a large horizon with low error remains.ESNs are one of the most
used networks in the prediction of chaotic time series due to their good results in this
field, they have a low computational cost and, in addition, their training is relatively
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simple compared to other RNNs. One way to improve the prediction horizon by applying
ML methods is by performing an optimization process, in which the main question is:
how to select the hyperparameters, the number of neurons, the number of layers, etc.,
to maximize the prediction horizon given a ML method? As one can anticipate, there is
not an exact answer to this question, but there are different recommendations to determine
these parameters and it depends on the ML method, the type of time series to be predicted,
and the limits related to the computational cost.

The optimization of ML methods is not a trivial task, but nowadays, different works
have shown the usefulness of applying Evolutionary Algorithms (EAs) [22], which are
inspired by natural evolution to find the best fitness individuals [23]. In general, EAs can
be divided into two main categories, namely: swarm intelligence optimization algorithms
and genetic evolution algorithms. Some swarm intelligence algorithms are: Ant Colony
Algorithm [24], Firefly Algorithm [25], Cuckoo Search Algorithm [26], and Particle Swarm
Optimization (PSO) algorithm [27], among others. These optimization techniques have
been widely used to choose the hyperparameters of different ML methods to increase the
time series prediction horizon. In this work, we list ML methods in the state of the art to
predict chaotic time series and highlight how the optimization of the hyperparameters is
vital to achieve a larger prediction horizon. The case study considered in this work is the
application of PSO to optimize an ESN in closed-loop mode, whose main goal is devoted
to increasing the prediction horizon, resulting in a little more than double.

In the following sections, one can find more details of the application of optimization
algorithms to enhance ML methods for chaotic time series prediction. Section 2 summarizes
the description of chaotic systems, and it lists works that have applied ML methods for the
prediction of chaotic time series. Section 3 presents some works about the optimization of
ML methods for the prediction of chaotic time series as well as the main fitness functions
used. Section 4 provides a case study and focus on the optimization of an ESN applying
PSO to predict the time series of the chaotic Lorenz system. Section 5 contains a brief
discussion of the time series prediction results and makes a comparison with related works.
Finally, the conclusions are given in Section 6.

2. Chaotic Systems and Time Series Prediction by ML Methods

This section includes two subsections: the first one is devoted to describing the most
common chaotic systems, providing their mathematical equations, parameters and attrac-
tors in the phase-space; the second subsection describes related works on machine learning
methods that are used for the prediction of chaotic time series and their predicted steps-ahead.

2.1. Chaotic Systems

According to the definition given by Strogatz [28], a chaotic time series exhibits long-
term aperiodic behavior, is deterministic, and is sensitive to initial conditions. Aperiodic in
the long term means that the path of the time series will not converge to a fixed, periodic,
or quasi-periodic point in infinite time. Deterministic indicates that the system does not
have random or noisy inputs or parameters but that its irregular behavior arises from the
non-linearity of the system; in addition, it is sensitive to initial conditions, meaning that a
millionth change in the initial conditions will cause the trajectories to eventually diverge.
The first chaotic system was described by Lorenz in 1963 [29], and it was derived from
the simplified equations of the convection rolls that occur in the dynamic equations of the
Earth’s atmosphere. From that time to now, the Lorenz system is one of the most studied
chaotic systems. Other chaotic systems that have been developed and highly studied are:
the Rössler system [30], Lü system [31], Chen system [32], and Chua’s circuit [33]. These
chaotic systems are described by just three ordinary differential equations (ODEs), as shown
in Table 1, where one can appreciate the parameter values and attractors in the phase plane.
During the last years, neural models have also been developed to exhibit chaotic behavior
such as the Hindmarsh Rose neuron [34], Huber Braun [35], Cellular Neural Network [36],
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Hopfield Neuron [37], and so on. All these chaotic systems are continuous, and their
solution can be obtained by solving the ODEs applying numerical methods.

Table 1. Classic Chaotic Systems.

Chaotic System Differential
Equations Parameters Attractor

Lorenz [28]
ẋ = σ(y− x)
ẏ = x(ρ− z)− y
ż = xy− βz

σ = 10
ρ = 28
β = 8/3.

Rössler [30]
ẋ = −y− z
ẏ = x + ay
ż = b + z(x− c)

a = 0.2
b = 0.2
c = 5.7

Lü [31]
ẋ = a(y− x)
ẏ = −xz + cy
ż = xy− bz

a = 36
b = 3
c = 20

Chen [32]
ẋ = a(y− x)
ẏ = (c− a)x− xz + cy
ż = xy− bz

a = 35
b = 3
c = 28

2.2. Chaotic Time Series Prediction by ML Methods

The prediction of chaotic time series is a complex task due to characteristics such
as its aperiodic behavior and the high sensitivity to initial conditions. In this manner,
the prediction of chaotic time series can be defined as a task where temporal correlations
must be learned, this is because the inputs and outputs are ordered sequentially, as shown
in Figure 1. That is, they are temporally correlated, and it results that RNNs [38] were
developed to learn temporal correlations. Figure 1 sketches the prediction of a chaotic
time series, where the red dotted line indicates the forecast horizon reached, and how the
predicted time series diverges from the target series.

The main goal in the prediction of chaotic time series is devoted to increasing the
prediction window (either by increasing the Lyapunov times or the number of steps
ahead) [39–42]. For instance, the prediction horizon described by (1) can be calculated in
the time interval during which the normalized error is less than a threshold k [43–45], where
ytarget is associated to the data to predict y(i), the predicted data, and HP, the prediction
horizon. In the particular case of applying an ML method based on neural networks
as RNN or ESN, the challenges are how to reduce the computational cost, the number
of neurons [46], proposing different internal connections [47,48], and how to reduce the
prediction error. Usually, the prediction is generally performed to estimate one step ahead or
very few steps ahead, and it is sought to have the lowest possible error [49]. In the majority
of cases, the prediction error is evaluated as the root mean squared error (RMSE), and it
can take different magnitudes to validate the predicted steps ahead. Table 2 summarizes
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some relevant works for the prediction of chaotic time series, where λ−1
max represents the

Lyapunov times that correspond to the inverse of the maximum Lyapunov exponent of
the system. On this issue, it is well known that chaotic behavior can be generated from a
mathematical model having at least three ODEs, so that one can evaluate three Lyapunov
exponents (one negative, one close to zero and one positive). Systems with more than three
ODEs can generate hyperchaos if they have more than one positive Lyapunov exponent.
The maximum Lyapunov exponent is then a reference to indicate chaotic behavior and
to calculate Lyapunov time, which sometimes is used to measure the prediction window.
However, as shown in Table 2, the majority of authors do not report which Lyapunov
exponent they use. In the same Table 2, it can be appreciated that the most used chaotic
systems are: Lorenz, Rössler and Mackey–Glass, for which the different ML methods
predict from 1 to 1000 steps ahead. With respect to the ML method, one can appreciate that
ESN and some variants of it have been the most used. For this reason, this paper shows the
optimization of an ESN by applying PSO to enhance the prediction horizon.∥∥ytarget(i)− y(i)

∥∥√
1

HP ∑HP
j=1 ‖y(j)‖2

≤ k (1)

Figure 1. Predicting time series of the chaotic Lorenz system using ESN.

Table 2. Prediction of chaotic time series using Machine Learning techniques.

ML Dataset Steps Ahead λ−1
max RMSE

ESN [50] Lorenz 300 — —
ESN [51] Lorenz 460 10.35 —

RNN-LSTM [51] Lorenz 180 4.05 —
ANN [51] Lorenz 120 2.7 —

CEEMDAN-
LSTM [52] Lorenz — 2 1.327

ESN [41] Lorenz 700 — —
RESN [39] Lorenz 500 — 0.2238

Rossler 500 — 0.1128
AESN [53] Lorenz 1 — 6× 10−3

Rossler 1 — 1.65× 10−2

HESN [44] Lorenz — 12 —
DPM [54] Lorenz 300 — 3.3× 10−3

Fuzzy [55] Mackey-Glass 1000 — 3.8× 10−3

ADRC [42] Rossler 40 — 1.41× 10−2

ALM-ESN [49] Lorenz 1 — 2.21× 10−5

Mackey-Glass 84 — 1.9268× 10−4

HESN [40] Rossler 28 — 0.8890
FESN [46] Mackey-Glass 20 — —
NARX [56] Chaotic Serie 600 — 6.81× 10−2

ESN [56] Chaotic Serie 600 — 2.94× 10−2

ESN (This work) Lorenz 500 — 5.9095× 10−2
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3. Optimization of ML Methods for Predicting Chaotic Time Series

Generally, when optimizing ML methods to enhance the prediction of chaotic time
series, the main focus is to reduce the error in the prediction, so that one can establish
the number of steps ahead to be predicted. Let us see some examples: In [57], Lin and
Chen optimized a FLNFN (Functional Link-based Neural Fuzzy Network) using a hybrid
algorithm consisting of PSO and a cultural algorithm, where the functional expansion in
the model can produce the consequent part of a non-linear combination of input variables.
The authors used Mackey–Glass time series and forecasted the number of sunspots with the
goal of reducing the prediction error by optimizing the fuzzy rules and their relationship
with the inputs, but the prediction was only one step ahead. Another work focused on
reducing the prediction error by predicting few data is [49], in which a modified version of
the Cuckoo Search algorithm was used to optimize a Wavelet Neural Network (WNN) to
predict Lorenz time series, showing an improvement of at least 73% over a conventional
randomly initialized WNN. Another clear example is given in [58], where Cooperative
Coevolution was used to optimize an Elman RNN using time series from Mackey–Glass
and Lorenz systems. Other examples are summarized in Table 3, where one can see
optimization algorithms applied to ML methods to predict chaotic time series.

Table 3. Optimization algorithms applied to ML methods for the prediction of chaotic time series.

ML Optimization Dataset Fitness
Function Value Data Test

RVFL [59] GWO Oil Layer Accuracy 0.91× 10−1 130
PSO Oil Layer Accuracy 0.92× 10−1 130

WOA Oil Layer Accuracy 0.85× 10−1 130
FNN [60] IPBO Lorenz MSE 2.03× 10−3 500
WNN [61] MCSA Mackey–Glass RMSE 5.60× 10−5 500

Lorenz RMSE 8.20× 10−3 500
LSTM [62] IHHO Jinsha River MAPE(%) 4.19 1753

RNN [63] NS-ADAM Electric Power,
Nanchang MSE 3.26× 10−3 300

CNN-
LSTM [64] GWO Energy

Consumption MAE 290.5 —

The optimization algorithms given in Table 3 use different error metrics, such as: MSE,
RMSE, and MAE described in (2)–(4), respectively [65]. Other recent works, as [66] prefer
to introduce a fitness function, such as the one described in (5).

MSE =
1
p

p

∑
i=1

(yi
t − yi)

2
(2)

RMSE =

√√√√ 1
p

p

∑
i=1

(yi
t − yi)

2 (3)

MAE =
1
p

p

∑
i=1
|yt − y| (4)

f itness(FF) = Errorval + log(1 + 8× Errortst) (5)

4. Optimizing an ESN by PSO to Enhance Time Series Prediction Horizon

As shown in Table 2, one of the most used ML methods for the prediction of chaotic
time series is the Echo State Network (ESN) one. It consists of three layers: the input layer,
the hidden layer and the output layer [67]. The hidden layer contains N interconnected
neurons with randomly generated weights represented by a matrix W.ESNs have two
prediction modes, closed-loop and teacher-forced; in the first mode, the predicted data are
used to feedback the network and make the prediction of new data; therefore, a cumulative
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error is presented, and the predicted data will diverge from the target data; the second
makes the prediction of data but it is not used to feedback the ESN, for the prediction of
the next data, the point of the test set is taken as input. This implies that only one datum
is predicted, and the prediction will not diverge from the target data. Figure 2 shows the
closed-loop representation and Figure 3 shows the teacher-forced representation.

Wout

Output Layer

ypredicted

Input Layer

u(t)

Win

Hidden Layer

x(t)

W

u(t)⇐ ypredicted

Figure 2. ESN closed-loop.

Wout

Output LayerInput Layer

u(t)

Win

Hidden Layer

x(t)

W

Data test
ypredicted

Figure 3. ESN teacher-forced.

Equations (6)–(8) describe the main parameters of the ESN [68], which are men-
tioned below.

x(t + 1) = (1− a)x(t) + f (Win[bin; u(t + 1)] + Wx(t)) (6)

y(t + 1) = Wout[bout; u(t); x(t)] (7)

Wout = YtargetXT(XXT + λI)−1 (8)

where x(t) represents the states of the neurons, W is the matrix of internal connections,
Win is the input matrix, Wout is the output matrix, which is interpreted as the trainable
parameter, u(t) is the input, Ytarget is the data to be learned , y(t) is the predicted data, and
the rest of the parameters are mentioned below.

• Leaking Rate (a): This parameter is associated with leaky integrator ESNs (LI-ESNs) [69].
These are ESNs whose reservoir neurons perform leaky integration of their activations
from past steps of time.

• Spectral Radius (SR): It is described as the maximum absolute eigenvalue of the reser-
voir weights (W). It is recommended that this parameter be between (0, 1) to ensure
the echo state property [70].

• Reservoir Size (N): The reservoir size N represents the number of neuron units within
the reservoir. It is a very crucial parameter, since it decides the maximum number of
possible connections within the reservoir (N2) [71]. Jaeger [71] has suggested that N
be in the range ( T

10 ≤ N ≤ T
2 ) with T as the length of training data.

• Input (bin)/Output scaling (bout): The input weight (Win) influences the level of the lin-
earity of the responses of reservoir units. For a Win that is uniformly distributed, the in-
put scaling bin is referred to as a range [−b; b] from which values of Win are drawn.
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• Reservoir Activation Function: For the ESN, the reservoir activation is a non-linear
function. In most works, the function of choice has been the tanh(.) or positive logistic
sign(.) [72].

• Regularization parameter of ridge regression (RR): Regularization is often aimed at reduc-
ing the noise sensitivity of the network and also to prevent overfitting [73].

The case study herein is the prediction of chaotic data from the Lorenz system, whose
mathematical model is given in Table 1. To improve the prediction, it is recommended to
normalize or scale the amplitudes of the state variables to be within the range of [−1. . .1].
For the time series prediction, we use 5000 data for training, an ESN with 500 neurons ( 1

10 T),
SR = 1.25, a = 0.5, RR = 1× 10−8, the matrices Win and W were randomly generated,
and the matrix W was re-scaled according to the spectral radius.

To optimize the ESN with the parameters described above, we apply PSO, which is
inspired from the swarming behavior of certain animals such as fishes and birds. The initial
population is generated in a specific space. Each particle p is marked by a pair of position
and velocity (xi, vi), and it must be updated according to Equations (9) and (10). Then,
the particles swarm flies throughout the search space. Every particle i moves according to
its corresponding vi vector. At each time step, the solutions quality is evaluated according
to a fitness function or objective function [74,75]. The general process to optimize an ESN
in the chaotic time series prediction task is described below in Algorithm 1. In this case
study, we have no constraints.

vij = vij + c1rand()(pij − xij) + c2rand()(gj − xij) (9)

xij = xij + vij (10)

Algorithm 1 Optimization of an ESN to predict the Lorenz system with PSO.

1: Initialize the first particle of the population with known parameters, and the rest
randomly (x).

2: Initialize the velocity of the particles v.
3: for (counter = 1; counter ≤ G; counter ++) do
4: for (i = 1; i ≤ Np; i ++) do
5: for (j = 1; j ≤ D; j ++) do
6: For each set of particles (p), train the ESN, re-scaling W matrix according to the

corresponding new spectral radius.
7: Compute Wout for each set of (p).
8: Predict the Lorenz system time series with each set of (p).
9: Calculate the fitness function, MSE between the predicted and target data.

10: Find the best value from p and save it in g
11: Evaluate the new velocity using (9).
12: Evaluate the new position using (10).
13: end for
14: fx ← f unc(xi)
15: if fx is better than scorei then
16: scorei ← fx
17: pi ← xi
18: if pi is better than g then
19: g← pi
20: end if
21: end if
22: end for
23: end for
24: return x, p, g and score
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Although there are general recommendations to select the hyperparameters of the ESN,
it is still a design problem; therefore, these parameters must be adjusted according to each
problem. For this reason, we decided to optimize the hyperparameters SR, a, RR, to find the
best values that allow having a lower MSE between the predicted data and the target data.
For PSO, we established a population of 30 particles, 10 generations, and 3 variables to opti-
mize in the following ranges: SR = [0.01:1.5], a = [0.01:1], RR = [1× 10−10:1× 10−5]. Table 4
shows five solutions in which MSE was reduced with respect to the original parameters.

Table 4. ESN optimization using PSO to predict the time series of the Lorenz system.

Parameters SR a RR MSE Data Test

Original 1.2500 0.5000 1× 10−8 6.4471× 10−2 1000
Solution 1 1.3540 0.5466 1× 10−5 1.0569× 10−4 1000
Solution 2 1.3208 0.5811 1× 10−5 1.7487× 10−4 1000
Solution 3 1.1338 0.3308 1× 10−5 4.5692× 10−4 1000
Solution 4 1.2694 0.4846 1× 10−5 2.8641× 10−4 1000
Solution 5 1.3332 0.5690 1× 10−5 9.1085× 10−3 1000

Figure 4 shows the time series prediction of the Lorenz system with the first set of
optimized ESN parameters. Compared to the prediction results shown in Figure 1, where
the ESN is not optimized, one can see that the prediction horizon doubles, so that there is
an increase from 540 to 1240 steps ahead.

Figure 4. Predicting time series of Lorenz system with an optimized ESN.

5. Discussion

An ESN is a Machine Learning method that has been widely used in the prediction
of chaotic time series due to its good results in this task, low computational cost and easy
training compared to other recurrent neural networks such as LSTM. However, like many
neural networks, they have hyperparameters that must be set before training. In the case of
ESNs, the main hyperparameters are the number of neurons, the leaking rate, the spectral
radius and the regression coefficient, and although the authors in [70] recommend some
ranges of values, there is not an exact way to find them. Starting from the previous
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premise, the optimization techniques allow finding the set of hyperparameters with which
a greater prediction horizon can be obtained. In this manner, we have shown that the
use of the PSO algorithm, which is one of the classics in the literature, allows one to
optimize the hyperparameters of an ESN in closed-loop mode. This issue also shows that
the values of the hyperparameters must be correctly selected to reach a large prediction
horizon of chaotic time series. The time series prediction was performed by executing
different experiments with different tests, showing that in all of them, the MSE error was
reduced, and the prediction was greatly improved with respect to using an ESN without
optimization. The different tests provided, on average, an increase in the prediction horizon
of a little more than double. As one can infer, there are other optimization algorithms that
can be used for the ESN; however, one must be aware that the use of other optimization
algorithms does not guarantee that the prediction horizon will increase. The application of
an optimization algorithm in this case is just devoted to the search for the ideal combination
of hyperparameters, not for improving an ESN topology or its composition, which should
imply a much more robust and complex design problem.

In the state of the art, one can find several optimization algorithms that have been
applied to optimize an ESN to predict chaotic time series. For instance, Table 5 shows
different evolutionary algorithms, and among them, one can see the application of PSO
to optimize the ESN using different error values for the fitness functions and for different
lengths of the data test. In such a table, one can see our results compared to published
works, so that for chaotic time series of the Lorenz system, we reach the lowest error using
1000 data. It may be difficult to perform a comparison between the results obtained in our
experiments and the results reported in the literature. This is because there are two types
of prediction that can be made with an ESN: the closed-loop and teacher-forced. In the
first mode, the predicted data are used to feedback the network, which causes the errors to
accumulate and eventually diverges the predicted data from the target data. In the second,
or teacher-forced mode, the predicted data are not fed back to the ESN, but the input
comes directly from the data of the test set, which implies that only one datum is predicted.
From Table 5, one can see the size of the data test for each case, but the authors do not
mention what type of prediction they make. For example, in [66], Zhang et al. report a very
small error in the time series prediction, but they do not specify what type of prediction
is performed. The prediction mode is quite important, since using teacher-forced, there
is not a cumulative error problem and generally the prediction will not diverge from the
target data. In this manner, our contribution relies on the use of the closed-loop prediction
mode, since the main goal of this work was focused on increasing the prediction horizon for
chaotic time series, and this has been performed with the help of an optimization algorithm,
i.e., PSO, to accomplish the correct selection of the hyperparameters of an ESN.

Table 5. Optimization algorithms applied to an ESN to predict chaotic time series.

Optimization Dataset Fitness Function Value Data Test

BSA [76] Canadan Lynx MSE 5.17× 10−2 14
PSO [65] Lorenz RMSE 2.01× 10−3 500

Mackey–Glass RMSE 2.97× 10−3 500
CS [77] Mackey–Glass MSE 8.74× 10−9 1000

FOA [78] Lorenz RMSE 8.20× 10−3 4000
Mackey–Glass RMSE 9.60× 10−3 1000

SOGWO [79] Mackey–Glass RMSE 1.46× 10−4 800
WOA [66] Lorenz FF 7.37× 10−8 600

GA [66] Lorenz FF 5.54× 10−6 600
PSO [80] Lorenz RMSE 3.24× 10−2 500

BGWO [81] Mackey–Glass RMSE 1.03× 10−2 500
DE [82] Mackey–Glass NRMSE 2.59× 10−4 2000

PSO [83] Mackey–Glass MSE 8.12× 10−5 1000
Neuro-

Evolution [84] Hénon NMSE 4.23× 10−3 3000

MBBO [85] Lorenz RMSE 2.28× 10−4 2000
PSO (This work) Lorenz MSE 1.0569× 10−4 1000



Electronics 2022, 11, 3612 10 of 13

6. Conclusions

Although a great variety of ML methods have been used for the prediction of chaotic
time series, this work showed that ESN is one of the most used. The optimization of ML
methods, as those based on neural networks such as ESN, focus on finding the best values
of the hyperparameters that minimize the prediction error. However, it is necessary to
determine which parameters should be optimized for each problem. It should also be
considered that EAs are metaheuristics, and they have their own parameters that must
be carefully selected, such as the size of the population and the number of generations,
among others. Another consideration is the fitness function that is chosen. Generally,
some measure of error between the predicted values and the target values is used, but a
good alternative would be to use measures such as maximizing the prediction horizon.
Finally, it is worthwhile to mention a very interesting aspect when optimizing an ESN for
the prediction of chaotic time series: the type of prediction that is made, which can be
in closed-loop or teacher-forced mode. The first mode should be used when seeking to
increase the prediction horizon, and the second can be used when the goal is to reduce
the error in the prediction; however, usually, this is not specified in the works. To verify
the importance of the selection of hyperparameters in a machine learning method for
forecasting chaotic time series, we used PSO to optimize a closed-loop ESN, which allowed
us to increase the forecast horizon around the double compared to a non-optimized ESN.
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