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Abstract: Medical imaging technology plays a crucial role in the diagnosis and treatment of diseases.
However, the captured medical images are often in a low resolution (LR) due to the limited imaging
condition. Super-resolution (SR) technology is a feasible solution to enhance the resolution of a
medical image without increasing the hardware cost. However, the existing SR methods often ignore
high-frequency details, which results in blurred edges and an unsatisfying visual perception. In
this paper, a gated multi-attention feedback network (GAMA) is proposed for medical image SR.
Specifically, a gated multi-feedback network is employed as the backbone to extract hierarchical
features. Meanwhile, a layer attention feature extraction (LAFE) module is introduced to refine the
feature map. In addition, a channel-space attention reconstruction (CSAR) module is built to enhance
the representational ability of the semantic feature map. Furthermore, a gradient variance loss is
tailored as the regularization in guiding the model learning to regularize the model in generating
a faithful high-resolution image with rich textures and sharp edges. The experiments verify the
effectiveness of the proposed GAMA compared with the state-of-the-art approaches.

Keywords: super-resolution; medical image; attention mechanism; feedback network

1. Introduction

High-resolution medical images can reflect the structural and functional features of
the human body in a non-invasive manner with rich contrast and play a pivotal role in
clinical diagnosis. However, due to the limitations of the hardware devices, medical images
often have a limited resolution and are contaminated by inherent noise, resulting in a
lack of detailed information. Image super-resolution (SR) technology is favored due to its
advantages of security risk, great convenience, and high confidentiality.

The existing SR methods can be roughly divided into three categories, namely the
interpolation-based methods, reconstruction-based methods, and CNN-based methods [1–3].
The interpolation-based approaches mainly employ interpolation strategies, e.g., nearest
neighbor interpolation, bilinear interpolation, and bicubic interpolation, to predict the pixel
values using their neighborhoods [4]. Although these methods are theoretically simple
and easily executable, the high-frequency details of the image cannot be captured. The
reconstruction-based methods aim to estimate the missing details with the assistance of
several elaborate priors [5]. As the pioneering work, Gerchberg et al. [6] introduced the
first iterative SR algorithm in the frequency domain based on Fourier transform to improve
the resolution. The reconstruction-based methods perform well in preserving edges on the
premise that a rational prior has been imposed. However, these methods still have their
limitation to regularize the prior knowledge in the spatial domain. With the development of
CNNs, the medical image SR has made considerable progress and gradually become a hot
issue attracting much attention. Dong et al. [7] introduced a super-resolution convolutional
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network (SRCNN) in which the low-resolution input image is fed to the encoder–decoder
network. Li et al. [8] proposed the SRFBN to refine the representation of low-level features
through the feedback of high-level feature information. This work is the cornerstone of the
feedback mechanism applied to image super-resolution. Li et al. [9] used multiple feedback
connections for the transfer of multiple high-level features to the shallow layers so as to
extract the contextual information.

Compared with the single natural image SR task, the sensitive texture and edge contour
details are the principal features to be considered for retention in the medical image SR
task [10,11]. The CNN-based approaches supervised by the L1/L2 loss functions and their
derivatives can achieve an outstanding performance in terms of the numerical criteria
but fail to generate sufficient high-frequency details, e.g., fine textures and edges [12,13]. In
addition, the existing CNN-based SR methods ignore the original features of the difference
in and correlation of information, and all the feature information is generally processed in
a unified manner. Moreover, the subsequent feature processing networks fail to preserve
the detailed textures and restore the natural details.

To address these problems, we propose thegatedmulti-attention feedback network
(GAMA) for medical image super-resolution. Specifically, we build a layer attention feature
extraction (LAFE) module to enable the network to pay more attention to the information-
rich feature channels and a channel-space attention reconstruction (CSAR) module to
weight features from multiscale layers and pay attention to the channel dimension infor-
mation and the scale information of features. Moreover, to preserve the details of medical
images, we introduce the gradient variance loss to generate rich texture details and sharp
edges. The comparative experiments illustrate that the proposed GAMA is superior to the
state-of-the-art medical image SR approaches. In summary, the contributions of this work
are as follows.

1. An LAFE module is designed to highlight the vital feature information while removing
redundancy to refine the feature map.

2. A CSAR module that can facilitate an information exchange between different channel
dimensions is built to enhance the representation of semantic feature maps.

3. A gradient variance loss is tailored to guide the model learning for the generation of
images with rich texture details and sharp edges.

The remainder of this paper is organized as follows: Section 2 presents the related
works on the feedback mechanism and attention mechanism, which are mostly related
to the proposed GAMA. Section 3 introduces the framework and details of the proposed
model. Section 4 verifies the effectiveness by comparative experiments. The conclusion is
drawn in Section 5.

2. Related Work

In this section, the two most relevant works of the proposed model will be briefly
reviewed, i.e., the feedback mechanism and attention mechanism.

2.1. Feedback Mechanism

The feedback mechanisms [14–16] enable the network to carry the concept of output to
rectify prior states. To make the basic features more representative and informative, the
feedback mechanisms [17–22] are often employed in deep networks to backward advanced
information from deep to shallow layers. The most common type of feedback connection is
the single-to-single connection, where the merely optimal features are allowed to be passed to
a single shallow layer. The SRFBN [8] method is a typical single-to-single feedback approach
in which superior information is offered in a top–down feedback flow. Chen et al. proposed
the FAWDN [16] by adding adaptive weighted dense blocks to the SRFBN [8] to explore
the advanced feature representations. Unlike the previous works, the GMFN [9] has been
proposed to transfer refined features to the shallow layers, with the assumption that suffi-
cient contextual information can be swallowed to refine the basic layers. The feature maps
extracted at different layers are captured in different receptive fields, each of which contains
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complementary information for image reconstruction. Then, the feedback connection [9] is
adopted to optimize the elementary information with the help of the advanced counterpart.

2.2. Attention Mechanism

The core idea of the attention mechanism is to re-adjust the weights of the features
in various dimensions according to the importance of the input image [23,24]. Recently,
it has been widely utilized in CNN-based SR methods. Zhang et al. [25] constructed
a residual network, which built a channel attention (CA) block to improve the network
performance. The CA block can adjust channel weights and drive the model to pay
attention to the information-rich channels so as to boost the representational ability. To
further improve the network performance, Woo et al. [26] built two different attention units,
i.e., a channel attention (CA) unit and spatial attention (SA) units, which are connected
in series. Kim et al. [27] built a residual attention fusion network, which contains a
global contextual attention (GCA) module. Specifically, the GCA module introduced the
spatial attention to retain the context information in the crucial region. Dai et al. [28]
introduced a second-order CA mechanism to make the network emphasize more useful
information and improve the discriminative learning ability. Inspired by the above work,
we integrate the attention into the network and highlight the useful information to enhance
the reconstruction performance.

3. The Proposed Approach
3.1. Network Design

As depicted in Figure 1, the proposed GAMA is composed of T branch networks,
and each branch network contains four key components, namely layer attention feature ex-
traction (LAFE) module, gated feedback (GF) module, multiple residual dense block (RDB),
and channel-space attention reconstruction (CSAR) module.

LAFE RDB-1 RDB-k RDB-K

LAFE RDB-1 RDB-k RDB-K

LAFE RDB-1 RDB-k RDB-K

GFM-1

GFM-1

GFM-k
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Figure 1. Framework of the proposed GAMA for medical image super-resolution.

The low-resolution image ILR is fed to the LAFE block to extract initial features and
produce the weighted features Ft

L,0. The operation of LAFE module is formulated as,

Ft
L,0 = HLAFE(ILR), (1)

where HLAFE(·) represents the function of the LAFE module. Then, the weighted feature
Ft

L,0 is fed to multiple RDBs to generate features at different hierarchies.
The receptive field in a branch is positively correlated with the number of stacked

RDBs, which contributes to obtaining a better feature extraction hierarchy. The feedback
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connection between the two adjacent branches and the GF module plays a crucial role in
turn to complete the refinement of the underlying features. More details about the GF
module will be discussed in Section 3.4. The final high-level feature Ft

L,K can be defined as

Ft
L,K = HGF-RDB

(
Ft

L,0
)
, (2)

where HGF-RDB(·) symbolizes the combining function of RDBs and GF modules.
In the final stage, the extracted high-level feature Ft

L,K is fed to CSAR module for
obtaining SR image It

SR
It
SR = HCSAR

(
Ft

L,B, ILR
)
, (3)

where HCSAR(·) denotes the function of the CSAR module, and It
SR is the super-resolution

image generated by the t-th branch network.
We utilize L1 loss function and gradient variance loss function [29] to train the model.

The loss function can be defined as

L(θ) = L1 + λLGV, (4)

where θ employs the parameter set of the proposed GAMA. L1 denotes L1 loss function
and LGV represents the gradient variance loss. λ is the weight of gradient variance loss.
The gradient variance loss is described in detail in Section 3.5, and L1 loss function is
formulated as:

L1(θ) =
1
T

T

∑
t=1

∥∥It
HR − It

SR
∥∥

1, (5)

where It
HR indicates the high-resolution image in the t-th branch network.

3.2. Layer Attention Feature Extraction Module

In order to highlight vital feature information while removing the redundancy to
refine the feature map, we propose a layer attention feature extraction (LAFE) module.
The architecture of the proposed LAFE module is shown in Figure 2. It is composed of an
original low-level feature extraction unit and a layer attention unit. The low-level feature
extraction unit contains a 3× 3 convolution layer for basic features extraction and a 1× 1
convolution layer for channel reduction. First, the ILR is fed into the low-level feature
extraction unit to obtain the original low-level feature Ft

L,I

Ft
L,I = HIFEU(ILR), (6)

where HIFEU(·) denotes the operation of the original low-level feature extraction unit.
Then, it is transmitted to the following layer attention unit to improve the feature

representation ability. Specifically, the Ft
L,I with dimension N× H×W ×C is reconstructed

into a two-dimensional matrix with dimension N × (HWC), and the correlation Wla is
obtained by matrix multiplication operation with its corresponding transpose

Wla = δsoft

(
ϕre
(

Ft
L,I
)
·
(

ϕre
(

Ft
L,I
))T
)

, (7)

where δsoft(·) and ϕre(·) symbolize the softmax and reshape functions, respectively.
Ultimately, the weighted features Ft

L,0 are formulated as

Ft
L,0 = α

N

∑
i=1

WlaFt
L,I + Ft

L,I , (8)

where the initial value of α is 0, and there will be network automatic allocation weights
in the subsequent epoch. As a result, weighted features make the network focus on low-
resolution features with more information.
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Figure 2. Architecture of the proposed LAFE module.

3.3. Channel-Spatial Attention Reconstruction Module

The spatial attention mechanism pays more attention to the scale information of fea-
tures and less attention to the channel dimension information, while the channel attention
mechanism reduces the redundancy in the scale information of features. To utilize the
merits of both for the best reconstruction performance, we tailored a novel channel-spatial
attention reconstruction (CSAR) module. It is composed of a channel-spatial attention unit
and a reconstruction unit consisting of a deconvolution layer and a convolution layer.

The structure of the proposed CSAR is depicted in Figure 3.

3D 
Conv

Correlation 
matrix

H×W×C H×W×C

D
econv

C
onv

Upscale

Figure 3. Architecture of the proposed CSAR module.

Given the output Ft
L,K of the deepest RDB, Ft

L,K is the first input to the 3D convolution layer
to generate an attention map by capturing joint channels and spatial features. Three-dimensional
convolution is realized by convolving the three-dimensional convolution kernel with the cube
constructed by multiple adjacent channels of Ft

L,K. Particularly, the 3D convolution kernel with
kernel size of 3× 3× 3 and step size of 1 is convolved with the three groups of continuous
channels of Ft

L,K, respectively, to obtain three groups of channel-spatial attention graph Wcsa. In
addition, we use the attention graph Wcsa and the input property Ft

L,K to perform element-wise
multiplication. Finally, the weighted result multiplied by a scale factor β is added to the input
feature Ft

L,K to obtain the weighted feature Ft
C,S, which is computed as

Ft
C,S = βσsig(Wcsa)� Ft

L,K + Ft
L,K, (9)

where σsig(·) represents the sigmoid function, and � represents the element-wise product.
The initial value of the scale factor β is 0, and the weights are automatically allocated by the
network in subsequent iterations. Therefore, Ft

C,S is the weighted sum of the spatial location
features of all channels plus the original features. Different from previous spatial and
channel attention mechanisms, the interdependencies of the channel and spatial features
are explicitly modeled, which enables the proposed CSAR module to learn inter-channel
and intra-channel feature responses adaptively.

Then, the weighted features Ft
C,S are transferred to the reconstruction unit for the

recovery of the residual images. Ultimately, the SR image It
SR at the t-th time step is rebuilt

from the combination of the recovered residual image and the interpolated low-resolution
image. The formulation of It

SR is formulated as

It
SR = HCSAR

(
Ft

C,S, ILR
)
= HUF

(
Ft

C,S
)
+ HIN(ILR), (10)
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where HCSAR(·), HUF(·), and HIN(·) represent the functions of the CSAR module, the re-
construction unit, and interpolated kernel, respectively.

3.4. Gated Feedback Module

The gated feedback (GF) module is built to improve the low-level features extracted
from the shallow layer by using several high-level features from the previous time-step re-
routing. In Figure 4, it can be depicted that the GF module contains two key subassemblies,
namely gate unit and refinement unit. The former unit selectively retains and enhances
essential information from multiple high-level features and transmits it to the refinement
unit. The latter unit can make use of the high-level information transmitted by the gate
unit to refine the low-level features, and then deliver the refined low-level features to the
subsequent RDBs. To improve the computational efficiency, two 1× 1 sized convolutional
layers are adopted as the gate unit and the refinement unit in the k-th RDB, respectively.

Gate unit

Refinement
unit

Figure 4. Architecture of the GF module.

The GF module is placed after the low-level features that need to be refined. Because
the proposed network contains multiple serial RDBs in a time step, we select the inputs of
shallow RDBs as low-level features to be refined and the outputs of deep RDBs as rerouted
high-level features. A deeper RDB can extract more representative information of the
low-resolution space, which will play a crucial role in refining the low-level features. Based
on this, we adopt multiple sets of feedback connections to sequentially transfer multiple
high-level features from the deepest RDBs to the shallowest ones in turn.

Given that SM = {1, 2, . . . , M− 1, M} is the set of selected indexes of the shallowest
M RDBs and the input of SM is low-level features. The DN = {N, N + 1, . . . , K− 1, K} is
regarded as the set of selected indexes of the deepest (K − N + 1) RDBs and the output
of DN is utilized to refine the low-level features. At the t-th time, if k ∈ SM and t > 1,
the output of the b-th RDB Ft

L,k can be obtained via

Ft
L,k = HRDB,k

(
HRU,k

([
Ft

H,k, Ft
L,k−1

]))
. (11)

In other cases, the output of the b-th RDB can be derived by

Ft
L,k = HRDB,k

(
Ft

L,k−1

)
, (12)

where HRDB,k(·) symbolizes the operation of the k-th RDB and HRU,k(·) formulates the func-

tions of the refinement unit in the k-th GF module.
[

Ft
H,k, Ft

L,k−1

]
denotes the combination of

Ft
H,k and Ft

L,k−1. Ft
H,k represents the high-level information selected and enhanced from mul-

tiple high-level features, which is transmitted to the k-th GF module. The high-level features
are collected by the deepest RDBs and then delivered via a series of feedback connections.
Hence, the selected and enhanced high-level information Ft

H,k can be formulated as,

Ft
H,k =

 HGU,k

([
Ft−1

L,N , . . . , Ft−1
L,K

])
, if k < N,

HGU,k

([
Ft−1

L,k , . . . , Ft−1
L,K

])
, otherwise,

(13)
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where HGU,k(·) denotes the operation of the gate unit in the k-th GF module. The formulas
of Equations (11)–(13) indicate that the k-th RDB only receive the output of RDBs whose
indexes are equal or larger than k from the previous branch network.

According to Equations (11)–(13), the number of low-level features required for refine-
ment and high-level features required for re-routing are determined by the values of M
and N in index sets SM and DN , respectively. The single-to-single or single-to-multiple
feedback connection described in Section 2.1 can be implemented by setting the values
of N and M, which is a special case of the adopted feedback specification. When N = K,
the conditions of M 6= 1 and M = 1 are corresponding to single-to-multiple feedback con-
nection or single-to-single feedback connection, respectively. In addition, each high-level
feature captured in different reception field is significant for SR reconstruction. Based on
this, we set N 6= K to implement multiple-to-single (M = 1) and multiple-to-multiple
(M 6= 1) feedback connection modes and take full advantage of advanced feature to refine
the underlying features.

3.5. Gradient Variance Loss

In single image SR domain, the most commonly used optimization functions of deep
CNNs are L1 and L2 loss. However, the models optimized with the two loss functions
tend to produce statistical averages of potential high-resolution solutions, which generally
performed poorly in recovering sharp edges in high-resolution images. To alleviate this
problem, we adopt the gradient variance (GV) loss [29].

For the ILR with the height h, width w, and color channels c, it can be denoted as a
tensor with a size of c × h × w. The Sobel operator is applied to the given ISR and IHR
transformed gray-scale images to obtain the corresponding gradient graphs GSR

x , GSR
y , GHR

x ,
and GHR

y . These gradient graphs are expanded into n× n patches without overlapping to
form a matrix G̃SR

x , G̃SR
y ,G̃HR

x , G̃HR
y , each of which has dimension n2× w·h

n2 , and each column
represents one patch. Then, the i-th element of the matrix variance can be calculated by,

vi =

∑n2

j=1
(
G̃i,j − µi

)2

n2 − 1

, i = 1, . . . ,
w · h
n2 , (14)

where µi is the average value of the i-th patch, and G̃ is an expanded gradient graph.
Given the variance mapping vSR

x , vSR
y and vHR

x , vHR
y corresponding to ISR and IHR

images, respectively, the gradient variance loss can be expressed as,

LGV = ESR

∥∥∥vSR
x − vHR

x

∥∥∥
2
+ESR

∥∥∥vSR
y − vHR

y

∥∥∥
2
. (15)

GV loss is proposed to prevent the gradient graph of the generated SR image from
being blurred and enable the SR image to retain edge and texture information. Therefore,
the variance of each region of the generated image is lower than the variance of the same
region on the IHR image. The model trained by GV loss can minimize the variance difference
between IHR and ISR images to generate clearer edges and textures.

4. Experiments and Discussion
4.1. Datasets

We perform the experiments on two large-scale medical image datasets, i.e., Low-
Dose CT (LDCT) dataset ([Online]. Available: https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=52758026, accessed on 21 October 2022) and QIN LUNG CT
dataset ([Online]. Available: https://wiki.cancerimagingarchive.net/display/Public/QIN+
LUNG+CT, accessed on 21 October 2022). The LDCT [30] is collected from 299 clinically
performed CT examinations on patients. We group the samples into two splits, i.e., LDCT
Part_A and LDCT Part_B, according to the scanned position. The former split includes
2272 images (1822 images for training and 450 images for test) which are chest images. The

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/display/Public/QIN+LUNG+CT
https://wiki.cancerimagingarchive.net/display/Public/QIN+LUNG+CT
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later split contains 1132 images (892 images for training and 240 images for test) which are
the abdominal scan images. The QIN LUNG CT dataset [31] contains 3954 images which
are published in the TCIA Cancer Imaging Archive. We select 328 images for training and
150 images for test from the QIN LUNG CT dataset. In order to verify the robustness of the
proposed method, an experimental analysis is also conducted on the MRI13 dataset [32].

4.2. Evaluation Metrics

Two evaluation metrics, i.e., peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) [33], are adopted for objective assessments. They are formulated as,

PSNR(ISR, IHR) = 10 · log 10×
(

L2

1
N ∑N

i=1(ISR(i)− IHR(i))
2

)
, (16)

where L represents the maximum pixel, and N denotes the number of all pixels in ISR and IHR.

SSIM(x, y) =
2uxuy + k1

u2
x + u2

y + k1
·

σxy + k2

σ2
x + σ2

y + k2
, (17)

where x, y represent two images. σxy symbolizes the covariance between x and y. u and σ2

represent the average value and variance. k1, k2 denote constant relaxation terms.
The PSNR is the ratio between the peak value power and noise power [34]. The PSNR

is the most commonly used evaluation index to measure the quality of the lossy transfor-
mation reconstruction. For the image super-resolution, the PSNR is defined by the maxi-
mum pixel value between the images and the mean square error. The SSIM is a perception-
based model that treats image degradation as a perceptual change in the structural infor-
mation. The SSIM takes the structural similarity into account by combining the contrast,
luminance, and texture of the images. Higher scores of the PSNR and SSIM denote a better
reconstruction performance.

4.3. Implementation Details

Following the setting in [9], the number of branch networks T and the RDBs are set as
2 and 8, respectively. Meanwhile, the feedback connection in the proposed GAMA is imple-
mented by setting M = 1 and N = 4. In each iteration, the medical LR image is cropped
randomly into 16 image patches for network training, with each patch size of 48× 48. We
utilize Adam [35] to optimize the proposed GAMA. The original learning rate is set to
2× 10−4, and it reduces by half every 2× 105 iterations. The weight of the gradient variance
loss λ is set to 0.01. The deep learning architecture parameters used for the model training
and evaluation are PyTorch 1.8.0, CUDAToolkit 10.2, cuDNN 8.1.1, Python 3.8, and two
paralleled NVIDIA 3060 GPUs,manufatured in Shenzhen city, Guangdong Province.

4.4. Comparative Analysis

To validate the performance of the GAMA, we conduct the experiments and compare
it with some mainstream methods, e.g., SRCNN [7], FSRCNN [36], SRGAN [12], RDN [37],
SRFBN [8], FAWDN [16], and GMFN [9]. The objective evaluation and subjective results are
evaluated on the LDCT Part_A, LDCT Part_B, and QIN_LUNG test sets with scale factors of
×2, ×3, and ×4.

The comparative results on the LDCT, QIN_LUNG CT, and MRI13 datasets in terms
of the PSNR and SSIM are reported in Table 1. The experimental results indicate that
the proposed method obtains the best scores on the LDCT and QIN_LUNG CT datasets
with different scale factors. Specifically, on the LDCT Part_A test set with a scale factor of
×2, the average PSNR and SSIM values obtained by the proposed GAMA are improved
by 4.79 dB and 0.0055 compared with the SRCNN [7] and 4.59 dB and 0.0040 compared
with the FSRCNN [36], respectively. Meanwhile, the average values of the PSNR and SSIM
obtained with the scale factors of ×3 and ×4 are also substantially improved. On the LDCT
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Part_B test set with the scale factor of ×2, the proposed method increases the score of the
PSNR by 0.49 dB and the SSIM by 0.0027 compared with the SRFBN [8] which also adopted
the feedback mechanism. With the scale factor of ×3, the values of the PSNR and SSIM
are 0.33 dB and 0.0043 higher than the SRFBN [8]. With the scale factor of ×4, the PSNR
and SSIM of the proposed GAMA are improved by 0.28 dB and 0.0038, respectively. On
the QIN LUNG CT test set, the GAMA ranks in first place in both the PSNR and SSIM
compared with the competitors. Compared with the GMFN [9], which adopts the similar
multiple-to-multiple feedback connection mechanism, the proposed GAMA increases the
PSNR by 3.77 dB and the SSIM by 0.0033 at the scale factor of ×2. With the scale factor of
×3, the GAMA improves the PSNR and SSIM by 2.14 dB and 0.0065, respectively. With
the scale factor of ×4, the indexes of the PSNR and SSIM are 2.25 dB and 0.0126 higher
than the GMFN [9]. The average values of the PSNR and SSIM obtained by the proposed
GAMA are improved by 3.35 dB and 0.0183, when compared with the FAWDN [16], with a
scale factor of ×4. Meanwhile, Table 1 indicates that the proposed method wins second
place on the MRI13 dataset with different scale factors. Compared with the SRCNN [7] and
SRGAN [12] with a scale factor of ×2, the proposed GAMA improves the average PSNR by
9.56% and 28.87%, respectively.

Table 1. Comparative results on the LDCT Part_A, LDCT Part_B [30], QIN LUNG CT [31],
and MRI13 [32] datasets. The best results are highlighted in bold.

Algorithm Scale
LDCT Part_A LDCT Part_B QIN LUNG CT MRI13

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [7] ×2 43.79 0.9822 33.82 0.9488 34.20 0.9352 39.32 0.9716
FSRCNN [36] ×2 44.14 0.9837 34.39 0.9502 35.65 0.9362 41.32 0.9769
SRGAN [12] ×2 39.80 0.9652 32.92 0.9463 27.55 0.8426 33.43 0.9671
RDN [37] ×2 44.53 0.9841 35.05 0.9508 37.15 0.9401 41.72 0.9785
SRFBN [8] ×2 47.32 0.9878 35.41 0.9523 38.49 0.9800 42.01 0.9828
FAWDN [16] ×2 47.11 0.9877 34.78 0.9518 39.07 0.9817 43.59 0.9851
GMFN [9] ×2 48.66 0.9886 35.42 0.9529 38.58 0.9802 42.49 0.9836
GAMA (Ours) ×2 48.73 0.9887 35.90 0.9550 42.35 0.9835 43.08 0.9844

SRCNN [7] ×3 39.12 0.9633 29.86 0.8072 31.85 0.8578 33.57 0.9255
FSRCNN [36] ×3 38.87 0.9623 30.19 0.8116 32.28 0.8612 34.85 0.9357
SRGAN [12] ×3 - - - - - - - -
RDN [37] ×3 44.70 0.9668 31.79 0.8853 33.24 0.8911 34.98 0.9381
SRFBN [8] ×3 44.16 0.9804 31.75 0.8843 34.55 0.9512 35.46 0.9420
FAWDN [16] ×3 43.30 0.9792 30.97 0.8797 33.73 0.9498 36.73 0.9479
GMFN [9] ×3 44.80 0.9630 31.84 0.8856 34.55 0.9516 35.98 0.9443
GAMA (Ours) ×3 45.25 0.9814 32.08 0.8886 36.69 0.9581 36.24 0.9454

SRCNN [7] ×4 36.63 0.9465 28.46 0.8337 27.48 0.8381 30.44 0.8774
FSRCNN [36] ×4 37.06 0.9363 28.49 0.8215 27.55 0.8668 31.43 0.8924
SRGAN [12] ×4 35.99 0.9308 27.92 0.8306 24.44 0.8097 28.15 0.8488
RDN [37] ×4 40.78 0.9546 29.83 0.8346 30.43 0.8462 31.91 0.8974
SRFBN [8] ×4 41.05 0.9714 30.06 0.8398 31.78 0.9226 32.20 0.8981
FAWDN [16] ×4 40.59 0.9703 28.90 0.8295 30.60 0.9180 33.21 0.9086
GMFN [9] ×4 42.55 0.9748 30.02 0.8386 31.70 0.9237 32.58 0.9022
GAMA (Ours) ×4 43.16 0.9758 30.34 0.8436 33.95 0.9363 32.84 0.9043

Figure 5 illustrates the results of the subjective visual comparison on the LDCT Part_A,
LDCT Part_B, QIN LUNG CT, and MRI13 test sets with a scale factor of ×4. Figure 5A–D
provide the reconstruction results of the vertebral area, descending aorta area, lung texture
area, and human head, respectively. In addition, Figure 5A shows that the vertebral scan
images reconstructed by the SRFBN [8], GMFN [9], and proposed GAMA are significantly
sharper than those reconstructed by the SRCNN [7] and SRGAN [12]. Although there
is no conspicuous difference in the sharpness of the vertebral scan images reconstructed
by the SRFBN, GMFN, and proposed GAMA, the contrast of the reconstructed images
by the GAMA is significantly improved compared with the high-resolution images. The



Electronics 2022, 11, 3554 10 of 14

proposed algorithm has a better reconstruction effect on the edge contour of the vertebral
body and the relatively sharp convex part, benefitting from the gradient variance loss.
The scan images of the vertebral region reconstructed by the SRCNN [7] and SRGAN [12]
algorithm are relatively fuzzy and short of details. Figure 5B shows that the medical images
reconstructed by the GAMA have better details of the descending aorta and inferior vena
cava of the liver. The exemplar qualitative results of the QIN LUNG CT dataset are depicted
in Figure 5C. In the medical image SR domain, the hairline lung texture branches in the lung
CT images are the most difficult image details to recover [38]. Particularly, the proposed
GAMA can also retain enough fine lung texture branches compared with the other methods.
Figure 5D shows the reconstructed MRI images of the human head. The reconstructed MRI
images of the GAMA depict abundant tissue details of the human esophagus, spinal cord
nerve roots, and the second spine.

SRFBN GMFN

SRFBN GMFN

SRGAN

SRGANSRCNN FSRCNN

FSRCNNSRCNN RDN

RDN

(A) CT image of transverse abdomen

(C) CT image of lung

GAMA (Ours) 

SRFBN GMFN

RDN

GAMA (Ours) (B) CT image of transverse abdomen

GAMA (Ours) 

SRGANSRCNN FSRCNN

FAWDN

FAWDN

FAWDN

SRFBN GMFN GAMA (Ours) FAWDN

RDNSRGANSRCNN FSRCNN

(D) MRI image of  head

Figure 5. Qualitative comparison of the proposed model with other state-of-the-art methods at ×4
super-resolution based on CT and MRI images.
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4.5. Ablation Study

To figure out the impact of different settings and components on medical image SR, we
conduct ablation experiments on the LDCT Part_A and LDCT Part_B test sets with the scale
factor of ×2. We explore the proposed model from three aspects, i.e., the LAFE module,
the CSAR module, and the gradient variance loss. The corresponding items are listed as below.

(a) “baseline” represents the basic model without the LAFE, CSAR, and LGV.
(b) “baseline + LAFE” refers to the “baseline” with the LAFE module.
(c) “baseline + CSAR” denotes the “baseline” with the CSAR module.
(d) “baseline + LAFE + CSAR” represents the “baseline” with the LAFE module and

CSAR module.
(e) “baseline + LAFE + LGV” refers to the “baseline” with the LAFE module and LGV.
(f) “baseline + CSAR + LGV” denotes the “baseline” with the CSAR module and LGV .
(g) “baseline + LAFE + CSAR + LGV” represents the final GAMA.

Table 2 shows the quantitative evaluation results on the LDCT Part_A test set. The base-
line model scores 48.66 dB and 0.9886 in the PSNR and SSIM, which are the worst across
all the entries in the table. When the LAFE module and CSAR module are introduced,
the PSNR and SSIM are improved steadily. Especially when the LAFE module and CSAR
module are employed simultaneously, the PSNR increased by 0.05 dB, which verifies the
effectiveness of the proposed LAFE module and the CSAR module. Because the LDCT
dataset is full of low-dose CT scan images with a similar and uniform structure, the SSIM
value only increased by 0.0001 from 0.9886. Compared with the algorithm with the LAFE
module, the PSNR improved by 0.06 dB after LGV was added. Similarly, the addition of
LGV improved the PSNR of the algorithm introduced with the CSAR module by 0.02 dB.
These two experimental results prove that LGV contributes to improving the performance
of the model. The last group of experimental configurations achieved the highest PSNR
value 48.75 dB and SSIM value 0.9887, and the GAMA adopted the corresponding configu-
ration. Figure 6 shows the reconstruction results of the human intestinal CT and human
thoracic CT in different configurations. In Figure 6A, compared with the reconstructed
images of other configurations, the profile of the intestine and the details of the intestinal
clusters are more obvious in the reconstructed images of the proposed GAMA. As shown
in Figure 6B, after adding the LAFE and CSAR modules, the sharpness of the reconstructed
images is significantly improved. On this basis, with the introduced LGV, the margins of
the thoracic vertebrae become sharper.

Table 2. Ablation analysis of the key components in the proposed model. (The best results are high-
lighted in bold).

Components PSNR SSIM

(a) baseline 48.66 0.9886
(b) baseline + LAFE 48.67 0.9887
(c) baseline + CSAR 48.68 0.9887
(d) baseline + LAEF + CSAR 48.71 0.9887
(e) baseline + LAFE + LGV 48.73 0.9887
(f) baseline + CSAR + LGV 48.70 0.9987
(g) baseline + LAFE + CSAR + LGV (Ours) 48.75 0.9887
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HR (a) (b) (c)

(d) (e) (f) (g)

HR (a) (b) (c)

(B) CT image of horizontal thoracic vertebra

(d) (e) (f) (g)(A) CT image of the horizontal lumbar spine

Figure 6. Qualitative comparison of ablation study at ×2 super-resolution CT images.

5. Conclusions

In this paper, we propose a gated multi-attention feedback network (GAMA) for
CT image super-resolution. The GAMA adopts the gated multi-feedback network as the
backbone to propagate multiple hierarchical high-level features for refining the low-level
features. Meanwhile, it consists of two key components, namely the layer attention feature
extraction (LAFE) module and the channel-space attention reconstruction (CSAR) module.
The LAFE module can highlight important feature information and eliminate redundancy
to optimize the feature map, while the CSAR module can enhance the representation of
semantic feature graphs by facilitating the information exchange between different channel
dimensions. In addition, a gradient variance loss is adopted to preserve the sharp edges
and rich textures. The comparative experiments prove that the proposed method performs
favorably against the state-of-the-art competitors.
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