
Citation: Dai, J.; Yin, H.; Lv, Y.; Xu,

W.; Yang, Z. Multi-Gbps LDPC

Decoder on GPU Devices. Electronics

2022, 11, 3447. https://doi.org/

10.3390/electronics11213447

Academic Editor: Xue (Shelley) Lin

Received: 24 September 2022

Accepted: 22 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Multi-Gbps LDPC Decoder on GPU Devices
Jingxin Dai 1 , Hang Yin 2,* , Yansong Lv 1, Weizhang Xu 2 and Zhanxin Yang 2

1 Engineering Research Center of Digital Audio and Video, Communication University of China,
Beijing 100024, China

2 State Key Laboratory of Media Convergence and Communication, Communication University of China,
Beijing 100024, China

* Correspondence: yinhang@cuc.edu.cn

Abstract: To meet the high throughput requirement of communication systems, the design of high-
throughput low-density parity-check (LDPC) decoders has attracted significant attention. This
paper proposes a high-throughput GPU-based LDPC decoder, aiming at the large-scale data process
scenario, which optimizes the decoder from the perspectives of the decoding parallelism and data
scheduling strategy, respectively. For decoding parallelism, the intra-codeword parallelism is fully
exploited by combining the characteristics of the flooding-based decoding algorithm and GPU
programming model, and the inter-codeword parallelism is improved using the single-instruction
multiple-data (SIMD) instructions. For the data scheduling strategy, the utilization of off-chip
memory is optimized to satisfy the demands of large-scale data processing. The experimental results
demonstrate that the decoder achieves 10 Gbps throughput by incorporating the early termination
mechanism on general-purpose GPU (GPGPU) devices and can also achieve a high-throughput and
high-power-efficiency performance on low-power embedded GPU (EGPU) devices. Compared with
the state-of-the-art work, the proposed decoder had a ×1.787 normalized throughput speedup at the
same error correcting performance.

Keywords: LDPC; high throughput; decoding; GPU; parallelism

1. Introduction

Low-density parity-check (LDPC) codes, proposed by Gallager in 1962 [1] and re-
discovered by Mackay and Neal in 1996 [2], are a class of error-correction codes whose
performance is close to the Shannon limit. They have been used in many communication
systems, such as 5G New-Radio (NR) [3], WiMAX (802.16e) [4], WiFi (802.11N) [5], and
DVB-S2 [6]. Moreover, the LDPC code was also used in the CV-QKD system [7] and the
NAND memory storage [8]. However, LDPC codes also have the disadvantage of a high
decoding complexity, which becomes a significant challenge to meet the requirements for
high throughput in communication systems. For example, the peak throughput of the 5G
NR standard needs to achieve 10 Gbps [9]. Therefore, the design of high-throughput LDPC
decoders has attracted significant attention.

Due to the high parallelism of LDPC decoding algorithms, high-throughput LDPC
decoders can be achieved by devices with parallel processing capabilities. Based on special-
ized hardware platforms such as ASIC and FPGA, the decoding throughput performance of
LDPC decoders can be extremely high [10–13] but also bring a high development cost. Dif-
ferent from traditional development methods, soft-defined radio (SDR) technology offers
a software-based solution for many hardware devices in communication systems [14,15].
This software solution considerably reduces the hardware resources and development
time necessary for the deployment of radio-based communications systems, and it can
be very useful when testing protocols, prototypes, and applications in a simple and eco-
nomical way. However, traditional SDR implementation platforms, such as X86 CPU,
have limited hardware resources and cannot meet the high throughput requirements of

Electronics 2022, 11, 3447. https://doi.org/10.3390/electronics11213447 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213447
https://doi.org/10.3390/electronics11213447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0136-2460
https://orcid.org/0000-0002-0889-3902
https://doi.org/10.3390/electronics11213447
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213447?type=check_update&version=2

Electronics 2022, 11, 3447 2 of 17

communication systems. Due to the advantage of graphics processing unit (GPU) devices
offering a large number of computing cores, decoders based on GPU can also achieve
a high throughput and even outperform FPGAs in some cases [16]. GPU also has the
advantage of configurable flexibility, as the compute unified device architecture (CUDA)
from NVIDIA Corporation enables efficient software design of GPU devices [17]. It should
be noted that GPUs from other manufacturers can implement the software design by the
OpenCL protocol [18]. In addition, for the application of GPU in an embedded platform,
many researchers have also studied the computation optimization technology of embedded
GPU (EGPU) and achieved good results [19,20]. Due to these advantages, GPU plays an
important role in communication systems based on SDR platforms. As a result, the designs
of the high-throughput GPU-based decoder that can be dynamically configured to enable
multi-length and multi-rate decoding have become increasingly more attractive.

GPU-based high-throughput LDPC decoders have been widely studied in the past
years [21–26]. In [21], a high-throughput decoder based on layered scheduling was pro-
posed. Some GPU-based optimizations were presented in [22] to obtain a high throughput,
which reached a 1.27 Gbps peak throughput on a single GPU. By applying an optimized
message updating scheme for QC-LDPC of 5G NR, two GPU-based LDPC decoders based
on flooding and layered scheduling were presented in [23], respectively. The shortening
and puncturing techniques in 5G NR were adopted in [24] when designing the LDPC
decoder. To meet the different demands of 5G NR, [25] proposed an LDPC decoder with
various working modes. The authors of [26] proposed a low-latency decoder design strat-
egy that exploits additional parallelism, which also has a high throughput performance.
However, despite the availability of many GPU-based LDPC decoders, a decoder designed
for scenarios that can handle large-scale data is still lacking.

To address the challenge of the scenario required to process a large amount of data, this
paper proposes a novel high-throughput flooding-based LDPC decoder, which can handle
different rates and lengths of LDPC codes. To maximize the utilization of the parallel
processing ability of GPU, the decoding parallelism of the decoder is optimized from intra-
codeword and inter-codeword parallelisms, respectively. According to the characteristics of
flooding scheduling, the intra-codeword parallelism is improved by reasonably configuring
CUDA kernels. The inter-codeword parallelism is greatly increased by utilizing the SIMD
instruction. To meet the demands of processing of large-scale data, we optimize the
data scheduling strategy by reasonably allocating the memory during decoding. The
experiment results show that the proposed decoder can reach 10 Gbps with the early
termination (ET) mechanism on general-purpose GPU (GPGPU) devices. The proposed
decoder can also obtain a high-throughput and high-power-efficiency performance on
the EGPU devices. Compared with the state-of-the-art work [26], it has a normalized
throughput with a ×1.787 speedup. In short, the main contributions of this paper can be
summarized as follows:

(1) We propose a high decoding parallelism GPU-based LDPC design scheme, which
further optimizes intra-codeword and inter-codeword parallelisms to improve the
throughput performance.

(2) We propose a new GPU-based data scheduling strategy, which enhances the off-chip
memory utilization to match well with different rates and lengths of LDPC codes and
meet the requirements of large-scale data processes.

(3) Combined with the high decoding parallel design scheme and data scheduling strat-
egy, we implement GPU-based high-throughput decoders on GGPU and EGPU de-
vices, respectively. The experimental results show that the proposed decoder outper-
forms the state-of-the-art work in scenarios that need to process large-scale data.

The remainder of this paper is structured as follows. In Section 2, the characteristics
of LDPC codes and the decoding algorithms are briefly introduced. Section 3 illustrates
the implementation of the proposed GPU-based LDPC decoder in detail. The performance
test results and analysis of the decoder and comparisons with other implementations are

Electronics 2022, 11, 3447 3 of 17

given in Section 4. Section 5 discusses the future improvement direction of our decoder.
The conclusions are found in Section 6.

2. LDPC Codes and Decoding Algorithms

LDPC codes are a class of linear (N, K) block codes defined by an M×N sparse binary
parity-check matrix (PCM) H, with K = N −M and rate =K/N. PCM H can be used to
create a bipartite Tanner graph, where rows correspond to check nodes (CNs), columns
correspond to variable nodes (VNs), and non-zero elements in the H represent the edge
linking CNs and VNs [27]. LDPC codes can be decoded by using the belief propagation
(BP) method. The central theory of most LDPC decoding algorithms is that any incorrect
bits may be found and corrected by sending messages from VNs to CNs. Therefore, LDPC
decoding algorithms must iteratively compute the message passing between VNs and CNs
to obtain the decoded data [28].

The two major decoding algorithms of LDPC are the Sum-Product algorithm (SPA)
and the Min-Sum algorithm (MSA). Through these decoding algorithms, a posteriori
probabilities (APPs) can are obtained [29]. As a typical simplification algorithm of SPA,
MSA decreases the computational complexity of the CN computation in SPA, but the
simplicity reduces the error correcting performance [30]. To overcome this issue, two MSAs,
normalized MSA (NMSA) [31] and offset MSA (OMSA) [32], with a scaling parameter or
an offset are presented to address this issue. NMSA and OMSA optimize MSA to provide
negligible error correction performance loss while ensuring low algorithm complexity. The
authors of [33] found that the decoding latency of OMSA is 10% faster than NMSA.

Flooding, layered, and shuffled are three commonly used scheduling for LDPC de-
coding algorithms [23]. Flooding scheduling divides the decoding algorithm into two
independent phases: CN computation and VN computation. In the CN computation phase,
all the check-to-variable (C2V) messages are updated, and in the VN computation phase,
the variable-to-check (V2C) messages are updated. Layered and shuffled scheduling group
the decoding computations according to the row and column of PCM, respectively [34,35].
Taking layered scheduling as an example, the computations of CN and its linked VNs are
performed together. Compared with flooding scheduling, layered and shuffled scheduling
achieve the same decoding performance with only half the number of iterations, thus reduc-
ing the decoding delay (layered scheduling is less complex than shuffled scheduling [36]).
However, despite layered and shuffled scheduling reducing the decoding latency, the
reduction of iteration number results in the data dependence of CN and VN computations,
which means the computation cannot be fully paralleled. As a result, layered and shuffled
scheduling have much lower parallelism than flooding scheduling [37].

Based on the above analysis, we adopt the flooding-based OMSA to maximize the
decoding parallelism of the GPU-based LDPC decoder. The specific decoding steps of the
flooding-based OMSA are shown as follows:

In the first step, the initialization of the algorithm starts. The initial messages sent to
each VN are configured using the corresponding initial log-likelihood ratio (LLR) data. The
expression of the initial message for each VN is stated as:

V0
nm = LLLR

n . (1)

The second step is the CN computation, where C2V messages from CNs to VNs are
computed. The formula for updating the C2V messages is expressed as:

signC2V = ∏
n′

sign(Vi−1
n′m), n′ ∈ [0, N − 1]\m, (2)

Ci
mn =

{
min(min1− β, 0)× signC2V, min1 6= Vi−1

nm(n=m)

min(min2− β, 0)× signC2V, else
. (3)

Electronics 2022, 11, 3447 4 of 17

The third step is the VN computation, where V2C messages from VNs to CNs are
computed. The formula for updating the V2C messages is expressed as:

Vi
nm = LLLR

n + ∑
m′

Ci
m′n, m′ ∈ [0, M− 1]\n. (4)

After performing the maximum number of iterations, the final hard decision oper-
ation can be taken as indicated in the fourth step. The formula for the hard decision is
expressed as:

LAPP
n = Vi

nm + Ci
mn(m=n), (5)

Dn =

{
0 , LAPP

n ≤ 0
1 , LAPP

n > 0
. (6)

The meanings of the variables in four steps are shown as follows: m and n stand for
the indexes of the check and variable nodes and the range of values is [0, M − 1] and
[0, N − 1], respectively. i represents the current number of iterations. Ci

mn and Vi
nm are

the C2V messages from the mth CN to the nth VN and V2C messages from the nth VN
to the mth CN at the ith iteration, respectively. signC2V is the sign bit of the C2V message.
min1 and min2 are the minimum and sub-minimum values in the V2C messages of all
the VNs linked to one CN. β that appeared in the updates of the C2V messages is the
offset factor. LLLR

n stands for the LLR data to be decoded. LAPP
n stands for the APP data

obtained by the decoding iterations. Dn represents the binary decoded data obtained after
the hard decision.

3. Proposed High-Throughput GPU-Based LDPC Decoder

The utilization of the parallel processing capability of GPU and the data scheduling
strategy are two crucial factors for a high-throughput GPU decoder. To fully utilize the
parallel processing capabilities of GPU, we propose a high decoding parallelism design
scheme. The decoding parallelism can be improved by extending the intra-codeword
parallelism or increasing the number of codewords decoding in parallel (the inter-codeword
parallelism). To improve the intra-codeword parallelism, the design uses the characteristics
of flooding scheduling to configure the CUDA kernels reasonably. To improve the inter-
codeword parallelism, the design uses the SIMD instructions to increase the number of
codewords decoding in parallel. For a higher throughput when decoding large-scale data,
the targeted optimization for the data scheduling strategy is made. We reasonably allocate
the GPU memory to improve the memory access efficiency and utilize many methods to
reduce the data transmission delay.

The proposed decoder is based on the CUDA platform and follows the selected
algorithm in Section 2. To describe the proposed decoder more clearly, the (8448, 26,112)
LDPC code in 5G NR is set as an example for the below descriptions.

3.1. High Decoding Parallelism Design Scheme

To improve the intra-codeword parallelism, the design must be effectively mapping the
decoding algorithm to GPU devices. In our design, we extend the architecture described
in [25] and divide the decoding progress into six parts: (1) Initialization and ordering,
(2) check node update, (3) variable node update, (4) hard decision, (5) evaluate check
(optional), and (6) bit packed and reordering. Each part corresponds to one CUDA kernel
(in CUDA terminology, a kernel denotes an enclosed function). Compared with [25], the
introduction of initialization and ordering and hard decision parts further exploits the
parallelizable computation in the flooding scheduling algorithm, which efficiently improves
the intra-codeword parallelism. In addition, considering the iteration number under high
signal-to-noise ratio (SNR) regions is few, we introduce the evaluate check part, which
can judge whether the decoding process should be terminated early, thereby reducing the
launch number of decoding kernels. The processing flow chart of the design is shown in
Figures 1 and 2.

Electronics 2022, 11, 3447 5 of 17

Electronics 2022, 11, x FOR PEER REVIEW 5 of 21

kernel (in CUDA terminology, a kernel denotes an enclosed function). Compared with
[25], the introduction of initialization and ordering and hard decision parts further ex-
ploits the parallelizable computation in the flooding scheduling algorithm, which effi-
ciently improves the intra-codeword parallelism. In addition, considering the iteration
number under high signal-to-noise ratio (SNR) regions is few, we introduce the evaluate
check part, which can judge whether the decoding process should be terminated early,
thereby reducing the launch number of decoding kernels. The processing flow chart of the
design is shown in Figures 1 and 2.

Figure 1. Process flow of the proposed GPU-based LDPC decoder without the evaluate check part.

Figure 1. Process flow of the proposed GPU-based LDPC decoder without the evaluate check part.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 21

Figure 2. Process flow of the proposed GPU-based LDPC decoder with the evaluate check part.

To improve the inter-codeword parallelism, the SIMD instruction of GPU is utilized
in this design. Due to the data type for the SIMD instruction built into CUDA being 32-
bit, two 16-bit or four 8-bit data can be processed simultaneously. Motivated by [33], we
take advantage of the SIMD instructions at the codeword level, which can execute the
same computation sequence (the flooding-based OMSA) over different codewords. Since
the LDPC decoding algorithm is not sensitive to quantization [38], each message element
during decoding can be represented by 8-bit data in this design. As a result, the addition
of SIMD instructions can quadruple the number of simultaneously processed codewords
and further extends the inter-codeword parallelism.

Although the utilization of the SIMD instructions improves the inter-codeword par-
allelism, additional preparation works are needed. When utilizing the SIMD instruction,
four 8-bit elements with an identical location from four codewords must be packed into
one 32-bit data before decoding, and the 32-bit data should be unpacked into four 8-bit
data after the hard decision. It should be noted that the pack and unpack operations in
this design are called ordering and reordering, respectively. To reduce the ordering and
reordering time, these operations are implemented on GPU to allow parallel execution of
the reordering and ordering procedures. The ordering operation is incorporated into the
initialization and ordering kernel for the proposed decoder. The reordering operation is
performed in the bit packed and reordering kernel before the decoded data is transmitted
to the CPU memory. Note that these operations involve data synchronization, which re-
sults in an extra overhead. However, this impact is limited due to the following two rea-
sons: (1) We utilize the advantages of the GPU parallel process and save a lot of time
compared with performing these operations on CPU; (2) since ordering and reordering
operations are performed only once per decoding, the operation time without change in
the number of iterations is negligible compared to the total time. The diagram of the or-
dering and reordering procedures is shown in Figure 3.

Figure 2. Process flow of the proposed GPU-based LDPC decoder with the evaluate check part.

To improve the inter-codeword parallelism, the SIMD instruction of GPU is utilized in
this design. Due to the data type for the SIMD instruction built into CUDA being 32-bit,
two 16-bit or four 8-bit data can be processed simultaneously. Motivated by [33], we take
advantage of the SIMD instructions at the codeword level, which can execute the same
computation sequence (the flooding-based OMSA) over different codewords. Since the
LDPC decoding algorithm is not sensitive to quantization [38], each message element
during decoding can be represented by 8-bit data in this design. As a result, the addition of
SIMD instructions can quadruple the number of simultaneously processed codewords and
further extends the inter-codeword parallelism.

Although the utilization of the SIMD instructions improves the inter-codeword par-
allelism, additional preparation works are needed. When utilizing the SIMD instruction,
four 8-bit elements with an identical location from four codewords must be packed into
one 32-bit data before decoding, and the 32-bit data should be unpacked into four 8-bit
data after the hard decision. It should be noted that the pack and unpack operations in
this design are called ordering and reordering, respectively. To reduce the ordering and
reordering time, these operations are implemented on GPU to allow parallel execution of
the reordering and ordering procedures. The ordering operation is incorporated into the
initialization and ordering kernel for the proposed decoder. The reordering operation is
performed in the bit packed and reordering kernel before the decoded data is transmitted
to the CPU memory. Note that these operations involve data synchronization, which results
in an extra overhead. However, this impact is limited due to the following two reasons:
(1) We utilize the advantages of the GPU parallel process and save a lot of time compared
with performing these operations on CPU; (2) since ordering and reordering operations
are performed only once per decoding, the operation time without change in the number
of iterations is negligible compared to the total time. The diagram of the ordering and
reordering procedures is shown in Figure 3.

Electronics 2022, 11, 3447 6 of 17

Electronics 2022, 11, x FOR PEER REVIEW 6 of 18

to the CPU memory. Note that these operations involve data synchronization, which re-

sults in an extra overhead. However, this impact is limited due to the following two rea-

sons: (1) We utilize the advantages of the GPU parallel process and save a lot of time

compared with performing these operations on CPU; (2) since ordering and reordering

operations are performed only once per decoding, the operation time without change in

the number of iterations is negligible compared to the total time. The diagram of the or-

dering and reordering procedures is shown in Figure 3.

Figure 3. Schematic diagram of the ordering and reordering operations.

The details of the CUDA kernel implementation for the decoder are described in the

next section.

3.1.1. Initialization and Ordering

This kernel is mainly responsible for the initialization and ordering works. Before the

iteration decoding begins, the initial value 0
nmV of the V2C messages must be initialized

by the LLR data LLR
nL . Since LLR

nL from various codewords is not aligned in the GPU

memory, the message 0
nmV must be ordered in accordance with the index of the associated

position in H to use the SIMD instruction.

For the initialization and ordering of four codewords, the total number of threads in

this kernel is N , where N stands for the column number of H . The single thread in this

kernel corresponds to a single VN. Through bit operations, the messages 0
nmV at the same

location of four codewords are packed by each thread.

3.1.2. Check Node Update

Each thread in the check node update kernel corresponds to one CN, and the C2V

messages mnC of the relevant check node in the Tanner graph are computed in this ker-

nel. Since the CN computation of MSA can be reduced to multiplication and addition,

searching for the minimum and sign computations are performed separately. Two loops

in this kernel each perform one of these computations, respectively. In the first loop, the
minimum value min1 and subminimum value min2 in all absolute values of the mes-

sages nmV are found using the vmin and vabs instructions to scan all VNs linked to the

corresponding CN, and the total product of the sign values is also computed. In the second

loop, the absolute values of the current message mnC are selected from min1 and min2

by the vcmpene and vcmpeq instructions, and the sign bit is obtained by multiplying the

sign value of the current V2C message and the total product of the sign values obtained

from the first loop. The implementation of the check node update process in this kernel is

shown in Figure 4.

Figure 3. Schematic diagram of the ordering and reordering operations.

The details of the CUDA kernel implementation for the decoder are described in the
next section.

3.1.1. Initialization and Ordering

This kernel is mainly responsible for the initialization and ordering works. Before the
iteration decoding begins, the initial value V0

nm of the V2C messages must be initialized by
the LLR data LLLR

n . Since LLLR
n from various codewords is not aligned in the GPU memory,

the message V0
nm must be ordered in accordance with the index of the associated position

in H to use the SIMD instruction.
For the initialization and ordering of four codewords, the total number of threads in

this kernel is N, where N stands for the column number of H. The single thread in this
kernel corresponds to a single VN. Through bit operations, the messages V0

nm at the same
location of four codewords are packed by each thread.

3.1.2. Check Node Update

Each thread in the check node update kernel corresponds to one CN, and the C2V
messages Cmn of the relevant check node in the Tanner graph are computed in this kernel.
Since the CN computation of MSA can be reduced to multiplication and addition, searching
for the minimum and sign computations are performed separately. Two loops in this kernel
each perform one of these computations, respectively. In the first loop, the minimum value
min1 and subminimum value min2 in all absolute values of the messages Vnm are found
using the vmin and vabs instructions to scan all VNs linked to the corresponding CN, and
the total product of the sign values is also computed. In the second loop, the absolute
values of the current message Cmn are selected from min1 and min2 by the vcmpene and
vcmpeq instructions, and the sign bit is obtained by multiplying the sign value of the current
V2C message and the total product of the sign values obtained from the first loop. The
implementation of the check node update process in this kernel is shown in Figure 4.

3.1.3. Variable Node Update

The implementation of this kernel follows the updated principle of one thread for
one VN. This kernel includes two loops. By calculating the sum of the message Vnm and
message Cmn of the connected edge, the first loop updates the APP data LAPP

n (the vaddss
instruction is used). Utilizing the APP data LAPP

n to subtract the C2V message of the linked
one (the vsubss instruction is used), the second loop can yield the message Vnm of each VN.
The implementation of the variable node update process in this kernel is shown in Figure 5.

Electronics 2022, 11, 3447 7 of 17Electronics 2022, 11, x FOR PEER REVIEW 8 of 21

Figure 4. The update process of one thread in the check node update kernel (the data representation
in the figure is an unsigned char type).

3.1.3. Variable Node Update
The implementation of this kernel follows the updated principle of one thread for

one VN. This kernel includes two loops. By calculating the sum of the message nmV and
message mnC of the connected edge, the first loop updates the APP data APP

nL (the vaddss
instruction is used). Utilizing the APP data APP

nL to subtract the C2V message of the
linked one (the vsubss instruction is used), the second loop can yield the message nmV of
each VN. The implementation of the variable node update process in this kernel is shown
in Figure 5.

Figure 4. The update process of one thread in the check node update kernel (the data representation
in the figure is an unsigned char type).

Electronics 2022, 11, x FOR PEER REVIEW 9 of 21

Figure 5. The update process of one thread in the variable node update kernel (the data representa-
tion in the figure is an unsigned char type).

3.1.4. Hard Decision
The design of the hard decision kernel also follows the principle of one thread for

one variable node update. When performing the hard decision, the vmaxs instruction is
used. If the corresponding data APP

nL is positive, the decoded data is 1; otherwise; it is 0.

3.1.5. Evaluate Check
In order to improve the decoding speed of the decoder, this design introduces the ET

mechanism, which can effectively reduce the number of decoding iterations in the case of
a high SNR, thereby reducing the time required for decoding. It should be noted that the
evaluate check part is optional and can be closed by the ET_flag in the GPU program. The
difference between closing and opening this kernel can be found in Figures 1 and 2.

The formula for the ET mechanism to decide whether the decoding iteration can be
terminated is as follows:

0× =THnD . (7)

The evaluation check will be satisfied if all the results of the sum are zero. Then, the
decoding iteration can be terminated. To reduce the check time, this parallelized kernel
implements the sum operation of decoded data in the same row of H , and the thread of
this kernel follows one thread for one row. The implementation of the check process in
this kernel is shown in Figure 6. It should be noted that the iteration will only stop when
the data of the four code blocks meet the requirements of the formula at the same time
due to the addition of the SIMD instruction.

Figure 5. The update process of one thread in the variable node update kernel (the data representation
in the figure is an unsigned char type).

3.1.4. Hard Decision

The design of the hard decision kernel also follows the principle of one thread for one
variable node update. When performing the hard decision, the vmaxs instruction is used. If
the corresponding data LAPP

n is positive, the decoded data is 1; otherwise; it is 0.

3.1.5. Evaluate Check

In order to improve the decoding speed of the decoder, this design introduces the ET
mechanism, which can effectively reduce the number of decoding iterations in the case of a
high SNR, thereby reducing the time required for decoding. It should be noted that the
evaluate check part is optional and can be closed by the ET_flag in the GPU program. The
difference between closing and opening this kernel can be found in Figures 1 and 2.

The formula for the ET mechanism to decide whether the decoding iteration can be
terminated is as follows:

Dn ×HT = 0. (7)

The evaluation check will be satisfied if all the results of the sum are zero. Then, the
decoding iteration can be terminated. To reduce the check time, this parallelized kernel
implements the sum operation of decoded data in the same row of H, and the thread of
this kernel follows one thread for one row. The implementation of the check process in this
kernel is shown in Figure 6. It should be noted that the iteration will only stop when the
data of the four code blocks meet the requirements of the formula at the same time due to
the addition of the SIMD instruction.

Electronics 2022, 11, 3447 8 of 17

Electronics 2022, 11, x FOR PEER REVIEW 10 of 21

Figure 6. The check process of one thread in the evaluate check kernel.

3.1.6. Bit Packed and Reordering
This kernel is mainly responsible for the decoded data ordering and packing works.

Corresponding to the ordering operation, the reordering operation is performed in this
kernel. To reduce the transmission latency, we implement the bit packed operation in this
kernel to pack the decoded data. The process of the bit packed and reordering kernel is
shown in Figure 7. Each thread in this kernel first performs the ordering operation, un-
packing 32-bit data to four 8-bit data. Then, the thread grabs eight adjacent 8-bit from the
decoded data pack to one 8-bit data because the decoded data can be represented by one
bit after the hard decision. In addition, only the information data (length is K) in the
decoded data (length is N) is useful after the decoding iteration, so the length of the final
data that needs to be transferred becomes / 8K . As a result, the amount of data trans-
ferred from the GPU device memory back to the CPU host memory is reduced after the
bit is packed, and the transfer time becomes 1/32 of the 32-bit quantization scheme.

Figure 6. The check process of one thread in the evaluate check kernel.

3.1.6. Bit Packed and Reordering

This kernel is mainly responsible for the decoded data ordering and packing works.
Corresponding to the ordering operation, the reordering operation is performed in this
kernel. To reduce the transmission latency, we implement the bit packed operation in this
kernel to pack the decoded data. The process of the bit packed and reordering kernel
is shown in Figure 7. Each thread in this kernel first performs the ordering operation,
unpacking 32-bit data to four 8-bit data. Then, the thread grabs eight adjacent 8-bit from
the decoded data pack to one 8-bit data because the decoded data can be represented by
one bit after the hard decision. In addition, only the information data (length is K) in the
decoded data (length is N) is useful after the decoding iteration, so the length of the final
data that needs to be transferred becomes K/8. As a result, the amount of data transferred
from the GPU device memory back to the CPU host memory is reduced after the bit is
packed, and the transfer time becomes 1/32 of the 32-bit quantization scheme.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 21

Figure 7. The process of the bit packed and reordering kernel.

3.2. Data Scheduling Strategy
For a high throughput performance, an appropriate data scheduling strategy is cru-

cial when designing a GPU-based decoder. The data scheduling strategy mainly includes
two parts: memory allocation and data transmission. For the scenario that needs to pro-
cess large-scale data, we propose a reasonable memory allocation strategy during decod-
ing according to the features of the selected LDPC decoding algorithm and GPU memory,
which enhance the utilization of the off-chip memory. In addition, the proposed decoder
compresses PCM to reduce the storage space. To improve the transmission efficiency, we
utilize many optimized methods to reduce the transmission time between GPU and CPU.
The details of the data scheduling strategy are described in the next section.

3.2.1. Memory Allocation Strategy during Decoding
To design a suitable memory allocation strategy, we study the characteristics of dif-

ferent GPU memories in depth. The GPU memory can be divided into two categories: on-
chip memory and off-chip memory. The size of the on-chip memory is smaller than the
off-chip memory but has a faster read-write speed. Registers and shared memory are both
on-chip memory. Different from the coverage of the register being one thread, the shared
memory can be used in the threads of one block. Registers have a faster read-write speed
than shared memory. Constant memory and global memory are off-chip memory. Con-
stant memory is a read-only memory on the board, and the reading speed is faster than
global memory. Based on the above analysis, the memory allocation of the proposed de-
coder is illustrated in Figure 8 (the solid line represents the data transfer between GPU and CPU,
and the dotted line represents the data flow in the GPU device), and the details are described as
follows:

Figure 7. The process of the bit packed and reordering kernel.

3.2. Data Scheduling Strategy

For a high throughput performance, an appropriate data scheduling strategy is crucial
when designing a GPU-based decoder. The data scheduling strategy mainly includes two
parts: memory allocation and data transmission. For the scenario that needs to process
large-scale data, we propose a reasonable memory allocation strategy during decoding
according to the features of the selected LDPC decoding algorithm and GPU memory,
which enhance the utilization of the off-chip memory. In addition, the proposed decoder
compresses PCM to reduce the storage space. To improve the transmission efficiency, we
utilize many optimized methods to reduce the transmission time between GPU and CPU.
The details of the data scheduling strategy are described in the next section.

Electronics 2022, 11, 3447 9 of 17

3.2.1. Memory Allocation Strategy during Decoding

To design a suitable memory allocation strategy, we study the characteristics of dif-
ferent GPU memories in depth. The GPU memory can be divided into two categories:
on-chip memory and off-chip memory. The size of the on-chip memory is smaller than
the off-chip memory but has a faster read-write speed. Registers and shared memory are
both on-chip memory. Different from the coverage of the register being one thread, the
shared memory can be used in the threads of one block. Registers have a faster read-write
speed than shared memory. Constant memory and global memory are off-chip memory.
Constant memory is a read-only memory on the board, and the reading speed is faster
than global memory. Based on the above analysis, the memory allocation of the proposed
decoder is illustrated in Figure 8 (the solid line represents the data transfer between GPU
and CPU, and the dotted line represents the data flow in the GPU device), and the details
are described as follows:

Electronics 2022, 11, x FOR PEER REVIEW 12 of 21

Figure 8. GPU memory allocation strategy of the LDPC decoder.

In most CUDA kernels of the decoding loop, the C2V message mnC and V2C mes-
sage nmV that are passed between variable nodes and check nodes, in addition to the APP
data APP

nL , are accessed very frequently. Therefore, they are the most crucial pieces of
data during decoding iteration. However, the proposed decoder should support LDPC
codes of different lengths and rates, which increases the possibility that the quantity of
memory needed for message data will exceed the capacity of on-chip memory. Due to the
various row degrees in PCM, the global memory is the only practical choice remaining for
addressing the requirement for quasi-random access to the message data. Therefore, these
data are stored in the global memory. In addition, in order to improve the utilization of
the memory space, APP

nL data reuse the storage space of the message nmV during decod-
ing iteration.

The LLR data LLR
nL and APP_bit data are stored in the global memory. Although the

LLR
nL data is read-only during initialization, LLR

nL data is stored in the global memory in-
stead of the constant memory considering the large amount. Due to neighboring elements
of LLR

nL data being accessed by adjacent threads, these accesses are merged to obtain high
memory access efficiency. When the hard decision kernel is executed, LLR

nL data is reused
to store the decoded data obtained after the decision. The APP_bit data is the final de-
coded data that needs to be copied to the host memory, and it is obtained by the bit-packed
operation.

2c vsign , min1 , min2 , and sum are temporary variables generated in node computa-
tions. In the proposed decoder, node computations correspond to the check node update
kernel and variable node update kernel; thus, these temporary variables are stored in the
registers of the corresponding thread.

When performing the ordering operation, the amount of data that must be ordered
is too large compared with the capacity of the on-chip memory; thus, the ordering opera-
tion is performed on the global memory. Since we use the bit packed operation to com-
press the decoded data, the size of the reordering data is just / (*8)K N of ordering.
Therefore, the shared memory can be used to reduce the reordering time. However, as the

Figure 8. GPU memory allocation strategy of the LDPC decoder.

In most CUDA kernels of the decoding loop, the C2V message Cmn and V2C message
Vnm that are passed between variable nodes and check nodes, in addition to the APP data
LAPP

n , are accessed very frequently. Therefore, they are the most crucial pieces of data during
decoding iteration. However, the proposed decoder should support LDPC codes of different
lengths and rates, which increases the possibility that the quantity of memory needed for
message data will exceed the capacity of on-chip memory. Due to the various row degrees
in PCM, the global memory is the only practical choice remaining for addressing the
requirement for quasi-random access to the message data. Therefore, these data are stored
in the global memory. In addition, in order to improve the utilization of the memory space,
LAPP

n data reuse the storage space of the message Vnm during decoding iteration.
The LLR data LLLR

n and APP_bit data are stored in the global memory. Although the
LLLR

n data is read-only during initialization, LLLR
n data is stored in the global memory instead

of the constant memory considering the large amount. Due to neighboring elements of LLLR
n

data being accessed by adjacent threads, these accesses are merged to obtain high memory
access efficiency. When the hard decision kernel is executed, LLLR

n data is reused to store

Electronics 2022, 11, 3447 10 of 17

the decoded data obtained after the decision. The APP_bit data is the final decoded data
that needs to be copied to the host memory, and it is obtained by the bit-packed operation.

signc2v, min1, min2, and sum are temporary variables generated in node computations.
In the proposed decoder, node computations correspond to the check node update kernel
and variable node update kernel; thus, these temporary variables are stored in the registers
of the corresponding thread.

When performing the ordering operation, the amount of data that must be ordered is
too large compared with the capacity of the on-chip memory; thus, the ordering operation
is performed on the global memory. Since we use the bit packed operation to compress
the decoded data, the size of the reordering data is just K/(N ∗ 8) of ordering. Therefore,
the shared memory can be used to reduce the reordering time. However, as the size of the
reordering data increases with the codeword number, the shared memory cannot meet the
storage demand when decoding a large number of codewords. Consequently, we need to
change the storage method to meet the demands of different codeword numbers.

We adopt an adaptive strategy, which can efficiently utilize memory resources to
improve the memory access efficiency during reordering. According to the shared memory
size of GPU devices, we can precompute the max codeword number, which can use shared
memory. Then, the storage method can be selected by comparing the current codeword
number with the max codeword number. For example, the shared memory size of RTX
2080Ti is 49.15 kb. If decoding the LDPC code (8448, 25,344), the max codeword number
that can execute the reordering operation in the shared memory is 4 (since the decoder uses
the SIMD instructions, the number of codewords is a multiple of 4), and we need to use the
global memory when the codeword number is larger than 4.

To avoid random memory access, when designing the kernel of the ordering and
reordering operation in Section 3.1, we ensure that the data accessed by adjacent threads
is adjacent to the memory address. Therefore, even if the global memory is being used,
our decoder also can allow the coalesced memory access in the same swap to improve the
memory access efficiency when performing the ordering and reordering operations.

3.2.2. Storage Method for PCM

Since PCM H is not changed during decoding iteration and needs to be used by most
kernels, we can store H in the constant memory to reduce the memory access latency.
However, due to the limited size of the constant memory, we should compress H before
decoding. Since the ‘0’ elements in H do not participate in the decoding iteration, these
elements can be ignored. Based on the compressed column storage (CCS) method [39], we
order and compress H to the row-degree and column-degree versions for the VN update
and CN update computations, respectively. For the row-degree version, we need to count
the number of non-‘0’ elements (row degree) in each row, and then order the row of H
according to the row degree. After ordering, we only need to store the row degree and
non-0 element index of each row. Similarly, for the column-degree version, we only need to
store the column degree and non-0 element index of each column. The ordering operation
in the compress method is to meet the requirement of CUDA for the fixed-sized data
structure, thereby avoiding accessing erroneous places while decoding. It should be noted
that when the matrix is too large, the data index will be beyond the range of 8-bit data, so
we use the 16-bit data type to store the compressed matrix information. After compression,
the row-degree version and column-degree version matrix are loaded by the host onto the
constant memory of GPU, and the storage space occupied by H with a code rate of 1/3 in
5G NR becomes 0.03% of the original. The details of the compression method are shown in
Figure 9.

3.2.3. Data Transfer Strategy

When processing large-scale data, the transmission delay between GPU and CPU
hinders the improvement of the throughput performance. To reduce the transmission delay,
we use three methods. First, the CPU side uses pinned memory (API cudaHostAlloc()) to

Electronics 2022, 11, 3447 11 of 17

store data, which can improve the efficiency of the addressing operations. Second, the
data during decoding are represented by the 8-bit char unit without an error-correction
performance loss and the decoded data are represented by 1-bit after the hard decision,
then the data transfer time can be significantly reduced compared with the 32-bit float data.
Third, the transfer time can be overlapped with the kernel execution by the asynchronous
data transfer mode that CUDA-enabled GPUs provide. Since the streams are independent
of each other and can be executed in parallel, we design a multiple-stream mode to decode
different codewords. The multiple-stream mode contributes to ensuring the computational
resources are fully utilized most of the time and reduces the waiting time for new data.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 21

Figure 9. The compression process of PCM.

3.2.3. Data Transfer Strategy
When processing large-scale data, the transmission delay between GPU and CPU

hinders the improvement of the throughput performance. To reduce the transmission de-
lay, we use three methods. First, the CPU side uses pinned memory (API cudaHostAlloc())
to store data, which can improve the efficiency of the addressing operations. Second, the
data during decoding are represented by the 8-bit char unit without an error-correction
performance loss and the decoded data are represented by 1-bit after the hard decision,
then the data transfer time can be significantly reduced compared with the 32-bit float
data. Third, the transfer time can be overlapped with the kernel execution by the asyn-
chronous data transfer mode that CUDA-enabled GPUs provide. Since the streams are
independent of each other and can be executed in parallel, we design a multiple-stream
mode to decode different codewords. The multiple-stream mode contributes to ensuring
the computational resources are fully utilized most of the time and reduces the waiting
time for new data.

4. Experimental Results and Analysis
In this section, we test and analyze the performance of the proposed GPU-based

LDPC decoder. The performances of the proposed decoder are tested over an additive
white Gaussian noise (AWGN) channel and modulated by binary phase-shift keying
(BPSK). The scale factor β of OMSA is 1. The experimental results are averaged over
100,000 times.

The experiments of the GPGPU device are conducted on GeForce RTX 2080Ti. RTX
2080Ti is Turing architecture, with 4352 CUDA cores and 11GB of GDDR6 memory. The
software program of the proposed decoder is developed with C language and complied
by GCC11.1 and CUDA11.3. The CPU type of the host platform is Intel i9-9900K, and the
GNU/Linux 5.12.15-arch1-1 (X86_64) is used as the operating system.

4.1. Throughput and Latency Performance Analysis
In Figure 10, the decoding throughput and latency of the decoder processing various

numbers of codewords based on GPGPU are shown. The throughput performance for de-
coding in the case of the 5G BG2 scenario with an expansion factor of 256 and a maximum
iteration of 10 is tested, which is equivalent to a 1/5 rate code with a length of 12,800. The
throughput can be estimated using the following formula:

Figure 9. The compression process of PCM.

4. Experimental Results and Analysis

In this section, we test and analyze the performance of the proposed GPU-based LDPC
decoder. The performances of the proposed decoder are tested over an additive white
Gaussian noise (AWGN) channel and modulated by binary phase-shift keying (BPSK). The
scale factor β of OMSA is 1. The experimental results are averaged over 100,000 times.

The experiments of the GPGPU device are conducted on GeForce RTX 2080Ti. RTX
2080Ti is Turing architecture, with 4352 CUDA cores and 11GB of GDDR6 memory. The
software program of the proposed decoder is developed with C language and complied
by GCC11.1 and CUDA11.3. The CPU type of the host platform is Intel i9-9900K, and the
GNU/Linux 5.12.15-arch1-1 (X86_64) is used as the operating system.

4.1. Throughput and Latency Performance Analysis

In Figure 10, the decoding throughput and latency of the decoder processing various
numbers of codewords based on GPGPU are shown. The throughput performance for
decoding in the case of the 5G BG2 scenario with an expansion factor of 256 and a maximum
iteration of 10 is tested, which is equivalent to a 1/5 rate code with a length of 12,800. The
throughput can be estimated using the following formula:

Throughput =
Number× Length

lantency
, (8)

where Number represents the number of codewords. Length stands for the length of the
codeword, which is equal to the length of the coded bit, so Throughput represents the
coded throughput. lantency is the decoding latency, which includes the latency of data
transmission and the decoding iteration. The throughput curve in Figure 10 does not climb
linearly and gradually as the number of codewords increases. It can be observed that

Electronics 2022, 11, 3447 12 of 17

the throughput greatly increases between 4 and 200 codewords but the increasing speed
between 200 and 1600 codewords is slow. The reason behind this is that as the number of
codewords increases, an increasing amount of data passes between CPU and GPU, and
more processing time outside the main decoding loop is needed.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 21

×
=

Number LengthThroughput
lantency

, (8)

where Number represents the number of codewords. Length stands for the length of
the codeword, which is equal to the length of the coded bit, so Throughput represents the
coded throughput. lantency is the decoding latency, which includes the latency of data
transmission and the decoding iteration. The throughput curve in Figure 10 does not
climb linearly and gradually as the number of codewords increases. It can be observed
that the throughput greatly increases between 4 and 200 codewords but the increasing
speed between 200 and 1600 codewords is slow. The reason behind this is that as the num-
ber of codewords increases, an increasing amount of data passes between CPU and GPU,
and more processing time outside the main decoding loop is needed.

Figure 10. The throughput and latency curve of the proposed decoder with different numbers of
codewords.

The decoding latency without a transmission delay is also displayed in Figure 10. We
can see that as the number of codewords increases, the decoding latency changes just
slightly. This is because the proposed decoder makes full use of the bigger off-chip
memory outside of the GPU on-chip memory for scenarios involving simultaneous pro-
cessing of large-scale data. The expanded part in Figure 10 shows that the decoding la-
tency abruptly increases when the number of codewords surpasses 12. This is because the
reordering operation utilizes the adaptive memory technique in Section 3.2.2, which
changes the store method of temporary variables from shared memory to global memory.

Table 1 shows the throughput and latency of the proposed decoder processing LDPC
codes with various code rates and lengths (the number of codewords is 4, 64, 128, and
512), and a general trend of increasing latency can be drawn from these data. It can be
seen from Table 1 that the increasing speed of latency L2 for different LDPC codes has a
boundary: when the number of codewords increases from 4 to 64, the decoding time in-
creases faster, and then slows down. This tendency is also consistent with the conclusion
obtained in Figure 10.

0 200 400 600 800 1000 1200 1400 1600

Codewords number

0

1

2

3

4

5

6

7

8

9

10

Th
ro

ug
hp

ut
 (G

bp
s)

0

0.5

1

1.5

2

2.5

3

3.5

4

La
te

nc
y

(m
s)

Throughput

Latency

Latency(Without transmit)

10 20 30 40 50
0.3

0.4

0.5

0.6

Figure 10. The throughput and latency curve of the proposed decoder with different numbers of codewords.

The decoding latency without a transmission delay is also displayed in Figure 10.
We can see that as the number of codewords increases, the decoding latency changes just
slightly. This is because the proposed decoder makes full use of the bigger off-chip memory
outside of the GPU on-chip memory for scenarios involving simultaneous processing of
large-scale data. The expanded part in Figure 10 shows that the decoding latency abruptly
increases when the number of codewords surpasses 12. This is because the reordering
operation utilizes the adaptive memory technique in Section 3.2.2, which changes the store
method of temporary variables from shared memory to global memory.

Table 1 shows the throughput and latency of the proposed decoder processing LDPC
codes with various code rates and lengths (the number of codewords is 4, 64, 128, and 512),
and a general trend of increasing latency can be drawn from these data. It can be seen from
Table 1 that the increasing speed of latency L2 for different LDPC codes has a boundary:
when the number of codewords increases from 4 to 64, the decoding time increases faster,
and then slows down. This tendency is also consistent with the conclusion obtained in
Figure 10.

Table 1. The throughput and latency parameters of the LDPC decoder for different rates and lengths.

Number 4 × 1 4 × 16 4 × 32 4 × 128

Parameter T L1 L2 T L1 L2 T L1 L2 T L1 L2

(8448, 25,344) 0.124 0.816 0.810 1.536 1.056 0.959 2.719 1.193 0.998 6.590 1.969 1.190

(2560, 12,800) 0.143 0.358 0.355 1.447 0.566 0.516 2.564 0.639 0.542 6.375 1.028 0.601

(2488, 4896) 0.134 0.145 0.144 1.205 0.259 0.235 2.142 0.292 0.245 5.342 0.469 0.281

(2000, 4000) 0.113 0.141 0.140 1.089 0.235 0.215 1.855 0.275 0.236 4.871 0.420 0.266

(972, 1944) 0.072 0.107 0.106 0.567 0.219 0.209 1.049 0.237 0.218 3.110 0.320 0.245

T represents the throughput; the unit is Gbps. L1 and L2 represent the latency with and without the transmission
time, respectively; the unit is ms.

Electronics 2022, 11, 3447 13 of 17

Figure 11 shows the throughput and iteration number of the decoder with the change
channel quality after the ET mechanism is opened (the maximum iteration number is set
as 10, and Eb/N0 from 1.5 to 3.0). The proposed decoder introduces the ET mechanism
to reduce the decoding time when the channel quality is high. Figure 11 shows the
performance for LDPC codes with base BG1 and BG2 in 5G NR, and the expansion factor
is 384 and 256, respectively. It should be noted that the throughput result in Figure 11 is
slightly lower than the result in Section 4.1 due to the need to perform additional verification
operations. We observed that with the increase in Eb/N0, the iteration number decreased.
When SNR values are below 2 dB, to successfully obtain the corrected decoded data, the
maximum iteration number of 10 is almost all executed, which results in the very low total
throughput and large iteration number. At a high Eb/N0 value, few decoding iterations are
needed to be performed before the correct codeword data is obtained, so the throughput is
high. It is observed that the curves in this figure only display the part average throughput
and iteration since the number of iterations that are actually executed lowers as Eb/N0
increases and the throughput at high Eb/N0 values can also continue to increase.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 21

Table 1. The throughput and latency parameters of the LDPC decoder for different rates and
lengths.

Number 4 × 1 4 × 16 4 × 32 4 × 128
Parameter T L1 L2 T L1 L2 T L1 L2 T L1 L2

(8448, 25,344) 0.124 0.816 0.810 1.536 1.056 0.959 2.719 1.193 0.998 6.590 1.969 1.190
(2560, 12,800) 0.143 0.358 0.355 1.447 0.566 0.516 2.564 0.639 0.542 6.375 1.028 0.601
(2488, 4896) 0.134 0.145 0.144 1.205 0.259 0.235 2.142 0.292 0.245 5.342 0.469 0.281
(2000, 4000) 0.113 0.141 0.140 1.089 0.235 0.215 1.855 0.275 0.236 4.871 0.420 0.266
(972, 1944) 0.072 0.107 0.106 0.567 0.219 0.209 1.049 0.237 0.218 3.110 0.320 0.245

T represents the throughput; the unit is Gbps. L1 and L2 represent the latency with and without the
transmission time, respectively; the unit is ms.

Figure 11 shows the throughput and iteration number of the decoder with the change
channel quality after the ET mechanism is opened (the maximum iteration number is set
as 10, and Eb/N0 from 1.5 to 3.0). The proposed decoder introduces the ET mechanism to
reduce the decoding time when the channel quality is high. Figure 11 shows the perfor-
mance for LDPC codes with base BG1 and BG2 in 5G NR, and the expansion factor is 384
and 256, respectively. It should be noted that the throughput result in Figure 11 is slightly
lower than the result in Section 4.1 due to the need to perform additional verification op-
erations. We observed that with the increase in Eb/N0, the iteration number decreased.
When SNR values are below 2 dB, to successfully obtain the corrected decoded data, the
maximum iteration number of 10 is almost all executed, which results in the very low total
throughput and large iteration number. At a high Eb/N0 value, few decoding iterations
are needed to be performed before the correct codeword data is obtained, so the through-
put is high. It is observed that the curves in this figure only display the part average
throughput and iteration since the number of iterations that are actually executed lowers
as Eb/N0 increases and the throughput at high Eb/N0 values can also continue to increase.

Figure 11. Effects of the early terminal mechanism on the number of iterations and throughput with
the change in Eb/N0 (the codewords number is 256).

4.2. Performance Analysis on the EGPU Device

1.5 1.75 2 2.25 2.5 2.75 3

Eb/N0 (dB)

6

6.5

7

7.5

8

8.5

9

9.5

10

Ite
ra

tio
n

nu
m

be
r

3.5

4

4.5

5

5.5

6

6.5

Th
ro

ug
hp

ut
 (G

bp
s)

Iteration number (8448, 26,112)

Iteration number (2560, 13,312)

Throughput (8448, 26,112)

Throughput (2560, 13,312)

Figure 11. Effects of the early terminal mechanism on the number of iterations and throughput with
the change in Eb/N0 (the codewords number is 256).

4.2. Performance Analysis on the EGPU Device

The proposed decoder has the ability of versatility, which can achieve high throughput
performance in low power devices as well. To verify the versatility of the proposed decoder,
we implement the decoder on Jetson Xavier NX. Jetson Xavier NX is an EGPU low-power
device launched by NVIDIA, with 6 SM units, 384 CUDA cores, and a frequency of
1100 MHz under overlocking. To optimize the power efficiency, we use two power modes
of the Jetson Xavier NX, 10W_MODE and 15W_MODE. Using jtop, we find that the real
power consumption of 10W_MODE and 15W_MODE is 8.805 and 10.844 W, respectively.
The test program under EGPU is compiled with GCC-7.5 and CUDA10.2, and the operating
system is GNU/Linux 4.9.140-terga (aarch64). The test on Jetson Xavier NX demonstrates
that the high-throughput decoding acceleration of the proposed decoder can achieve a
maximum throughput of 610.3Mb/s after the addition of the ET mechanism at 15W_MODE,
and the normalized throughput can reach 1.445 when the maximum number of iterations
is set to 20 and the number of codewords is 1024.

To evaluate the power efficiency of the presented decoder, we also test the power
efficiency performance proposed by [26], and the result is shown in Table 2. The formula of
power efficiency is:

E f f iciency =
Throughput× 1000

Power
. (9)

Electronics 2022, 11, 3447 14 of 17

Table 2. Power efficiency performance comparison.

Decoder [26] Our Work

Code rate (8448, 26,112) (8448, 26,112)
Device GPGPU GPGPU EGPU

Scheduling Layered Flooding Flooding Flooding
Iterations 10 20 20 20

Power (W) 40.000 116.500 8.805 10.844
Throughput (Gbps) 1.800 7.959 0.567 0.610

Efficiency (Mbps/W) 45.000 68.317 64.395 56.252

The power efficiency of the proposed decoder is tested based on the GPGPU and
EGPU devices, respectively. The power of the implementation on the GPGPU device is
found by the nvidia-smi tool. It can be seen from Table 2 that the decoder has a high power
efficiency on different GPU devices. The experiments show that the proposed decoder
can also achieve a high-throughput and high-power-efficiency performance on low-power
embedded devices.

4.3. Performance Analysis under Multiple-Stream Mode

Table 3 gives the throughput and latency performance with various combinations of
Stream and Ns under multiple-stream mode. The LDPC code used in the performance
test is (8448, 26,112), and the iteration number is 20. When the number of codewords is
7168 and 8192, the throughput performance can obtain a 13.193% and 14.843% improvement,
respectively. When the number of codewords is 6144, the improvement of Stream = 4
is lower than Stream = 2. This is because when the number of codewords is 6144 and
the number of streams is set to 4, the transmission and operation time cannot completely
overlap, and the resource utilization between different streams is competitive, which
increases the kernel execution time. It can be seen that the introduction of the multiple-
stream mode results in a performance improvement when the codeword number is large.

Table 3. Throughput and latency performance with different combinations of Stream and Ns for the
proposed decoder.

Parameter Proposed Decoder

Number 6144 7168 8192
Stream 1 2 4 1 2 4 1 2 4

Ns 6144 3072 1536 7168 3584 1792 8192 4096 2048
Throughput 7.783 8.690 8.626 7.928 8.720 8.974 7.936 8.753 9.114

Latency 20.626 18.467 18.616 23.620 21.488 20.864 26.970 24.443 23.438
Number = Stream × Ns. Stream represents the number of streams. Ns represents the number of codewords in
each stream.

4.4. Comparison with Other Works

Table 4 shows the comparison result with related software works. Due to the exact
number of decoding codewords to obtain the maximum throughput not being listed in
many works, it is not fully feasible to objectively compare each work without knowing
the precise resource usage of each. Therefore, this comparison is not meant to be used to
draw definite judgments about how well our decoder performs in contrast to others but
rather to highlight how well our decoder performs in scenes that need to process a large
number of codewords. To make the comparison fairer, we mainly perform the test from
four aspects. First, we test the throughput performance of the proposed decoder when
decoding the same LDPC code with reference works. Second, we ensure a comparison
of the throughput performance under the same bit error rate performance. Compared
with layered scheduling, flooding scheduling requires twice the number of iterations to
achieve the same bit error performance. Therefore, when comparing with works that
adopt layered scheduling, we test the throughput performance under twice the number of

Electronics 2022, 11, 3447 15 of 17

iterations to ensure the fairness of the comparison. Third, we test the performance under
a single stream for comparison with other designs as the performance of most previous
works was tested under a single stream. Finally, considering the test of current decoders
based on different hardware platforms, we introduce the normalized throughput in [23] to
exclude the influence of the GPU boost frequency and the number of CUDA cores on the
throughput. The formula of the normalized throughput is:

Normalized_Throughput =
Throughput× 1000

GPU_Frequency× CUDA_Number
. (10)

where GPU_Frequency is the boost frequency of GPU, in Mhz. CUDA_Number is the
number of CUDA cores in GPU devices.

Table 4. Comparison of the throughput performance with other GPGPU-based works.

Code Rate
Boost Frequency
(CUDA) of Ref.

Scheduling of
Ref.

Iterations Throughput N_Throughput Speedup
Ref. Our Ref. Our Ref. Our

(2000, 4000) 1545 (4352) [21] Layered 10 20 0.965 8.463 0.143 1.258 8.797
(972, 1944) 1531 (3584) [22] Flooding 10 10 0.913 8.984 0.166 1.336 8.048
(972, 1944) 1582 (3584) [23] Flooding 10 10 1.474 8.984 0.259 1.336 5.274

(1760, 2080) 1545 (4352) [24] Layered 10 20 1.380 8.444 0.218 1.255 5.756
(8448, 26,112) 1770 (4608) [25] Flooding 5 5 3.964 9.427 0.486 1.402 2.884
(8448, 26,112) 1770 (1536) [26] Layered 10 20 1.800 7.959 0.662 1.183 1.787

N_throughput represents the normalized throughput.

Since the code of [21] is open source, we implement this decoder on the same GPU
device as our decoder, and about ×8.797 speedups can be achieved by our decoder. The
authors of [22,23] both proposed the GPU-based LDPC decoder for IEEE802.11n, which
can achieve a peak normalized throughput of 0.166 and 0.259 at a code rate (972, 1944),
respectively ([22] did not consider the data transmission time between GPU and CPU). Com-
pared with [22,23], the proposed decoder has×8.048 and×5.274 speedup, respectively. When
decoding the (1760, 2080) code in 5G NR, the proposed decoder has a ×5.756 normalized
throughput speedup than [24]. The authors of [25,26] both provided the maximum through-
put when decoding the (8448, 26,112) code. The authors of [25] adopted the flooding
scheduling algorithm and obtained a maximum normalized throughput of 0.486. By utiliz-
ing the flooding scheduling, [26] reached 0.662 normalized throughputs with 10 iterations.
Compared with [25,26], the proposed decoder has×2.884 and×1.787 speedup, respectively.

Table 5 shows the throughput comparison with other works after the introduction
of the ET mechanism. The authors of [23] introduced the ET mechanism, and when
selecting the code rate (972, 1944) and using the flooding scheduling decoding algorithm,
the maximum throughput reached 4.771 Gbps. In Table 5, when the code rate is (8448,
26,112) and the number of codewords is 512, the proposed decoder reaches a 10.013 Gbps
peak throughput, which is a significant improvement compared with the previous work.

Table 5. Comparison of the throughput performance with other decoders that introduced the early
termination mechanism.

Decoder Scheduling Max Iteration Number SNR (dB) Throughput (Gbps)

[23]
Flooding 10 1.0~5.5 1.153~4.771
Layered 10 1.0~5.5 0.708~3.672

Our work
Flooding 10 −3.5~5.5 6.508~10.013
Flooding 20 −4.5~5.5 4.688~10.013

5. Discussion

Our proposed GPU-based LDPC decoder achieves a high throughput performance
and a significant improvement over the state-of-the-art work on GPGPU devices. However,

Electronics 2022, 11, 3447 16 of 17

for the implementation of EGPU devices, its performance still has the potential to be
further exploited. For example, we can utilize many GPU computation optimization
techniques to improve the throughput and latency performance of the implementation on
EGPU devices, such as reducing the initialization time latency of EGPU devices [19] and
tackling the hidden memory latency for EGPU devices [20]. In the future, we will utilize
more GPU computation optimization techniques to further improve the performance of
EGPU implementations.

6. Conclusions

A high-throughput GPU-based LDPC decoder is presented in this paper. We optimized
the decoder from the perspective of the decoding parallelism and data scheduling strategy,
respectively. High intra-codeword parallelism was achieved by combining the features of
the flooding-based decoding method with the GPU programming model. Furthermore, the
inter-codeword parallelism was improved using the SIMD instructions. To meet the needs
of large-scale data processing, targeted optimization was used for the data scheduling strat-
egy. The experiments showed the proposed decoder obtains a 10 Gbps peak throughput
on GPGPU by incorporating the ET criterion. Moreover, the proposed decoder imple-
mented on EGPU devices can also achieve a high-throughput and high-power-efficiency
performance. Compared with the state-of-the-art work, the proposed decoder obtained
×1.787 speedups of normalized throughput at the same error correcting performance.

Author Contributions: Conceptualization, J.D.; methodology, J.D.; software, J.D.; validation, J.D.;
formal analysis, J.D.; investigation, J.D.; resources, J.D., H.Y., W.X. and Z.Y.; data curation, J.D.;
writing—original draft preparation, J.D.; writing—review and editing, J.D., H.Y. and Y.L.; visualiza-
tion, J.D.; supervision, J.D. and H.Y.; project administration, H.Y., W.X. and Z.Y.; funding acquisition,
H.Y., W.X. and Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities,
grant number CUC22GZ064.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gallager, R. Low-Density Parity-Check Codes. IEEE Trans. Inform. Theory 1962, 8, 21–28. [CrossRef]
2. MacKay, D.J.C.; Neal, R.M. Near shannon limit performance of low density parity check codes. Electron. Lett. 1996, 33, 457–458.

[CrossRef]
3. Session Chairman (Nokia). Chairman’s Notes of Agenda Item 7.1.5 Channel Coding and Modulation. 3GPP TSG RAN WG1

Meeting No. 87, R1-1613710. 2016. Available online: https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contribu-
tionId=752413 (accessed on 14 August 2022).

4. A 802.11 Wireless LANs; TGn Sync Proposal Technical Specification. IEEE Standard Association: Piscataway, NJ, USA, 2004.
5. Std IEEE 802.16e; Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. IEEE Standard Association:

Piscataway, NJ, USA, 2008.
6. Chen, S.; Peng, K.; Song, J.; Zhang, Y. Performance Analysis of Practical QC-LDPC Codes: From DVB-S2 to ATSC 3.0. IEEE Trans.

Broadcast. 2019, 65, 172–178. [CrossRef]
7. Li, Y.; Zhang, X.; Li, Y.; Xu, B.; Ma, L.; Yang, J.; Huang, W. High-throughput GPU layered decoder of multi-edge type low density

parity check codes in continuous-variable quantum key distribution systems. Sci. Rep. 2020, 10, 14561. [CrossRef] [PubMed]
8. Cui, L.; Liu, X.; Wu, F.; Lu, Z.; Xie, C. A Low Bit-Width LDPC Min-Sum Decoding Scheme for NAND Flash. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2022, 41, 1971–1975. [CrossRef]
9. Wang, C.X.; Haider, F.; Gao, X.Q.; You, X.H.; Yang, Y.; Yuan, D.F.; Aggoune, H.M.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular

architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [CrossRef]
10. Lin, C.H.; Wang, C.X.; Lu, C.K. LDPC Decoder Design Using Compensation Scheme of Group Comparison for 5G Communication

Systems. Electronics 2021, 10, 2010. [CrossRef]
11. Chen, W.; Zhao, W.; Li, H.; Dai, S.; Han, C.; Yang, J. Iterative Decoding of LDPC-Based Product Codes and FPGA-Based

Performance Evaluation. Electronics 2020, 9, 122. [CrossRef]
12. Thi Bao Nguyen, T.; Nguyen Tan, T.; Lee, H. Low-Complexity High-Throughput QC-LDPC Decoder for 5G New Radio Wireless

Communication. Electronics 2021, 10, 516. [CrossRef]

http://doi.org/10.1109/TIT.1962.1057683
http://doi.org/10.1049/el:19970362
https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contribu-tionId=752413
https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contribu-tionId=752413
http://doi.org/10.1109/TBC.2018.2881364
http://doi.org/10.1038/s41598-020-71534-5
http://www.ncbi.nlm.nih.gov/pubmed/32884014
http://doi.org/10.1109/TCAD.2021.3100273
http://doi.org/10.1109/MCOM.2014.6736752
http://doi.org/10.3390/electronics10162010
http://doi.org/10.3390/electronics9010122
http://doi.org/10.3390/electronics10040516

Electronics 2022, 11, 3447 17 of 17

13. Verma, A.; Shrestha, R. Low Computational-Complexity SOMS-Algorithm and High-Throughput Decoder Architecture for
QC-LDPC Codes. IEEE Trans. Veh. Technol. 2022, 1–14. [CrossRef]

14. Duarte, L.; Gomes, R.; Ribeiro, C.; Caldeirinha, R.F.S. A Software-Defined Radio for Future Wireless Communication Systems at
60 GHz. Electronics 2019, 8, 1490. [CrossRef]

15. Richter, L.; Reimers, U.H. A 5G New Radio-Based Terrestrial Broadcast Mode: System Design and Field Trial. IEEE Trans.
Broadcast. 2022, 68, 475–486. [CrossRef]

16. Fernandes, G.; Silva, V.; Sousa, L. How gpus can outperform asics for fast ldpc decoding. In Proceedings of the International
Conference Supercomputing, New York, NY, USA, 8–12 June 2009; pp. 390–399.

17. NVIDIA Corporation. NVIDIA CUDA C Programming Guide Version 4.0[M]; NVIDIA CUDA Group: Santa Clara, CA, USA, 2011;
pp. 1–5.

18. OpenCL—The Open Standard for Parallel Programming of Heterogeneous Systems. Available online: http://khronos.org/
opencl/ (accessed on 13 August 2022).

19. Wang, Z.; Jiang, Z.; Wang, Z.; Tang, X.; Liu, C.; Yin, S.; Hu, Y. Enabling Latency-Aware Data Initialization for Integrated CPU/GPU
Heterogeneous Platform. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2020, 39, 3433–3444. [CrossRef]

20. Wang, Z.; Wang, Z.; Liu, C.; Hu, Y. Understanding and tackling the hidden memory latency for edge-based heterogeneous
platform. In Proceedings of the 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20), 25–26 June 2020.

21. Le Gal, B.; Jego, C.; Crenne, J. A High Throughput Efficient Approach for Decoding LDPC Codes onto GPU Devices. IEEE Embed.
Syst. Lett. 2014, 6, 29–32. [CrossRef]

22. Keskin, S.; Kocak, T. GPU-Based Gigabit LDPC Decoder. IEEE Commun. Lett. 2017, 21, 1703–1706. [CrossRef]
23. Yuan, J.; Sha, J. 4.7-Gb/s LDPC Decoder on GPU. IEEE Commun. Lett. 2018, 22, 478–481. [CrossRef]
24. Li, R.C.; Zhou, X.; Pan, H.Y.; Su, H.Y.; Dou, Y. A High-Throughput LDPC Decoder Based on GPUs for 5G New Radio. In

Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7.
25. Tarver, C.; Tonnemacher, M.; Chen, H.; Zhang, J.Z.; Cavallaro, J.R. GPU-Based, LDPC Decoding for 5G and Beyond. IEEE Open J.

Circuits Syst. 2021, 2, 278–290. [CrossRef]
26. Ling, J.; Cautereels, P. Fast LDPC GPU Decoder for Cloud RAN. IEEE Embed. Syst. Lett. 2021, 13, 170–173. [CrossRef]
27. Wymeersch, H. Iterative Receiver Design; Cambridge University Press: Cambridge, UK, 2007.
28. Tanner, R.M. A Recursive Approach to Low Complexity Codes. IEEE Trans. Inf. Theory 1981, 27, 533–547. [CrossRef]
29. MacKay, D.J.C. Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Trans. Inform. Theory 1999, 45, 399–431.

[CrossRef]
30. Fossorier, M.P.C.; Mihaljevic, M.; Imai, H. Reduced complexity iterative decoding of low density parity check codes based on

belief propagation. IEEE Trans. Commun. 1999, 47, 673–680. [CrossRef]
31. Chen, J.; Fossorier, M.P.C. Near Optimum Universal Belief Propagation Based Decoding of Low-Density Parity Check Codes.

IEEE Trans. Commun. 2002, 50, 406–414. [CrossRef]
32. Chen, J.; Fossorier, M.P.C. Density Evolution for Two Improved BP-Based Decoding Algorithms of LDPC Codes. IEEE Commun.

Lett. 2002, 6, 208–210. [CrossRef]
33. Le Gal, B.; Jego, C. High-Throughput Multi-Core LDPC Decoders Based on x86 Processor. IEEE Trans. Parallel Distrib. Syst. 2016,

27, 1373–1386. [CrossRef]
34. Hocevar, D.E. A reduced complexity decoder architecture via layered decoding of LDPC codes. In Proceedings of the IEEE

Workshop on Signal Processing Systems (SIPS), Austin, TX, USA, 13–15 October 2004; pp. 107–112.
35. Zhang, J.; Fossorier, M.P.C. Shuffled iterative decoding. IEEE Trans. Commun. 2005, 53, 209–213. [CrossRef]
36. Li, M.; Nour, C.A.; Jégo, C.; Douillard, C. Design and FPGA prototyping of a bit-interleaved coded modulation receiver for

the DVB-T2 standard. In Proceedings of the IEEE Workshop On Signal Processing Systems (SIPS), San Francisco, CA, USA,
6–8 October 2010; pp. 162–167.

37. Falcao, G.; Sousa, L.; Silva, V. Massively LDPC decoding on multicore architectures. IEEE Trans. Parallel Distrib. Syst. 2011, 22,
309–322. [CrossRef]

38. Falcao, G.; Andrade, J.; Silva, V.; Sousa, L. GPU-based DVB-S2 LDPC decoder with high throughput and fast error floor detection.
Electron. Lett. 2011, 47, 542–543. [CrossRef]

39. Duff, I.S.; Grimes, R.G.; Lewis, J.G. Sparse matrix test problems. ACM Trans. Math. Softw. 1989, 15, 1–14. [CrossRef]

http://doi.org/10.1109/TVT.2022.3203802
http://doi.org/10.3390/electronics8121490
http://doi.org/10.1109/TBC.2022.3154601
http://khronos.org/opencl/
http://khronos.org/opencl/
http://doi.org/10.1109/TCAD.2020.3013047
http://doi.org/10.1109/LES.2014.2311317
http://doi.org/10.1109/LCOMM.2017.2704113
http://doi.org/10.1109/LCOMM.2017.2778727
http://doi.org/10.1109/OJCAS.2020.3042448
http://doi.org/10.1109/LES.2021.3052714
http://doi.org/10.1109/TIT.1981.1056404
http://doi.org/10.1109/18.748992
http://doi.org/10.1109/26.768759
http://doi.org/10.1109/26.990903
http://doi.org/10.1109/4234.1001666
http://doi.org/10.1109/TPDS.2015.2435787
http://doi.org/10.1109/TCOMM.2004.841982
http://doi.org/10.1109/TPDS.2010.66
http://doi.org/10.1049/el.2011.0201
http://doi.org/10.1145/62038.62043

	Introduction
	LDPC Codes and Decoding Algorithms
	Proposed High-Throughput GPU-Based LDPC Decoder
	High Decoding Parallelism Design Scheme
	Initialization and Ordering
	Check Node Update
	Variable Node Update
	Hard Decision
	Evaluate Check
	Bit Packed and Reordering

	Data Scheduling Strategy
	Memory Allocation Strategy during Decoding
	Storage Method for PCM
	Data Transfer Strategy

	Experimental Results and Analysis
	Throughput and Latency Performance Analysis
	Performance Analysis on the EGPU Device
	Performance Analysis under Multiple-Stream Mode
	Comparison with Other Works

	Discussion
	Conclusions
	References

