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Abstract: Temporal action detection (TAD) aims to recognize actions as well as their corresponding
time spans from an input video. While techniques exist that accurately recognize actions from
manually trimmed videos, current TAD solutions often struggle to identify the precise temporal
boundaries of each action, which are required in many real applications. This paper addresses this
problem with a novel Boundary Trimming Module (BTM), a post-processing method that adjusts
the temporal boundaries of the detected actions from existing TAD solutions. Specifically, BTM
operates based on the classification of frames in the input video, aiming to detect the action more
accurately by adjusting the surrounding frames of the start and end frames of the original detection
results. Experimental results on the THUMOS14 benchmark data set demonstrate that the BTM
significantly improves the performance of several existing TAD methods. Meanwhile, we establish a
new state of the art for temporal action detection through the combination of BTM and the previous
best TAD solution.

Keywords: action detection; boundary trimming module; video analytics

1. Introduction

Temporal action detection (TAD) aims to identify actions from an input video, as well
as the start and end frames for each action. Most existing TAD methods, e.g., [1–7], are
based on video classification [8–11], which classifies a (often trimmed) video clip but does
not return any temporal information. As an analogy, TAD to video classification can be
compared to object detection in still images [12–15] to image classification [7,16]. Similar to
the fact that the resolution of images has strong implications in object detection results, the
temporal resolution of the video directly influences TAD performance. This motivates the
use of video interpolation methods [17,18] to improve the overall results.

The performance of TAD methods depends upon the underlying video classification
networks [9–11], especially when pre-trained networks are used to extract features of the
video. The current video classification networks can be classified into two categories:
one-stream (e.g., C3D [19] and 3D-ResNet [20]) and two-stream (e.g., TSN [11], I3D [21],
T3D [22], and P3D [23]). One-stream models only utilize the pixel color (i.e., RGB) infor-
mation of the input video, whereas two-stream models take as input pixel colors with
optical flow information, which can be obtained through a pre-processing step. Usually,
two-stream models obtain higher accuracy at the expense of high computational costs to
extract optical flows.

Most existing TAD methods on untrimmed video generally start with extracting
features of the video using a classification neural network. For instance, Ref. [24] discusses
object tracking in video, using a model based on a combination of Yolo v3 and video
processing modules. Ref. [25] performs video action recognition using several techniques
such as vector autoregression and wavelet transforms. Then, a TAD model takes these
extracted features as input to locate and classify the actions. There are also multi-stage
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networks in the field of object detection, such as cascading R-CNN [26]. We can also
consider adding more links to a TAD model to readjust the prediction results. The reason is
that precisely determining the actual start and end of an action is not practical. Instead,
we fluctuate around rough critical points. As a result, the results obtained by current
TAD models are not very accurate for the boundaries, especially for settings with high
Intersection over Union (IoU) requirements. Thus, it is significant and rewarding to
adjust the boundary of the detection results. By utilizing the information around the
boundary, the critical information of the action and the non-action, as well as the boundary
location, can be more accurately recognized. Finally, recently Transformer-based models
have much research attraction, e.g., [27–29]; however, none of them addresses the issues
described above.

Motivated by the above discussions, this paper presents a novel Boundary Trimming
Module (BTM) for boundary pruning and adjustment of TAD methods. This module can
be applied in combination with most existing TAD models. Experimental results using
THUMOS14 [30], a popular benchmark data set, demonstrate that the BTM significantly im-
proves the overall performance of TAD methods, especially under high IoU requirements.

2. Related Work

Action recognition. In video analytics, action recognition (e.g., [9–11]) aims to classify
video clips based on the actions they present. Usually, each such video clip contains
one action, which is (often manually) clipped from a longer, raw video stream that may
contain multiple actions. Existing solutions for action recognition include one-stream and
two-stream methods. The former are usually faster since they only utilize the pixel color
information in the input video without complex video pre-processing. Examples of such
methods include C3D mentioned in the Introduction, as well as 3D-ResNet [20], which
is based on ResNet [31], and achives much improved prediction accuracy. On the other
hand, two-stream methods typically derive motion information in the form of optical flow
information using motion displacements between adjacent frames and use such optical
flows in combination with pixel colors to obtain more accurate action recognition results.
Notable methods include TSN [11], I3D [21], and P3D [23].

Temporal action detection. Temporal action detection (TAD) [32–40] operates on
longer, untrimmed videos and identifies the actions therein, together with their respective
start and end frames. Clearly, TAD is a more challenging task compared to action recog-
nition, since (i) the input video may contain a large number of frames not relevant to the
detected action, which distract the model, and (ii) the model must also report temporal
boundaries of each detected action.

Earlier approaches to TAD apply a sliding window over the time dimension on the
input video and classifies the video segment inside the window. Since actions may have
different lengths, such a method must also try different window sizes, which is highly
inefficient. Meanwhile, since it is infeasible to try every possible window size, the reported
locations of the start/end frames (i.e., the sliding window boundaries) are usually imprecise.
Later, RNN [41] was also used in TAD models as a means to capture temporal correlation
information. The use of RNNs, however, does not address the problem that the detected
action boundaries are imprecise.

Shou et al. [19] proposed using a C3D network to classify each frame of video, which
leads to improved action positioning compared to sliding-window-based methods. More
recent approaches, e.g., SSAD [16] and R-C3D [7], achieve more accurate results based on
similar ideas as object detection in still images. In addition, BSN [42] focuses on timing
positioning, which joins the border-sensitive network and is modified according to the
proposal to obtain more accurate boundary locations. Our proposed approach can work
with any existing TAD solution and improves its accuracy by refining the boundaries of the
extracted actions.
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3. Approach

This section presents Boundary Trimming Module (BTM), a novel post-processing
module for video TAD. As mentioned in the Introduction, BTM is applied after another
TAD solution to refine the temporal boundaries of the detected actions. Specifically, BTM
involves two major steps. The first step applies a novel action estimation network (AEN),
a two-level convolutional neural network (ConvNet) that classifies each frame image as
either background or part of an action. Note that the AEN is a binary classifier, and it does
not tell what the action is when it predicts a frame as a part of an action. In particular,
the AEN outputs a score for each frame, which reflects its probability of being part of an
action. By splicing the scores of the video summary image for each frame, a continuous
action score curve can be obtained. After that, the second step of BTM adjusts the temporal
boundaries of actions in the video according to a pruning strategy. In the following, we
elaborate on the AEN (in Step 1) and the pruning (in Step 2).

3.1. Action Estimation Network

As described above, for each frame in the input video, the AEN outputs its probability
of being part of an action. Figure 1 illustrates the architecture of the proposed AEN. As
shown in the figure, AEN involves a video feature extractor. Since the proposed BTM
is a post-processing step that applies after an existing TAD solution, we simply use the
video feature extractor in the partner TAD method. In our experiments, we use the specific
feature extractor used in I3D, described in the Related Work section. Note that the video
feature extractor is already trained (i.e., as part of the partner TAD solution) before BTM is
applied, and BTM only needs to fine tune it for the purpose of AEN.

For the selection of the feature extraction network, though the object of the motion
evaluation network to be processed is each frame image in the video, if the image domain
is similar to ResNet [31], GoogleNet or NASNet [43] for feature extraction, only the space
of the video frame can be extracted. Such a method is only suitable for target detection
and classification in images and is obviously not suitable for action understanding with
obvious context information. Therefore, the feature extraction network still needs some
understanding of the timing information.

As mentioned earlier, C3D and R-C3D are faster, but their accuracy is slightly lower on
a video data set such as UCF-101. The features extracted with them will lead to insufficient
understanding of the video and will affect the accuracy of the entire action evaluation
network. Because the modules in this paper are used for precise adjustment of timing
boundaries, this paper hopes to obtain more effective video features, such as I3D [21],
MF-Net [44], TSN [11], and other video understanding models. As mentioned above, the
I3D network is the best performing network on the UCF-101 data set, which means that the
extracted features are most effective for video understanding. Therefore, this paper also
uses an I3D network as the feature extraction network.

Since “action” is time-related, it is a continuous change in posture of the human
body over time. In order to more effectively judge whether the current frame is an action
instance, it is necessary to supplement the context information when extracting features.
In this paper, the input of the feature extraction network is centered on the current frame,
supplementing 16 frames before and after the frame as input, performing 3D convolution
and pooling, and then obtaining the feature map with dimension 1024 as the feature of the
current frame by averaging pooling.

The second step is to use the classifier to score. After the feature extraction is completed,
the obtained feature is input to the classifier. In the structure of this section, a two-layer
full-connection layer with a channel number of 512 is used as a classifier. Since the problem
is essentially a classification problem, a softmax layer is connected after the fully connected
layer. The loss function is a cross entropy loss function with a formula of (1), where yi
represents the actual output of the network, and di represents the desired output.

Loss = − 1
n

n

∑
i=1

dilog(yi) (1)



Electronics 2022, 11, 3520 4 of 12

Since the final output is a probability of actions, it is necessary to limit the output to
the interval [0, 1]. Therefore, the final output is normalized using the sigmoid function, as
shown in Equation (1), where sa is the final action score, and on is the network output. After
that, the action scores of each frame are smoothly connected. Finally, a continuous action
score curve is obtained. As shown in Figure 2, the horizontal axis is the frame number, and
the vertical axis is the action score.

Feature Extract

Spatial I3D Network

···   ······   ··· ······Frame-level
Feature

Classifier

FC(512, Relu)

FC(512, Relu)

Softmax

Action scores
Frame-level

··· ······
LongJump LongJumpBackground BackgroundGT

Input Video

Figure 1. Architecture of the proposed action estimation network.

Frames

Sco
res

0

1

Figure 2. Example video action score curve output by the action estimation network.

3.2. Timing Boundary Trimming Strategy

When analyzing the action score curve of a video, the segment containing the action
instance is intuitively the portion of the curve that reaches a continuous high score, as
covered by the orange dashed box in Figure 2. The background is the continuous low score
part of the curve, as covered by the green dashed box in Figure 2. The timing boundaries of
this section are between the orange dotted frame and the green dotted frame. As can be
seen from Figure 2, the action scores predicted by the network are still subject to certain
disturbances. This section presents a robust and effective strategy to locate the boundaries.



Electronics 2022, 11, 3520 5 of 12

The core idea of the proposed temporal boundary trimming strategy is to match the
time-series boundary of the prediction result with the action score curve to obtain the score
of the current time-series boundary. The proposed timing boundary pruning technique
uses an action threshold α, as follows. If the predicted action probability of a frame is higher
than α, the frame is considered to be an action class and vice versa. Using this method,
we obtain a temporal boundary ( fs, fe) of each action instance, where fs (resp. fe) is the
start (resp. end) frame of the action in the video. Note that since BTM is a post-processing
technique for adjusting temporal action boundaries, it takes as inputs the actions already
detected by an existing TAD solution.

Algorithm 1 shows the adjustment of the start frame fs of the time series as an example,
fs corresponds to the position in the action score curve, and the current start frame fs can be
obtained, that is, the intersection of the red dotted line and the blue in Figure 3. Therefore,
the m frames before and after the start frames fs are included in the reference range, the
average action score of the 2m + 1 frame is calculated, and the result is denoted as sα.
Adopting this multi-frame averaging strategy can reduce the impact of action estimation
network misjudgment and enhance the robustness of the trimming module. Then, the
absolute value of the difference between the calculated sα and the action threshold α is
di f f . If the difference di f f is greater than the tolerance τ, it is proved that the fs at this
time deviates from the actual motion start time, and it needs to be discussed in two cases.
In the first case, when the average action score sα is less than the threshold α, it means that
the action has not yet started. The real action start time is after the fs time, so we need to
make fs = fs + step, and update fs to the right to move the step frame to the real action
start time. In the second case, i.e., sα ≥ α, we update fs to the left to move step frames,
i.e., fs = fs − step. In this way, fs is updated cyclically until the difference di f f is less
than the tolerance τ, and the latest fs value is returned as the motion start frame of the
prediction result.

Algorithm 1 Adjust start frame fs

Reference range← m frames before and after fs
sα ← the average action score of the 2m + 1 frames in the reference range
di f f ← |sα − α|
while di f f ≥ τ do

If sα < α then
fs ← fs + step

else
fs ← fs − step

end if
di f f ← |sα − α|

end while

fs fe

m

α
β

Frames

Sco
res




diff sa

Figure 3. Timing boundary (example values: fs = 10, fe = 15, m = 3, di f f = 0.05).
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For the adjustment of the end frame fe in the prediction result, the adopted strategy
is basically the same. The only difference is that when the difference di f f is greater than
the tolerance τ and the average action score sα is greater than the action threshold α, the
time point at which fe is located is still in the motion progress time, and the real action end
time is after fe. Let fe = fe + step, then fe updates the step frame to the right. When the
difference di f f is less than the tolerance τ and the average action score sα is smaller than
the action threshold α, the time point action of fe has ended, and the real action end time is
before fe. Let fe = fe − step, then fe updates the step frame to the left.

4. Experiment and Simulation
4.1. Data Sets and Evaluation Indicators

The data set selected for the experimental simulation in this paper is THUMOS14 [30].
The data set has two tasks: temporal action detection and action classification. The training
set is UCF-101 [45], which consists of a video clip containing 101 actions. There are a total
of 13,320 divided short videos, usually one video contains only one action instance. The
validation set and test set include 1010 and 1574 unsplit long videos, respectively, and
usually contain multiple action instances. For the temporal action detection task, the data
with the start and end time tags that can be used for training and testing has only 21 types of
actions, including 200 verification set videos (including 3007 action instances) and 213 test
set videos (including 3358 action instances). Each video contains an average of 15 or more
actions. Therefore, in the temporal action detection, the verification set of THUMOS14 is
used to train the network, and the test set is used to test the performance of the network. It
is worth noting that the average length of the video is long, which poses a great challenge
to the temporal action detection task.

In terms of evaluation indicators, this paper will calculate and analyze the accuracy of
the two classifications of the motion assessment network. Then, the time-series boundary
refinement module is applied to the existing excellent network, and the average precision
mean mAP under each cross-combination IoU is compared. Apparently, the average
accuracy mean mAP@0.5 is mostly concerned, when IoU = 0.5.

4.2. Implementation Details

During the classification experiment of the motion evaluation network, it is found that
whether the feature information extracted by the RGB stream is not obvious to the overall
performance improvement of the model, but it will occupy a large amount of disk I/O time,
which leads to a significant increase in the training time of the model. Therefore, in order
to save training time, this paper chooses to use only optical flow for feature extraction.

The video is first sampled at a rate of 25 frames per second, and then the TV-L1
algorithm [46] is used to extract the optical stream of the video. Therefore, the feature
information of the nth frame in the video can be expressed as sn = {Fn} fs

fe
, where Fn

represents the optical flow information of the nth frame. When using the I3D network for
feature extraction, since the original I3D is 16 frames without repeated downsampling,
the motion evaluation of the frame level of this paper cannot be satisfied. Therefore, the
sampling mode of the I3D network needs to be modified. After modification, the sampling
window length is 16 frames, the initial sampling frame fs = n− 7 of the nth frame feature
extraction, and the sampling frame fe is ended. Insufficient start and end are supplemented
by blank frames. The sampling diagram is shown in Figure 4. A black rectangle represents
a video frame, and a number within a rectangle represents the serial number of the frame.
The orange solid rectangle indicates the feature extraction sampling frame of frame 8. The
green dotted rectangle indicates the feature extraction sampling frame of the ninth frame of
the next frame.

Prior to training, the goal of the motion estimation network was to obtain an action
score for each frame. In fact, this is a two-category task of background and action. THU-
MOS14’s tag contains 21 categories and timing action start and end time tags, which are not
required for motion evaluation network tags, so THUMOS14 tags need to be reprocessed. In
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this section, the label category of the frame in the video clip with motion tag in THUMOS14
is set to one, and the rest is the background category, and the label is set to zero, so it is
converted into a two-class problem. The verification set of THUMOS14 is divided into the
training set and the verification set of this experiment, and the division ratio is 3:1.
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Figure 4. Feature extraction sampling schematic.

Furthermore, since the duration of the tagged action instance in the entire video is
relatively short, the background category (negative sample) is much more than the action
category (positive sample). Such positive and negative sample imbalance problems cannot
be ignored. Too many negative samples will affect the direction of parameter update during
network training, so that the model tends to predict the sample as a negative sample when
judging. In order to solve this problem, this module adopts the method of downsampling
the negative samples; that is, the random samples are randomly removed, so that the ratio
of the final positive and negative samples is close to 1:1.

In the parameter setting of the timing boundary pruning strategy, after many trials
and attempts, the final parameters are set as follows: calculate the average number of
frames before and after fs and fe, take m = 2, update the step size, action threshold α = 0.5,
endurance Degree τ = 0.1. Furthermore, when the operation time of the THUMOS14 is
counted, it is found that the shortest operation time is only 15 frames. Therefore, in order
to prevent the error of the timing refinement module from being excessively adjusted, the
upper limit of the number of adjustment iterations is set to 15.

4.3. Simulation Results

The results we used to adjust were obtained through a multi-scale detection network
that uses different time length feature maps to detect action. The input characteristics of
the network are the same as those obtained by I3D extraction in this paper. The network
generates proposals by using a multi-scale method. For the second stage, the feature is first
input into the bidirectional LSTM so that the network has more recognition of time, and
then the RoI pooling is used to generate features for classification and positioning.

For the performance of the motion evaluation network, THUMOS14 is trained with
the timing tag verification set, the training accuracy can reach 92.1%, and the test accuracy
is about 79.6%. Figure 5 shows the action score curve output by the motion evaluation
network test sample, where the solid blue line is the real label, and the red dotted line is
the predicted value. Figure 6 shows the accuracy of the classification of each category in
the verification set based on the action assessment network score.

The timing boundary module aims at refining the predicted result of the existing
sequential motion detection network and can be attributed to the post-processing step
of the sequential motion detection network. Therefore, to verify the effectiveness of this
module, it is necessary to combine this module with the existing excellent network and
compare the changes in network performance before and after the addition of this module.
As shown in Table 1, before and after adding the timing boundary trimming module,
each network is in the THUMOS14 data set and the average accuracy mean mAP under
different IoU.
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Figure 5. Action estimation network predicts the comparison of the score curve with the label.
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Shotput

FrisbeeCatch

Figure 6. Verify the accuracy of the classification of various actions based on the action estimation
network.

Table 1. Temporal action detection results on THUMOS’14.

IOU 0.1 0.3 0.5 0.7

Xu et al. [47] 54.5 44.8 28.9 -
BTM + Xu et al. 55.6 45.3 32.4 -

Gao et al. [48] 60.1 50.1 31.0 9.9
BTM + Gao et al. 60.8 52.1 35.6 14.3

Lin et al. [42] - 53.5 36.9 20.0
BTM + Lin et al. - 54.3 38.3 21.1

Chao et al. [5] 59.8 53.2 42.8 20.8
BTM + Chao et al. 60.4 53.8 44.6 24.4

It can be found from the results that after adding the time-series boundary refine-
ment module proposed in this section, the key performance index mAP@0.5 is improved,
which proves that the proposed module optimizes the time-series positioning of network
prediction results so that the start time and deadline of the action are more accurate and
have effects on multiple networks. BTM can be added as a general module to the network,
providing a new idea for further improvement of network performance.
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As shown in Figure 7, our network can identify certain categories of actions very well.
In Figure 7, the blue mark is the ground truth, and the number indicates the start and end
time of the action. The red mark is the prediction result, which shows not only the start
and end times of the forecast but also the confidence of the prediction.

8.6s,10.4s 13.0s,15.3s 17.3s,19.3s

15.2s,17.1s,9.7 17.4s,20.0s,9.58.2s,9.5s,9.2

CricketShot CricketShot CricketShot

CricketShotCricketShotCricketBowling

4.2s,10.5s 18.5s,24.8s 28.1s,32.3s

6.3s,11.2s,8.5 20.1s,23.9s,9.2 30.1s,34.3s,6.2

VolleyballSpiking VolleyballSpiking VolleyballSpiking

VolleyballSpiking VolleyballSpiking VolleyballSpiking

GT

Ours

GT

Ours

Figure 7. Qualitative examples of the predictions of our network on the THOMOS’14 data set. The
blue mark is the ground truth, and the number indicates the start and end time of the action. The red
mark is the prediction result, which shows not only the start and end times of the forecast but also
the confidence (each scaled by a factor of 10×) of the prediction.

Finally, we mention that adding BTM also leads to increased computational costs.
In particular, with our current implementations, we observed up to a 50% increase in
inference time in our experimental evaluations. Given the significant accuracy gains
of BTM, we would consider this a favorable trade-off for applications that require high
temporal detection accuracy.

5. Conclusions

In this paper, a Boundary Trimming Module was proposed to adjust the generated
detection results. The module adjusts the temporal boundary according to the classification
of the frame level. The network classifies the surrounding frames of the start and end
frames of the generated results. By setting a reasonable threshold, the starting and ending
time points are adjusted to locate the action more accurately. The THUMOS14 data set
was utilized to test the proposed BTM with other networks with greatly improved results,
which verifies the versatility of our network. Regarding future work, we plan to further
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improve the inference efficiency of the BTM module through, e.g., pruning, quantization,
and distillation techniques. Another important direction is to explore the adaptation of the
proposed BTM module to Transformer-based solutions for temporal action detection.
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