
Citation: Yin, Z.; Jiang, X.; Zhang, N.;

Zhang, W. Stability Analysis for

Linear Systems with a Differentiable

Time-Varying Delay via Auxiliary

Equation-Based Method. Electronics

2022, 11, 3492. https://doi.org/

10.3390/electronics11213492

Academic Editors: Katarzyna Antosz,

Jose Machado, Yi Ren, Rochdi El

Abdi, Dariusz Mazurkiewicz,

Marina Ranga, Pierluigi Rea,

Vijaya Kumar Manupati,

Emilia Villani and Erika Ottaviano

Received: 16 September 2022

Accepted: 25 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Stability Analysis for Linear Systems with a Differentiable
Time-Varying Delay via Auxiliary Equation-Based Method
Zongming Yin 1 , Xiefu Jiang 2,* , Ning Zhang 1 and Weihua Zhang 1

1 School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
2 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: jiangxf@hdu.edu.cn

Abstract: This paper concentrates on the stability problem for linear systems with a differentiable
time-varying delay via an auxiliary equation-based method. By supposing that the second-order
derivative of the system state is available, an auxiliary equation is obtained. On the basis of the
system equation and the auxiliary equation, we define a suitable delay-product-type augmented
Lyapunov-Krasovskii functional (LKF), under which more delay and system state information can
be exploited. Based on the LKF, by utilizing some vital lemmas, adding zero terms, and the convex
analysis method, we propose a new stability condition that is less conservative. Finally, to illustrate
the merit of the obtained stability condition, two typical numerical examples are given.

Keywords: stability analysis; time-varying delay; auxiliary equation-based method; Lyapunov-Krasovskii
functional (LKF)

1. Introduction

In many practical application systems, such as rolling mills, chemical processes, power
systems, neural networks, manufacturing systems, and networked control systems, a time-
varying delay is known to widely exist [1–4]. The existence of a time-varying delay in a
system often causes the oscillation, degradation of system performance, and even instabil-
ity [5,6]. Therefore, stability analysis for the systems with time-varying delays is of great
significance. Over the past two decades, the Lyapunov-Krasovskii functional (LKF) has
been a powerful tool to analyze the systems since it can achieve delay-dependent stability
criteria [7–11]. However, these criteria are only sufficient. There exists some inevitable
conservatism. A stability theorem for the systems with time-varying delay is less conser-
vative than another one if the stability theorem can achieve a greater delay upper bound
than that of another one for a specific example. This notion has been introduced in [12–15].
It is hence a field of research that of introducing enhanced stability theorems to reduce
conservatism. Generally speaking, it is very difficult, in theory, to prove the degree of
conservatism of these stability criteria that are obtained by the LKF method. Therefore, the
conservatism of these stability criteria is usually illustrated by the maximum delay upper
bounds (MDUBs), which are obtained in some well-known numerical examples via different
stability conditions formulated by different methods. For example, we can compare hA
obtained by Theorem A with hB obtained by Theorem B in a well-known example, where
hA and hB are the constant bounds of the time-varying delay, known as MDUBs. If Theorem
A could have hA larger than hB of Theorem B, then we understand that Theorem A has
less conservative compared with Theorem B for this example. In general, a conservative
approach implies a reduced/limited/lower value of h, and a relaxed approach means a
higher value of h, which corresponds to a non-conservative approach. Consequently, the
MDUB has been a vital index to evaluate the conservatism of these stability conditions that
are derived by various methods.

In general, there are several ways to reduce the conservatism of the obtained stability
criteria. The first one is to define a suitable LKF involving more delay and system state
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information [14]. For example, by constructing an augmented type LKF in [16–18], a delay-
product-type augmented LKF in [19,20], and a containing multiple integral terms LKF
in [2,21,22], the conservatism of the stability conditions proposed by this literature has
been significantly reduced. The second one is to estimate the integral terms from the
derivative of LKF [17,23]. Many integral inequalities, such as, Jensen integral inequality [1],
Wirtinger-based integral inequality [24], Bessel-Legendre integral inequality [25] and so
on (see references [2,12,15,26–30]), have been formulated to directly estimate the integral
terms. These integral inequalities play an important role to reduce the conservatism of
stability criteria. The third one is the convex analysis method [5,19]. When the time-varying
delay and its derivative belongs to a given interval, respectively, this method can obtain
the sufficient and necessary condition such that a matrix is less than zero, and thus some
considerable terms in the derivative of LKF can be effectively used. The fourth one is the
method of adding zero terms in the derivative of LKF [17,21,31,32]. This method can also
effectively reduce the conservatism of the obtained stability criteria by introducing some
free matrices. By studying the literature mentioned above, and references therein, although
many excellent methods and stability conditions have been proposed, there is still room
for improvement.

In this paper, the stability problem for linear systems with a differentiable time-varying
delay is concerned with an auxiliary equation-based method. The main contributions of
this work are summarized as

(1) Motivated by the method in [33], the auxiliary equation ẍ(t) = Aẋ(t)+(1− ḣ(t))Ad ẋ(t−
h(t)) is utilized to investigate the stability of the systems with a differentiable time-
varying delay, and thus the information of delay derivative can be captured well and be
used to derive a less conservative stability condition.

(2) Inspired by the fact that 2
∫ a

b ẋT(s)Uẍ(s)ds = ẋT(a)Uẋ(a)− ẋT(b)Uẋ(b), two state
augmented zero equalities are introduced, which can help reduce the conservatism of
the obtained stability condition.

(3) On the basis of the system equation and the auxiliary equation, a new delay-product-
type augmented LKF is constructed, which can utilize more system information, such
as ẍ(t), ẍ(t− h(t)) and ẍ(t− h). Then, based on the LKF and by employing some
vital lemmas, adding zero terms, and the convex analysis method, a relaxed stability
condition is proposed. Finally, to illustrate the merit of the obtained stability condition,
two typical numerical examples are given.

Notations. The notation diag{·} is the block diagonal matrix, and adiag{·} is anti-block diagonal

matrix, i.e., adiag{U1, U2} =
[

0 U1
U2 0

]
. Rn represents the n-dimensional Euclidean space and

the set of real n×m matrices is denoted by Rn×m. The other notations are standard.

2. Problem Statement and Preliminaries

Consider one class of linear systems with a differentiable time-varying delay as{
ẋ(t) = Ax(t) + Adx(t− h(t))
x(t) = ε(t), t ∈ [−h, 0]

(1)

where x(t) ∈ Rn is the state vector; ε(t) is the initial condition. To obtain the main results
of this work, the following assumptions are necessary.

Assumption 1. The matrices A ∈ Rn×n and Ad ∈ Rn×n in (1) are constant-coefficient matrices,
and the time-varying delay h(t) in (1) satisfies

0 ≤ h(t) ≤ h, |ḣ(t)| ≤ µ ≤ 1 (2)

where h and µ are known constant scalars.
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Assumption 2. The second-order derivative of the system state is supposed to be available.

Remark 1. The Assumption 1 has been conducted in [33] to investigate the stability problem of
systems with time-varying for the first time. And then the same issue is concerned in [34] by using
new inequality based on the second-order derivative of x(t). In addition, the second-order linear
systems, in which the second-order derivative of x(t) is available, have been studied in [35,36].
Above all, it is reasonable that the second-order derivative of x(t) is supposed to be available.

Based on Assumption 1, and according to the system dynamic Equation (1), the second order
derivative of x(t) is

ẍ(t) = Aẋ(t) + (1− ḣ(t))Ad ẋ(t− h(t)) (3)

where Equation (3) is called auxiliary equation.

Remark 2. It can be found that the coefficient matrix of the delay-dependent term in the auxiliary
Equation (3) is (1− ḣ(t))Ad, which can effectively reflected the rate of change of delay. Moreover,
some system states, such as ẍ(t), ẍ(t− h(t)) and ẍ(t− h), also can be utilized to analyze the stability
of system (1) with the help of the auxiliary Equation (3). Therefore, a less conservative stability criterion
can be expected.

Lemma 1. ([24]) For any positive definite matrix R ∈ Rn×n, scalars τ1 and τ2 with τ1 < τ2, and
a differentiable function γ(s) : [τ1, τ2]→ Rn, the following inequality holds

(τ2 − τ1)
∫ τ2

τ1

γ̇T(s)Rγ̇(s)ds ≥ ΦT
1 RΦ1 + 3ΦT

2 RΦ2

where Φ1 = γ(τ2)− γ(τ1), Φ2 = γ(τ2) + γ(τ1)− 2
τ2−τ1

∫ τ2
τ1

γ(s)ds.

Lemma 2. ([37]) For any vectors Λ1, Λ2, and symmetric matrices R1 > 0, R2 > 0, free matrix

M, satisfying
[

R1 M
MT R2

]
> 0, and a real scalar α ∈ (0, 1), the following inequality holds

1
α

ΛT
1 R1Λ1 +

1
1− α

ΛT
2 R2Λ2 ≥

[
Λ1
Λ2

]T[ R1 M
MT R2

][
Λ1
Λ2

]
.

Lemma 3. ([38]) For an appropriate dimensional symmetric matrix R > 0, and matrices Ψ, Λ, Σ,
the following (I) and (II) are equivalent

(I) Ψ−ΛT RΛ < 0, (II)
[

Ψ + ΛTΣ + ΣTΛ ΣT

Σ −R

]
< 0.

3. Stability Conditions

In this section, with the help of the auxiliary Equation (3), our main aim is to utilize more
system information to obtain a new stability criterion for the system (1), which can provide a
larger MDUB compared with that of some existing ones in two well-known examples.

Theorem 1. For given integer n, scalars h > 0, µ ≤ 1 , matrices A ∈ Rn×n, Ad ∈ Rn×n, the
system (1) subject to (2) is asymptotically stable if there exists a symmetric positive definite matrices
P1 ∈ R8n×8n, P2 ∈ R8n×8n, Q1 ∈ R3n×3n, Q2 ∈ R3n×3n, R1 ∈ R2n×2n, R2 ∈ R2n×2n, and
free matrices S ∈ R4n×4n, M ∈ R11n×n, N ∈ R11n×n, Σ ∈ R8n×11n, U1 ∈ Rn×n, U2 ∈ Rn×n,
such that
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[
Ψ(0, µ) + Λ(0)Σ + ΣTΛT(0) ΣT

Σ −R̃

]
< 0 (4)[

Ψ(0, −µ) + Λ(0)Σ + ΣTΛT(0) ΣT

Σ −R̃

]
< 0 (5)[

Ψ(h, µ) + Λ(h)Σ + ΣTΛT(h) ΣT

Σ −R̃

]
< 0 (6)

[
Ψ(h, −µ) + Λ(h)Σ + ΣTΛT(h) ΣT

Σ −R̃

]
< 0 (7)

where

Ψ(h(t), ḣ(t)) = Ψ1(h(t), ḣ(t)) + Ψ2(ḣ(t)), Λ(h(t)) = [Λ1(h(t)) Λ2(h(t))],

Ψ1(h(t), ḣ(t)) = 2T1[h(t)P1 + (h− h(t))P2]TT
2 (ḣ(t)) + T1ḣ(t)(P1 − P2)TT

1 + T3Q1TT
3 − T4(1−

ḣ(t))(Q1 −Q2)TT
4 − T5Q2TT

5 + T6h(1− ḣ(t))(h− h(t))(R2 − R1)TT
6 + T7h2R1TT

7

+eT
4 hU1e4 − eT

5 h(U1 −U2)e5 − eT
6 hU2e6, Ψ2(ḣ(t)) = 2eMΓ1 + 2eNΓ2(ḣ(t)),

Λ1(h(t)) = [eT
1 − eT

2 eT
4 − eT

5 h(t)(eT
1 + eT

2 )− 2eT
10 h(t)(eT

4 + eT
5 )− 2(eT

1 − eT
2 )],

Λ2(h(t)) = [eT
2 − eT

3 eT
5 − eT

6 (h− h(t))(eT
2 + eT

3 )− 2eT
11 (h− h(t))(eT

5 + eT
6 )− 2(eT

2 − eT
3 )],

e = [eT
1 eT

2 eT
3 eT

4 eT
5 eT

6 eT
7 eT

8 eT
9 eT

10 eT
11],

Γ1 = Ae1 + Ade2 − e4, Γ2(ḣ(t)) = Ae4 + (1− ḣ(t))Ade5 − e7,

T1 = [eT
1 eT

2 eT
3 eT

4 eT
5 eT

6 eT
10 eT

11],

T2(ḣ(t)) = [eT
4 (1− ḣ(t))eT

5 eT
6 eT

7 (1− ḣ(t))eT
8 eT

9 eT
1 − (1− ḣ(t))eT

2 (1− ḣ(t))eT
2 − eT

3 ],

T3 = [eT
1 eT

4 eT
7 ], T4 = [eT

2 eT
5 eT

8 ], T5 = [eT
3 eT

6 eT
9 ], T6 = [eT

5 eT
8 ], T7 = [eT

4 eT
7 ],

R̄1 = R1 + Ū1, Ū1 = adiag{U1, U1}, R̄2 = R2 + Ū2, Ū2 = adiag{U2, U2},
_
R1 = diag

{
R̄1,

3R̄1

h2

}
,
_
R2 = diag

{
R̄2,

3R̄2

h2

}
, R̃ =

[ _
R1 S

ST
_
R2

]
,

ei = [0n·(i−1)n, In, 0n·(11−i)n] ∈ Rn×11n, i = 1, 2, · · · , 11.

Proof. For the simplicity, let us first define

θT(t) = [xT(t) xT(t− h(t)) xT(t− h) ẋT(t) ẋT(t− h(t)) ẋT(t− h) ẍT(t) ẍT(t− h(t))

ẍT(t− h)
∫ t

t−h(t)
xT(s)ds

∫ t−h(t)

t−h
xT(s)ds].

χT
1 (t) = [xT(t) xT(t− h(t)) xT(t− h) ẋT(t) ẋT(t− h(t)) ẋT(t− h)∫ t

t−h(t)
xT(s)ds

∫ t−h(t)

t−h
xT(s)ds],

χT
2 (t) = [xT(t) ẋT(t) ẍT(t)], κ̇T(t) = [ẋT(t) ẍT(t)].

Then, we choose a delay-product-type augmented LKF candidate as

V(t) = V1(t) + V2(t) + V3(t) (8)

where

V1(t) = χT
1 (t)(h(t)P1 + (h− h(t))P2)χ1(t) (9)

V2(t) =
∫ t

t−h(t)
χT

2 (s)Q1χ2(s)ds +
∫ t−h(t)

t−h
χT

2 (s)Q2χ2(s)ds (10)

V3(t) = h
∫ t

t−h(t)
(h− t + s)κ̇T(s)R1κ̇(s)ds + h

∫ t−h(t)

t−h
(h− t + s)κ̇T(s)R2κ̇(s)ds (11)
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Along the trajectories of system (1), the derivative of V(t) on time t is

V̇(t) = V̇1(t) + V̇2(t) + V̇3(t) (12)

where

V̇1(t) = θT(t)[2h(t)T1P1TT
2 (ḣ(t)) + 2(h− h(t))T1P2TT

2 (ḣ(t)) + T1ḣ(t)(P1 − P2)TT
1 ]θ(t) (13)

V̇2(t) = θT(t)[T3Q1TT
3 − (1− ḣ(t))T4(Q1 −Q2)TT

4 − T5Q2TT
5 ]θ(t) (14)

V̇3(t) = θT(t)∆(h(t), ḣ(t))θ(t)− h
∫ t

t−h(t)
κ̇T(s)R1κ̇(s)ds− h

∫ t−h(t)

t−h
κ̇T(s)R2κ̇(s)ds (15)

with ∆(h(t), ḣ(t)) = T6h(1− ḣ(t))(h − h(t))(R2 − R1)TT
6 + T7h2R1TT

7 . Then, let us con-
sider the following two zero equalities

0 = h
[

ẋT(t)U1 ẋ(t)− ẋT(t− h(t))U1 ẋ(t− h(t))
]
− 2h

∫ t

t−h(t)
ẋT(s)U1 ẍ(s)ds (16)

0 = h
[

ẋT(t− h(t))U2 ẋ(t− h(t))− ẋT(t− h)U2 ẋ(t− h)
]
− 2h

∫ t−h(t)

t−h
ẋT(s)U2 ẍ(s)ds (17)

where U1 ∈ Rn×n and U2 ∈ Rn×n are free matrices. Summing (16) and (17) yields

0 = θT(t)h
[
eT

4 U1e4 − eT
5 (U1 −U2)e5 − eT

6 U2e6

]
θ(t)

−h
∫ t

t−h(t)
κ̇T(s)Ū1κ̇(s)ds− h

∫ t−h(t)

t−h
κ̇T(s)Ū2κ̇(s)ds (18)

Adding (18) into (15), one has

V̇3(t) = θT(t)
[
∆(h(t), ḣ(t)) + eT

4 hU1e4 − eT
5 h(U1 −U2)e5 − eT

6 hU2e6

]
θ(t)

−h
∫ t

t−h(t)
κ̇T(s)R̄1κ̇(s)ds− h

∫ t−h(t)

t−h
κ̇T(s)R̄2κ̇(s)ds (19)

By employing Lemma 1, if R̄1 > 0, based on h(t) ≤ h, one gets that

−h
∫ t

t−h(t)
κ̇T(s)R̄1κ̇(s)ds ≤ − h

h(t)

[
Φ1R̄1ΦT

1 + Φ23R̄1ΦT
2

]
≤ − h

h(t)

(
Φ1R̄1ΦT

1 + Φ2
3R̄1

h2 h2(t)ΦT
2

)
= − h

h(t)
θT(t)Λ1(h(t))

_
R1ΛT

1 (h(t))θ(t) (20)

where

Φ1 =

[
x(t)− x(t− h(t))
ẋ(t)− ẋ(t− h(t))

]T

, Φ2 =

[
x(t) + x(t− h(t))− 2

h(t)

∫ t
t−h(t) x(s)ds

ẋ(t) + ẋ(t− h(t))− 2
h(t) (x(t)− x(t− h(t)))

]T

.

Similarly, if R̄2 > 0, based on h(t) ≥ 0, we obtain

−h
∫ t−h(t)

t−h κ̇T(s)R̄2κ̇(s)ds ≤ − h
h−h(t)

(
Φ3R̄2ΦT

3 + Φ43R̄2ΦT
4
)

≤ − h
h−h(t)

(
Φ3R̄2ΦT

3 + Φ4
3R̄2
h2 (h− h(t))2ΦT

4

)
= − h

h−h(t) θT(t)Λ2(h(t))
_

R2ΛT
2 θ(t) (21)

where

Φ3 =

[
x(t− h(t))− x(t− h)
ẋ(t− h(t))− ẋ(t− h)

]T

, Φ4 =

[
x(t− h(t)) + x(t− h)− 2

h−h(t)

∫ t−h(t)
t−h x(s)ds

ẋ(t− h(t)) + ẋ(t− h)− 2
h−h(t) (x(t− h(t)− x(t− h))

]T

.
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Combining (20) and (21), for arbitrary matrix S ∈ R4n×4n, if R̃ =

[ _
R1 S

ST
_
R2

]
> 0,

by Lemma 2, we obtain

−θT(t)
(

h
h(t)Λ1(h(t))

_
R1ΛT

1 (h(t)) +
h

h−h(t)Λ2(h(t))
_
R2ΛT

2 (h(t))
)

θ(t)

≤ −θT(t)Λ(h(t))R̃ΛT(h(t))θ(t) (22)

Moreover, when h(t) = 0, we have
∫ t

t−h(t) κ̇T(s)ds =
∫ t

t−h(t)

∫ t
θ κ̇T(s)dsdθ = 0. when

h(t) = h, we obtain
∫ t−h(t)

t−h κ̇T(s)ds =
∫ t−h(t)

t−h

∫ t−h(t)
θ κ̇T(s)dsdθ = 0. Therefore, the inequal-

ity (22) still holds. From (13) to (22), we get an upper bound of V̇(t) as

V̇(t) =
3

∑
i=1

V̇i(t) ≤ θT(t)
(

Ψ1(h(t), ḣ(t))−Λ(h(t))R̃ΛT(h(t))
)

θ(t) (23)

Now, we further rewrite the system (1) and the auxiliary Equation (3) as

0 = Ax(t) + Adx(t− h(t))− ẋ(t) (24)

0 = Aẋ(t) + Ad(1− ḣ(t))ẋ(t− h(t))− ẍ(t) (25)

As the zero equalities in (24) and (25) can be defined by the elements of θ(t), respectively, we
get that Γ1θ(t) = 0 and Γ2(ḣ(t))θ(t) = 0. As a result, the following two zero equalities hold

0 = 2θT(t)eMΓ1θ(t) (26)

0 = 2θT(t)eNΓ2(ḣ(t))θ(t) (27)

for any matrices M ∈ R11n×n, N ∈ R11n×n. Taking (26) and (27) into (23), one gets that

V̇(t) ≤ θT(t)
(

Ψ(h(t), ḣ(t))−Λ(h(t))R̃ΛT(h(t))
)

θ(t) (28)

For θ(t) 6= 0, h(t) ∈ [0, h], ḣ(t) ∈ [−µ, µ], if

Ψ(h(t), ḣ(t))−Λ(h(t))R̃ΛT(h(t)) < 0 (29)

then V̇(t) < 0. By utilizing Lemma 3, the inequality (29) is equivalent to

Θ(h(t), ḣ(t)) =
[

Ψ(h(t), ḣ(t)) + Λ(h(t))Σ + ΣTΛT(h(t)) ΣT

Σ −R̃

]
< 0 (30)

for any matrix Σ ∈ R8n×11n. Since Θ(h(t), ḣ(t)) is affine on h(t) ∈ [0, h] and ḣ(t) ∈
[−µ, µ], by the convex property, Θ(h(t), ḣ(t)) < 0 for h(t) ∈ [0, h] and ḣ(t) ∈ [−µ, µ]
if and only if inequalities (4)–(7) hold. In addition, if inequality (30) is satisfied, then the

condition R̃ =

[ _
R1 S

ST
_
R2

]
> 0 also holds. It can be further seen that

_
R j =

[
R̄j 0

0
3R̄j
h2

]
>

0 , then, R̄j > 0, j = 1, 2. As a result, if the matrix inequalities (4)–(7) are satisfied, based
on Lyapunov stability theory, the system (1) subject to (2) is asymptotically stable. This
completes the proof.

Remark 3. Theorem 1 includes h(t) and ḣ(t), but it does not include the second order derivative
ẍ(t), The proof of Theorem 1 uses it in Equations (16), (17) and (25), but the result stated in Theorem 1
does not use ẍ(t). Then, it is necessary for the accomplishment of the model (1), but the application
of Theorem 1 would not need the knowledge on ẍ(t). Above all, it seems that Assumption 1 is not
necessary. The question comes from the reviewer. In fact, if we do not make an assumption, then the



Electronics 2022, 11, 3492 7 of 13

auxiliary Equation (3) may not be obtained. Without the help of (3), the obtained stability condition
based on the LKF (8) is infeasible, which can be checked by the LMI toolbox in Matlab. Above all, the
Assumption 1 is necessary.

Remark 4. It has been proved that Lemma 1 can get a tighter lower bound compared with Jensen
integral inequality [24]. However, when we use Lemma 1 to derive Theorem 1, quadratic or
higher order terms on h(t) and (h− h(t)) will be encountered inevitably. Since the quadratic or
higher-order terms are non-convex, the solving of non-convex matrix inequalities is not easy. To
obtain an affine stability criterion on h(t) and ḣ(t), we need to avoid the emergence of quadratic
or higher order terms on h(t) and ḣ(t) in Theorem 1. Therefore, based on h(t) ≤ h, Φ23R̄1ΦT

2

is estimated as h(t)Φ2
3R̄1
h2 ΦT

2 h(t) in (20). And based on h(t) ≥ 0, Φ43R̄2ΦT
4 is estimated as

(h− h(t))Φ4
3R̄2
h2 ΦT

4 (h− h(t)) in (21). In addition, the method of adding zero terms is adopted
to avoid directly calculating ẍT(t)R1 ẍ(t) in V̇3(t), and thus avoid the emergence of quadratic or
higher order terms on ḣ(t) in Theorem 1. Finally, a new stability criterion (Theorem 1), which is
affine on h(t) and ḣ(t) and can be directly solved by the LMI toolbox, has been achieved by Lemma 3.

Remark 5. The LKF (8) is different from some existing ones. States vectors ẋT(t), ẋT(t− h(t)),
ẋT(t− h) are included in χT

1 (t), and ẍT(t) is introduced in χT
2 (t) and κ̇T(t), which bring more

helpful information on ḣ(t) and system states into the derivative of the LKF. Moreover, the derivative
of V3(t) includes the terms of h(t) and ḣ(t) and thus it can reflect the rate of change of delay well.
Therefore, the relaxed stability condition (Theorem 1) has been achieved by the LKF (8).

Remark 6. Two new state augmented zero equalities i.e., (16) and (17), are introduced for the first
time, which can help reduce the conservatism of the obtained stability condition.

To further illustrate the function of the auxiliary Equation (3), the following Corollary 1
without the help of the auxiliary Equation (3) is provided.

Corollary 1. For given integer n, scalars h > 0, µ ≤ 1 , matrices A ∈ Rn×n, Ad ∈ Rn×n, the
system (1) subject to (2) is asymptotically stable if there exist symmetric positive definite matrices
P̄1 ∈ R5n×5n, P̄2 ∈ R5n×5n, Q̄1 ∈ R2n×2n, Q̄2 ∈ R2n×2n, X1 ∈ Rn×n, X2 ∈ Rn×n, and free
matrices S̄ ∈ R2n×2n, M̄ ∈ R8n×n, Σ̄ ∈ R4n×8n, such that[

Ψ̄(0, µ) + Λ̄(0)Σ̄ + Σ̄TΛ̄T(0) Σ̄T

Σ̄ −X̃

]
< 0 (31)[

Ψ̄(0, −µ) + Λ̄(0)Σ̄ + Σ̄TΛ̄T(0) Σ̄T

Σ̄ −X̃

]
< 0 (32)[

Ψ̄(h, µ) + Λ̄(h)Σ̄ + Σ̄TΛ̄T(h) Σ̄T

Σ̄ −X̃

]
< 0 (33)[

Ψ̄(h, −µ) + Λ̄(h)Σ̄ + Σ̄TΛ̄T(h) Σ̄T

Σ̄ −X̃

]
< 0 (34)

where

Ψ̄(h(t), ḣ(t)) = 2T̄1[h(t)P̄1 + (h− h(t))P̄2]T̄T
2 (ḣ(t)) + T̄1ḣ(t)(P̄1 − P̄2)T̄T

1 + T̄3Q̄1T̄T
3 − T̄4(1−

ḣ(t))(Q̄1 − Q̄2)T̄T
4 − T̄5Q̄2T̄T

5 + eT
5 h(1− ḣ(t))(h− h(t))(X2 − X1)e5

+eT
4 h2X1e4 + 2ēM̄(Ae1 + Ade2 − e4), Λ̄(h(t)) = [Λ̄1(h(t)) Λ̄2(h(t))],

Λ̄1(h(t)) = [eT
1 − eT

2 h(t)(eT
1 + eT

2 )− 2eT
7 ], Λ̄2(h(t)) = [eT

2 − eT
3 (h− h(t))(eT

2 + eT
3 )− 2eT

8 ],

ē = [eT
1 eT

2 eT
3 eT

4 eT
5 eT

6 eT
7 eT

8 ], T̄1 = [eT
1 eT

2 eT
3 eT

7 eT
8 ],

T̄2(ḣ(t)) = [eT
4 (1− ḣ(t))eT

5 eT
6 eT

1 − (1− ḣ(t))eT
2 (1− ḣ(t))eT

2 − eT
3 ],

T̄3 = [eT
1 eT

4 ], T̄4 = [eT
2 eT

5 ], T̄5 = [eT
3 eT

6 ],



Electronics 2022, 11, 3492 8 of 13

X̄1 = diag
{

X1,
3X1

h2

}
, X̄2 = diag

{
X2,

3X2

h2

}
, X̃ =

[
X̄1 S̄
S̄T X̄2

]
,

ei = [0n·(i−1)n, In, 0n·(8−i)n] ∈ Rn×8n, i = 1, 2, · · · , 8.

Proof. The LKF candidate is chosen as

V̄(t) = V̄1(t) + V̄2(t) + V̄3(t) (35)

where

V̄1(t) = χ̄T
1 (t)(h(t)P̄1 + (h− h(t))P̄2)χ̄1(t) (36)

V̄2(t) =
∫ t

t−h(t)
χ̄T

2 (s)Q̄1χ̄2(s)ds +
∫ t−h(t)

t−h
χ̄T

2 (s)Q̄2χ̄2(s)ds (37)

V̄3(t) = h
∫ t

t−h(t)
(h− t + s)ẋT(s)X1 ẋ(s)ds + h

∫ t−h(t)

t−h
(h− t + s)ẋT(s)X2 ẋ(s)ds (38)

χ̄T
1 (t) = [xT(t) xT(t− h(t)) xT(t− h)

∫ t

t−h(t)
xT(s)ds

∫ t−h(t)

t−h
xT(s)ds],

χ̄T
2 (t) = [xT(t) ẋT(t)].

Then, we define

θ̄T(t) = [xT(t) xT(t− h(t)) xT(t− h) ẋT(t) ẋT(t− h(t)) ẋT(t− h)∫ t

t−h(t)
xT(s)ds

∫ t−h(t)

t−h
xT(s)ds],

The rest of the proof processes are similar to that of Theorem 1. This completes the proof.

Remark 7. As stated in Remark 3, the obtained stability condition based on the LKF (8) is infeasible
without the help of (3). To further illustrate the function of the auxiliary Equation (3), we provide
Corollary 1, which is derived based on the LKF (35). The LKF (35) is obtained by removing the ẍ(t)
dependent terms in LKF (8). In this case, the zero equalities in (16) and (17) are not suitable for
LKF (35) due to the system state ẍ(t) is not included.

Remark 8. On the one hand, for the case that the upper bound of the delay derivative is unknown,
the auxiliary Equation (3) cannot be employed to analyze the systems. The reason is that one cannot
effectively handle the function ḣ(t) that appears in the auxiliary equation. Thus, the system state
ẍ(t) also cannot be included in the LKF (8). Otherwise, the obtained stability condition based on
the LKF (8) is infeasible, which can be checked by the LMI toolbox in Matlab. In other words, the
obtained stability conditions in this manuscript are just suitable for the case that the upper bound of
the delay derivative is available, but not for the case that the upper bound of the delay derivative is
unknown. On the other hand, for the case that the upper bound µ of the delay derivative is larger
than 1, the obtained stability condition is equivalent to the ones, which are obtained under µ = 1.
The proof can be found in Theorem 2.8 in Section 2.2.3 of Chapter 2 in [39].

Remark 9. The stabilization problem of system is not considered in this paper. As we all know,
to achieve a less conservative stabilization condition, it is very important to first achieve improved
stability conditions for the systems with time-varying delays. In fact, if system states are available
for the state feedback control, the stabilization conditions can be easily derived based on the obtained
stability conditions, and the method of designing a controller gain is similar to the ones in [40,41].

In the next section, we will use two numerical examples that have been extensively studied in
the literature to illustrate the effectiveness of the new stability conditions. The goal is to compute the
MDUB h, under which the system is still stable. Based on Theorem 1 and Corollary 1, the Algorithm 1
is given.
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Algorithm 1: Obtaining the optimal value of h based on Theorem 1 or Corollary 1.

Step 1. Given an integer n > 0, constants µ ≤ 1, h > 0 and a smaller ε > 0, where ε
is one step increment of h, and input the known constant coefficient matrices
A∈ Rn×n and Ad ∈ Rn×n.

Step 2. Solve the LMIs in Theorem 1 or Corollary 1 by using the feasp solver in the
Matlab/LMI Toolbox. If the LMIs are feasible, go to Step 3, else go to Step 4.

Step 3. Set h = h + ε, and solve the LMIs again. If the LMIs are feasible, repeat
Step 3, else go to Step 5.

Step 4. Set h = h− ε, and solve the LMIs again. If the LMIs are infeasible, repeat
Step 4, else go to Step 5.

Step 5. Output the MDUB h and exit.

4. Numerical Examples

Example 1. Consider the system (1) with

Ex1: A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
. (39)

Ex2: A =

[
0 1
−1 −2

]
, Ad =

[
0 0
−1 1

]
. (40)

and suppose that the second-order derivatives of system states are available.
For different µ, based on Algorithm 1, Tables 1 and 2 list, respectively, the maximum delay

upper bound(MDUB) h obtained by various methods and the number of decision variables(NoDVs)
of these methods are also calculated in the last column, where if a matrix is a symmetric matrix, then
the NoDV of the matrix is n(n+1)

2 , and if a matrix is a free matrix, then the NoDV of the matrix is
n2. The n represents the dimension of the system.

Table 1. The MDUB h for different µ in Ex1.

Methods/µ 0.1 0.5 0.8 NoDVs

Theorem 3 [23] 4.8562 3.1831 2.7391 59.5n2 + 14.5n
Theorem 1 [14] 4.867 3.12 – 53.5n2 + 8.5n

Theorem 2(C1) [42] 4.940 3.304 2.877 69n2 + 12n
Theorem 1 [43] 4.945 3.314 2.882 100.5n2 + 8.5n

Corollary 1(II) [44] 4.966 3.395 2.983 85n2 + 15n
Theorem 1 [15] 4.996 3.251 2.867 38n2 + 9n

Theorem 8 (N = 4) [45] 5.01 3.19 2.70 146.5n2 + 9.5n
Corollary 1 4.8662 3.3349 2.9886 66n2 + 8n
Theorem 1 5.0213 3.6032 3.2235 205n2 + 13n

Table 2. The MDUB h for different µ in Ex2.

Methods/µ 0.2 0.5 0.8 NoDVs

Theorem 1 [46] 4.5179 2.4158 1.8384 142n2 + 18n
Theorem 3 [23] 4.6380 2.5898 2.0060 59.5n2 + 14.5n

Corollary 1(II) [44] 4.947 2.801 2.137 85n2 + 15n
Corollary 2 [3] 4.969 2.774 2.117 235n2 + 34n

Theorem 2 (N = 5) [8] 4.985 2.806 2.148 103.5n2 + 15.5n
Theorem 2 [17] 4.997 2.814 2.149 307n2 + 13n
Theorem 1 [2] 5.0035 2.8096 2.1499 249.5n2 + 15.5n

Corollary 1 4.9481 3.1531 2.7024 66n2 + 8n
Theorem 1 5.1073 3.3984 2.9053 205n2 + 13n
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For the two well-known examples, as can be seen in Tables 1 and 2, the MDUB h obtained by
Theorem 1 are larger than those of the existing ones listed in Tables 1 and 2, respectively. Moreover,
the larger the µ is, the more obvious the improvement (see µ = 0.5 or µ = 0.8) is. Therefore,
compared with these stability conditions proposed by the literature listed in Tables 1 and 2, in this
work, a less conservative stability criterion (Theorem 1) has been obtained. Especially, the MAUB h
obtained by Theorem 1 is larger than that of Corollary 1 for these two examples, which illustrates
that taking the auxiliary Equation (3) into consideration is very important and efficient for the
stability analysis of the systems with a differentiable time-varying delay.

Remark 10. It should be pointed out that Theorem 1 involves a larger number of NoDVs. In other
words, it is time-consuming to solve the matrix inequalities in Theorem 1. Fortunately, the
high-performance computer can easily make up for this shortcoming in the rapid development
of technology.

To system (39) and system (40), we set the initial condition ε(t) = [−1, 1]T , the time-varying
delay h(t) = h

2 (1 + sin( 2µt
h )). The state responses of system (39) with h = 5.0213 and µ = 0.1 are

plotted in Figure 1, and of system (40) with h = 5.1073 and µ = 0.2 are depicted in Figure 2. From
Figures 1 and 2, we can clearly see that the two systems with given parameters are stable at their
respective equilibrium point.

Figure 1. The trajectories of the system states in Ex1.

Figure 2. The trajectories of the system states in Ex2.

Remark 11. The auxiliary equation may be complex when the original systems have uncertainties.
For this case, how to deal with the uncertainties in the auxiliary equation is a difficult task, and it
will be a work in our future study.

5. Conclusions

The stability problem for the linear systems with a differentiable time-varying delay
has been considered by an auxiliary equation-based method in this paper. According to the
system (1) and the auxiliary Equation (3), an appropriate delay-product-type augmented
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LKF has been constructed, which can utilize more delay and system state information, Then,
based on the LKF, a relaxed stability condition has been derived by employing Lemmas 1–3,
adding new zero terms and convex analysis method. Finally, two typical numerical examples
have been given to illustrate the usefulness of the proposed method.

The stability condition proposed in this paper has some limitations. For example, the
coefficient matrices A ∈ Rn×n and Ad ∈ Rn×n in (1) are needed to be assumed to be known,
and the time-varying delay h(t) in (1) need to be assumed to satisfies 0 ≤ h(t) ≤ h, |ḣ(t)| ≤
µ ≤ 1, where h and µ are known constants. On the other hand, without the help of an
auxiliary Equation (3), the obtained result is infeasible by the LKF (8). Therefore, some
future works are to solve these problems mentioned above.
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