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Abstract: Although neural-network architectures are critical for their performance, how the structural
characteristics of a neural network affect its performance has still not been fully explored. Here, we
map architectures of neural networks to directed acyclic graphs (DAGs), and find that incoherence, a
structural characteristic to measure the order of DAGs, is a good indicator for the performance of
corresponding neural networks. Therefore, we propose a deep isotropic neural-network architecture
by folding a chain of the same blocks and then connecting the blocks with skip connections at
different distances. Our model, named FoldNet, has two distinguishing features compared with
traditional residual neural networks. First, the distances between block pairs connected by skip
connections increase from always equal to one to specially selected different values, which lead
to more incoherent graphs and let the neural network explore larger receptive fields and, thus,
enhance its multi-scale representation ability. Second, the number of direct paths increases from
one to multiple, which leads to a larger proportion of shorter paths and, thus, improves the direct
propagation of information throughout the entire network. Image-classification results on CIFAR-10
and Tiny ImageNet benchmarks suggested that our new network architecture performs better than
traditional residual neural networks. FoldNet with 25.4M parameters can achieve 72.67% top-1
accuracy on the Tiny ImageNet after 100 epochs, which is competitive compared with the-state-of-art
results on the Tiny ImageNet.

Keywords: complex network; neural network architecture; isotropic architecture; image classification

1. Introduction

An artificial neural network is a computing system consisting of many simple, highly
interconnected processing elements, i.e., folding length, in addition to the width and depth
neurons, which process information by evaluating their dynamic-state response to external
inputs [1]. How the neurons are connected is believed to be crucial for the performance of
artificial neural networks.

Recent advances in computer vision models have partially confirmed such a hypoth-
esis. For example, the effectiveness of ResNet [2,3] and DenseNet [4] is largely due to
the skip connections between blocks; the performance of the learned architectures in a
neural-architecture search is also largely due to their connection structures [5–8].

Although the architecture of neural networks is crucial, there is yet a reliable approach
to modelling it. As a result, it is impossible to theoretically quantify how network topologies
affect performance, and designing neural-network architectures is essentially based on trial
and error. Even then, most current structures discovered through automated searches in a
sizable architecture space are also the products of trial and error approaches.

On the other hand, the theory of complex networks has been used to model networked
systems for decades [9]. If we consider neural networks as networked systems, we can use
the theory of complex networks to model neural networks and characterize the effect of net-
work architectures on their performance. Recently, Testolin et al. [10] explained deep-belief
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neural networks using techniques in the field of complex networks; Xie et al. [11] showed
the efficiency of the neural-network structures which were randomly generated using three
classical random graph models—i.e., folding length, in addition to the width and depth—
the Erdős-Rényi (ER) [12], Barabási-Albert (BA) [13], and Watts-Strogatz (WS) [14] models.

We first map the architectures of residual neural networks to directed acyclic graphs
(DAGs) and then explore the incoherence of DAGs. We find that the incoherence parameter
q increases with both the depth of residual neural networks and the folding length d
(explained in Section 3.2). We also find that the proportion of shorter paths in DAGs
increases with the folding length d.

Therefore, we fold the chain-like architecture of ResNet to form an accordion-like
neural-network architecture, named FoldNet.

The new network has multiple direct paths across the whole network, compared with
one direct path in traditional residual networks. It also has a higher degree of disorder and
a larger proportion of shorter paths in the corresponding DAG. We experimentally show
that these structural features of FoldNet let it explore extremely deep networks and lead to
high performance. Our contributions are summarized as follows:

• We apply the insights from the field of complex networks on the structural features of
a network affecting its dynamics to quantify how neural-network topologies affect
their performance in image classification, and find a positive corelation between
the incoherence of DAGs and the accuracy of the corresponding neural networks in
image classification.

• We propose a deep-isotropic neural-network architecture FoldNet, which incorporated
a new dimension, i.e., the folding length, besides the width and the depth.

• FoldNet achieves a state-of-the-art performance in image classification on the Tiny
ImageNet dataset.

2. Related Work
2.1. Isotropic Architectures of Neural Networks

The exploration of network architectures has been a part of neural-network research
since their initial discovery. In the field of computer vision, the architecture of convolutional
neural networks has been explored from their depth [2–4,15], width [16], cardinality [17],
etc. Their building blocks also extended from residual blocks [2,3,16,17] to many variants
of efficient blocks [18–21], such as the depthwise separable convolutional block, etc.

Recently, a new paradigm of the isotropic architectures of neural networks has
emerged, partially inspired by the state-of-the-art attention-based transformer architectures
in vision [22,23]. Contrary to pyramid-shaped architectures, isotropic architectures have
equal sizes and shapes with regard to all the elements throughout the network. In isotropic
neural networks, images are first divided into sequences of patches, which are then passed
into a chain of repeated blocks.

The blocks of isotropic architectures are divided into three categories depending on
their inner operations: attention-based blocks [22,23], CNN-based blocks [24,25] and MLP-
based blocks [26,27]. Here, we focus on CNN-based blocks and leave attention-based
blocks and MLP-based blocks for future work.

2.2. Degree of Order of DAGs: Trophic Coherence

DAGs are a representation of partially ordered sets [28]. The extent to which the nodes
of a DAG are organized in levels can be measured by trophic coherence, a parameter that
was originally defined in food webs and then shown to be closely related to many structural
and dynamical aspects of complex systems [29–32].

A directed acyclic graph given by n× n adjacency matrix A has elements aij = 1 if
there is a directed edge from node i to node j, and aij = 0 if not. The in and out degrees of
node i are kin

i = ∑j aji and kout
i = ∑j aij, respectively. The first node (i = 1) can never have

ingoing edges; thus, kin
1 = 0. Similarly, the last node (i = n) can never have outgoing edges;

thus, kout
n = 0.
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The trophic level si of node i is defined as

si = 1 +
1

kin
i

∑
j

ajisj, (1)

if kin
i > 0, or si = 1 if kin

i = 0. In other words, the trophic level of the first node is s = 1 as it
has no incoming edge, while other nodes are assigned to the average trophic level of their
in neighbors, plus one. Thus, for any DAG, the trophic level of each node can be easily
obtained by solving the linear system of Equation (1).

Therefore, each edge in an DAG could be characterized with a trophic distance:
xij = si − sj. Then, the distribution of trophic distances over the network, p(x), is studied.
The homogeneity of p(x) is called trophic coherence: the more similar the trophic distances
of all the edges, the more coherent the network. The degree of coherence is measured
with the standard deviation of p(x), which is referred to as an incoherence parameter:
q =

√
〈x2〉 − 1. The trophic incoherence parameter q is an indicator of network structure

which has been related to stability, percolation, cycles, normality and various other system
properties [29–32].

We map the architectures of neural networks to DAGs, measure the degree of order
of DAGs using incoherence parameter q, and then explore the relationship between the
performance of neural networks on image classification and the incoherence of correspond-
ing DAGs.

2.3. Effective Paths in Neural Networks

Veit et al. [33] interpreted residual networks as a collection of many paths of differing
lengths. The gradient magnitude of a path decreases exponentially with the number of
blocks it goes through in the backward pass. The total gradient magnitude contributed by
paths of each length can be calculated by multiplying the number of paths with that length,
and the expected gradient magnitude of the paths with the same length. Thus, most of
the total gradient magnitude is contributed by paths of shorter lengths, even though they
constitute only a tiny number of all paths through the network. These shorter paths are
called effective paths. The larger the proportion of effective paths, the better performance,
with other conditions unchanged.

We find that more incoherent DAGs have a larger proportion of shorter paths, which
improves the direct propagation of information throughout the whole network.

3. FoldNet

We first map the architectures of residual neural networks to DAGs and then explore
the incoherence of DAGs. We find that folding the backbone chain of residual neural
networks leads to more incoherence in the corresponding DAGs. Thus, we design an
accordion-like neural-network architecture, FoldNet.

3.1. Mapping Residual Neural-Network Architectures to DAGs

In order to evaluate the effect of the structural characteristics of neural networks on
their performance, we first need to map the architectures of neural networks to DAGs.
The mapping from the architectures of neural networks to general graphs is flexible. We
intentionally chose a simple mapping, i.e., folding length, besides the width and depth.
Nodes in the graphs represent non-linear transformations among data, while directed
edges in graphs represent data flows which send data from one node to another node. Such
mapping separates the effect of the network structure on performance from the effect of
non-linear transformations on performance, since all the weights in neural networks are
mapped to the nodes of graphs while all the connection structures are mapped to the edges
of graphs.

Consider a batch of images x which is passed through a residual convolutional neural
network. The network comprises L layers, each of which implements a non-linear transfor-
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mation Fl(·), where l ≥ 1 indexes the layer. Fl(·) can be a composite function of operations
such as batch normalization (BN), rectified linear units (ReLU), pooling, or convolution
(Conv) [34,35]. Residual neural networks [2,3] have a skip connection for every layer that
bypasses the non-linear transformations with an identity function. Figure 1a outlines the
network structure, where all the dashed lines representing skip connections form the direct
path. The skip connections in residual neural networks allow the forward activations and
the backward gradients to flow directly through the identity function without information
loss, which is the origin of their high performance.

As illustrated in Figure 1, under the above mapping rule, the architecture of a residual
neural network (Figure 1a) is mapped to a complete directed acyclic graph (Figure 1b).

(a)
x

+ F1 + F2 + F3
...

(b)
x

F1+ F2+ F3+ ...

Architecture of resid-
ual neural networks

Complete directed
acyclic graph

Figure 1. Example of mapping from residual neural networks to directed acyclic graphs (DAGs).
(a) An example of the architecture of residual neural networks. The Fi nodes represent non-linear
transformations among data; the circles with plus signs inside represent summation of all ingoing
data. (b) The complete directed acyclic graph mapped from the residual neural network. The
nodes are compositions of summation and non-linear transformations; the lines represent data flows
among nodes.

3.2. Improving the Incoherence of DAGs by Folding Residual Neural Networks

We observed that all the skip connections in residual neural networks only connect
adjacent layers, i.e., folding length, besides the width and depth. The distances between
any two layers connected by skip connections always equal one, which may restrict its
represented capability. Thus, we fold the backbone chain of residual neural networks back
and forth to form an accordion-like architecture, as shown in Figure 2a,b.

Such an accordion-like structure extends the chain-like structure of residual neural
networks from two aspects. First, the number of direct paths increases from one to multiple,
while the particular number of direct paths is determined by the so-called “folding length”.
Second, the distances between layers connected by skip connections are different from
each other, while the particular values of distances are also determined by the so-called
“folding length”. For example, in Figure 2b, where the “folding length” is equal to 3, there
are 3 direct paths and the distances between layers connected by skip connections are equal
to 2 or 4. Thus, we incorporated a new control parameter d to represent the folding length.
For convenience, we named such a folded neural network FoldNet-d, where d is the folding
length. In FoldNet-d, the number of direct paths is equal to d and the distances of skip
connections are integers in the set [2, 4, . . . , 2(d− 1)]. When d = 1, the model degenerated
to the traditional residual neural networks. Figures 1a and 2a,b illustrate the architectures
of FoldNet-1, FoldNet-2, and FoldNet-3, respectively.



Electronics 2022, 11, 3603 5 of 14

x

+

F1

+

F2

+

F3

+

F4

+

F5

...

x

F1+

F2+

F3+

F4+

F5+

...

x

+

F1

+

F2

+

F3

+

F4

+

F5

+

F6

...

x

F1

+

F2

+

F3

+

F4
+

F5
+

F6

+

...

(a)

(c)

(b)

(d)

Figure 2. Example of mapping from FoldNet to DAGs. (a) An example of FoldNet-2. (b) An example
of FoldNet-3. The Fi nodes represent non-linear transformations among data; the circles with plus
signs inside represent summation of all ingoing data. (c) The directed acyclic graph mapped from
FoldNet-2. (d) The directed acyclic graph mapped from FoldNet-3. The nodes are composition of
summation and non-linear transformations; the lines represent data flows among nodes.

According to the mapping rule of the previous subsection, FoldNet-2 and FoldNet-3
could be mapped to DAGs, as shown in (Figure 2). We next explore the incoherence and
path lengths of DAGs. As shown in the main plot in Figure 3, we found that the incoherence
parameter q increases with the number of nodes in DAGs, which equal the number of
layers (or depth) of the corresponding neural networks. We also find that the incoherence
parameter q increases with the folding length d. The inset plot in Figure 3 shows the
cumulative distribution function (CDF) of path lengths in DAGs when the number of nodes
is equal to 50. The inset plot indicates that the proportion of shorter paths increases with
the folding length d.

Figure 3. Incoherence and path lengths of DAGs. The main plot illustrates the relationship between
incoherence parameter q and number of nodes of DAGs and folding length d. The inset plot shows
the relationship between path lengths and folding length d.
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The comparison of incoherence and path lengths between FoldNet-d, where d ∈ [2, 3, 4]
and traditional residual neural networks where d = 1 show that FoldNet-d has a higher
degree of disorder and a larger proportion of shorter paths, and we argue that these two
features together lead to the better performance of FoldNet-d.

3.3. Architecture Design

FoldNet model can be formally expressed by the following equation:

xl = Fl(xl−1) + xl−i, (2)

where the output of the current layer l ≥ 1, xl , equal to the summation of the non-linear
transformation of the output of the previous layer Fl(xl−1) and the output of a previous
layer l − i, is xl−i. i is the distance between the current layer l and a previous layer l − i
which is connected to the current layer by a skip connection. The distance i is determined
by the current layer index l and the folding length d. It should be noted that if d = 1
then i = 1, where FoldNet is exactly the same as the traditional residual neural networks.
For the case of the folding length d > 1, if the current layer index is less than the folding
length, l < d, then the previous layer xl−i is always equal to x0. Otherwise, the distance i is
determined by:

i = 2(1 + (l − 1) mod (d− 1)), when d > 1∧ l ≥ d. (3)

The distances of skip connections i are constant and always equal to one in traditional
residual networks, while in FoldNet they are variable values determined by the current
layer index l and the folding length d using Equation (3). The variable distances allow the
model to merge and fuse a larger number of previous images which have receptive fields
of different sizes, and, thus, enhance its multi-scale representation ability.

As illustrated in Figure 4a, FoldNet consists of a patch embedding layer followed
by repeated applications of a folding block. After many applications of this block, we
performed global average pooling to obtain a feature vector, which was then passed to a
linear classifier and a softmax function to predict the probabilities of all classes.

The patch embedding layer with patch size p and hidden dimension h can be im-
plemented as convolution with cin input channels (equal to 3 for RGB images), h output
channels, kernel size p and stride p.

The folding block includes d− 1 non-linear transformations Fi, as shown in the red-
dashed rectangles in Figure 4a. Each non-linear transformation Fi itself consists of a
depthwise convolution followed by pointwise convolution, and each of the convolutions is
followed by an activation GELU and post-activation BatchNorm, as illustrated in Figure 4b.
The depthwise convolution is a grouped convolution with a kernel size k× k and groups
equal to the number of channels h; the pointwise convolution is a convolution with a kernel
size 1 × 1.

Therefore, the architecture of FoldNet is mainly determined by five hyper-parameters:
(1) the “width” or hidden dimension h, (2) the depth n or the number of repetitions of non-
linear transformation F, (3) the folding length d or the number of non-linear transformations
per block, (4) the patch size p which controls the internal resolution of the model, and (5) the
kernel size k of the depthwise convolution.
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Figure 4. (a) Architecture of the FoldNet model. FoldNet starts with the patch embedding layer,
continues with multiple folding blocks shown by the red-dashed rectangles, followed by the pooling
and the linear softmax classifier. Here, the depth n = 6, the folding length d = 3, and the number
of folding blocks equals n/(d− 1) = 3. (b) Details of each non-linear transformation Fi, including a
depthwise convolution followed by an GELU activation and a post-activation BatchNorm. After that
followed a pointwise convolution, another GELU activation, and another post-activation BatchNorm.

4. Experiments
4.1. Experimental Setup

For image classification, we used the CIFAR-10 and Tiny ImageNet datasets for train-
ing. The CIFAR-10 dataset consists of colored natural images with 32 × 32 pixels drawn
from 10 classes. The training and test sets contain 50,000 and 10,000 images, respectively.
The Tiny ImageNet dataset is a modified subset of the original ImageNet dataset. It consists
of colored natural images with 64× 64 pixels drawn from 200 different classes instead of
1000 classes in the ImageNet dataset. The training and test sets contain 100,000 examples
and 10,000 examples, respectively.

We implemented FoldNet using the Pytorch framework, and evaluated it using the
Pytorch Lightning library. We used the free online P100 GPU provided by Kaggle Kernels
to train and evaluate our models on image classification. Kaggle Kernels implement a limit
on each user’s GPU use of 30 h/week and 10 h/session. We also used the free and paid
online GPUs provided by paperspace.com when the free GPU of Kaggle Kernels could not
fulfill our requirements for GPUs.

Due to our limited computing power, we only considered hyperparameters that are
critical for the performance of FoldNet, and kept all other hyperparameters constant. Fold-
Net only changes the method for connecting skip connections among the layers in residual
neural networks, and is a macro design methodology for neural-network architectures.
Thus, we focused on the depth n and the folding length d, which reflect the macro design
of FoldNet, while keeping the hidden dimension h, the patch size p and the kernel size
k, which reflect the micro design in the layer level of FoldNet, to their optimized values.
We set the patch size p = 2 and the kernel size k = 5, as suggested in the related isotropic
model, ConvMixer [25].

For the CIFAR-10 dataset, we trained FoldNet for 100 epochs with a batch size of
256. For the Tiny ImageNet dataset, due to our limited computation power, we trained
FoldNet for 50 epochs with a batch size of 128. For both CIFAR-10 and Tiny ImageNet,
we used AdamW [36] with a learning rate of 10−2 and a weight decay of 0.1. There is
a 10-epoch linear warmup with an initial learning rate of 10−5 and a cosine decaying
schedule afterward. For data augmentation, we included RandomHorizontalFlip and
RandAugment [37].



Electronics 2022, 11, 3603 8 of 14

4.2. Experimental Results of CIFAR-10

To show that the effect of the depth n and the folding length d of FoldNet on its
performance is orthogonal to other hyperparameters such as hidden dimension h, we show
experimental results for both h = 64 and h = 256.

For each hidden dimension h ∈ {64, 256}, to evaluate the effect of the depth n and the
folding length d of FoldNet on its performance during image classification, we evaluated
the depths in a sequence [16, 24, 32, 40, 48], and for each depth n, we evaluated the folding
length in a sequence [1, 2, 3, 4]. There are, in total, 24 evaluations as listed in Table 1. We
conducted each evaluation three times, and reported the mean value of the maximum
validation accuracy of three runnings as the performance measurement.

Table 1. Hyperparameter values for CIFAR-10 dataset. The depth n is equal to the number of folding
blocks times d− 1. The patch size p and kernel size k are fixed as p = 2 and k = 5. The hidden
dimension h was chosen from the set [64, 256].

Folding Length d Num. of Folding Blocks Corresponding Depth n

1 [16, 24, 32, 40, 48] [16, 24, 32, 40, 48]
2 [16, 24, 32, 40, 48] [16, 24, 32, 40, 48]
3 [8, 9, 12, 13, 16, 17, 24] [16, 18, 24, 26, 32, 34, 48]
4 [5, 7, 9, 11, 13, 15, 16] [15, 21, 27, 33, 39, 45, 48]

Figure 5 depicts the validation accuracy of FoldNet-1, FoldNet-2, FoldNet-3 and
FoldNet-4 when hidden dimension h = 64. As shown in the figure, the performance of all
the FoldNet models increases with the depth n of FoldNet, and FoldNet-2, FoldNet-3 and
FoldNet-4 where d > 1 perform better than FoldNet-1, where d = 1 at all the depths. As
we show in Figure 3, the incoherence of DAGs is strongly positively correlated with the
depth n and folding length d of the corresponding neural networks; thus, we could infer a
strong positive correlation between the incoherence of DAGs and the classification accuracy
of the corresponding neural networks. In particular, FoldNet-2 with depth n = 48 has
0.293M parameters and can achieve 93.95% top-1 accuracy on CIFAR-10 after 100 epochs,
which increases by 0.43% compared with FoldNet-1 with depth n = 48. We also show the
validation accuracy curves of FoldNet-1, FoldNet-2, FoldNet-3 and FoldNet-4, when depth
n = 48, in Figure 6, to compare their performances in detail.

Figure 5. Validation accuracy of FoldNet-d for CIFAR-10 dataset when hidden dimension h = 64. x
axis is the depth of neural network n; y axis is the validation accuracy percentage. The validation
accuracy of FoldNet-2 increases by 0.43% compared with FoldNet-1 when depth n = 48.
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Figure 6. Validation accuracy curves of FoldNet for CIFAR-10 dataset when hidden dimension h = 64
and network depth n = 48. The validation accuracy curves of the last 10 epochs are enlarged to
compare the accuracies of FoldNet-d more clearly.

We also show the validation accuracy of FoldNet-1, FoldNet-2, FoldNet-3 and FoldNet-
4 when the hidden dimension h = 256, in Figure 7. Similar to the case of h = 64 in Figure 5,
the performances of all the FoldNet models increase with the depth n of FoldNet, and
FoldNet-2, FoldNet-3 and FoldNet-4, where models with d > 1 perform better than
FoldNet-1, where d = 1 at almost all depths. In particular, FoldNet-2 with a depth n = 48
has 3.5M parameters and can achieve 95.56% top-1 accuracy on CIFAR-10 after 100 epochs,
which is an increase by 0.25% compared with FoldNet-1 with depth n = 48. We also show
the validation-accuracy curves of FoldNet-1, FoldNet-2, FoldNet-3 and FoldNet-4 when
depth n = 48 in Figure 8 to compare their performances in detail.

Figure 7. Validation accuracy of FoldNet-d for CIFAR-10 dataset when hidden dimension h = 256. x
axis is the depth of neural network n, y axis is the validation accuracy percentage. The validation
accuracy of FoldNet-2 increases by 0.25% compared with FoldNet-1 when depth n = 48.
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Figure 8. Validation-accuracy curves of FoldNet for CIFAR-10 dataset when hidden dimension
h = 256 and network depth n = 48. The validation accuracy curves of the last 10 epochs are enlarged
to compare the accuracies of FoldNet-d more clearly.

4.3. Experimental Results of Tiny ImageNet

We first evaluated the performances of FoldNet-1, FoldNet-2, FoldNet-3 and FoldNet-
4 when hidden dimension h = 256 and network depth n = 32. As shown in Figure 9,
FoldNet-3 has 2.4M parameters and can achieve 67.55% top-1 accuracy on Tiny ImageNet
after only 50 epochs, which is an increase by 0.55% compared with FoldNet-1.

Figure 9. Validation-accuracy curves of FoldNet for Tiny ImageNet dataset when hidden dimension
h = 256 and network depth n = 32. The validation-accuracy curves of the last five epochs are
enlarged to compare the accuracies of FoldNet-d more clearly.

The state-of-the-art model on the Tiny ImageNet dataset, AutoMix [38], achieved
70.24% top-1 accuracy on Tiny ImageNet by adding data-augmentation techniques to
the ResNext50_32×4 model [17]. To compare with AutoMix, we added the Mixup [39]
data-augmentation technique for FoldNet. We also increased the hidden dimension to
h = 640 and the depth to n = 60, and such a FoldNet model has 25.4M parameters that
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nearly equal the parameters of the ResNext50_32×4 model. We trained the FoldNet model
for 100 epochs rather than 50 epochs.

Table 2 shows results on the top-1 accuracies of image classification. For the case of
models without Mixup, when compared with the ResNext50_32×4 , all the FoldNet models
improve the classification performance of Tiny ImageNet by more than 2.44%, which
indicates the good performance of the deep-isotropic architecture backbone of FoldNet.
When compared among the FoldNet models, the best model, FoldNet-3, performs better
than the FoldNet-1 model by 0.58%. For the case of models with Mixup, when compared
with the ResNext50_32×4 with Mixup, i.e., AutoMix, all the FoldNet models improve the
accuracy by more than 1.77%. When compared among the FoldNet models, the best model,
FoldNet-4, performs better than the FoldNet-1 model by 0.63%. We shows the accuracy
curves of the best model, FoldNet-4 with Mixup, in Figure 10.

Table 2. Top-1 Acc (%) of image classification on Tiny ImageNet.

Models w/o Mixup Top-1 Acc (%) Models w/o Mixup Top-1 Acc (%)

ResNext50_32×4 68.45 AutoMix [38] 70.24
FoldNet-1 70.89 FoldNet-1 72.01
FoldNet-2 71.43 FoldNet-2 72.59
FoldNet-3 71.49 FoldNet-3 72.64
FoldNet-4 71.47 FoldNet-4 72.67

Figure 10. Accuracy curves of FoldNet-4 with Mixup on the Tiny ImageNet dataset when hidden
dimension h = 640 and network depth n = 60.

5. Discussion

In this paper, we attempt to apply the insights from the field of complex networks
to the structural features of a network affecting its dynamics with regard to deep neural
networks. To this end, we mapped the architectures of deep neural networks to DAGs, and
then determined the relationship between the structural characteristics of neural networks
and corresponding DAGs. We found a strong positive corelation between the incoherence
of DAGs and the depth n and folding length d of corresponding neural netowrks. Thus, we
propose a deep-isotropic neural-network architecture, FoldNet, by folding a chain of the
same blocks whose corresponding DAGs are more incoherent.

We evaluated the effect of FoldNet on image classification by varying their depth n
and folding length d. We found a positive correlation between the depth and folding length
of FoldNet and their accuracy. Therefore, we inferred that the incoherence of DAGs has
a positive relationship with the accuracy of the corresponding neural networks in image
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classification. FoldNet achieved competitive results on the Tiny ImageNet dataset with far
fewer parameters.

We recognize that the performance of a neural network may be affected by multiple
structural features at the same time, rather than one—for example, the incoherence in our
case. DAGs have other structural features, such as the number of paths in DAG, which can
affect the performances of corresponding neural networks. In addition, we only explored
FoldNet-d with d ∈ [2, 3, 4], as we did not find notable performance increments when
d > 4. This is also a clue that structural features other than the incoherence may affect the
performance of a neural network. Our future work will explore this direction.
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Abbreviations
The following abbreviations are used in this manuscript:

DAG directed acyclic graphs
si trophic level of node i in DAG
A adjacency matrix of DAG
kin

i in degrees of node i in DAG
kout

i out degrees of node i in DAG
q incoherence parameter of DAG
xl output of layer l in FoldNet
Fl non-linear transformations of layer l in FoldNet
d folding length of FoldNet
h hidden dimension of FoldNet
n number of non-linear transformations F in FoldNet
p patch size
k kernel size of depthwise convolution
CNN convolutional neural network
MLP multiple layer network
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