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Abstract: In this study, a deep convolutional neural network based on an improved You only look
once version 3 (YOLOv3) is proposed to improve the accuracy and real-time detection of small
targets in complex backgrounds when detecting leaky weld studs on an automotive workpiece. To
predict stud locations, the prediction layer of the model increases from three layers to four layers. An
image pyramid structure obtains stud feature maps at different scales, and shallow feature fusion
at multiple scales obtains stud contour details. Focal loss is added to the loss function to solve the
imbalanced sample problem. The reduced weight of simple background classes allows the algorithm
to focus on foreground classes, reducing the number of missed weld studs. Moreover, K-medians
algorithm replaces the original K-means clustering to improve model robustness. Finally, an image
dataset of car body workpiece studs is built for model training and testing. The results reveal that
the average detection accuracy of the improved YOLOv3 model is 80.42%, which is higher than the
results of Faster R-CNN, single-shot multi-box detector (SSD), and YOLOv3. The detection time per
image is just 0.32 s (62.8% and 23.8% faster than SSD and Faster R-CNN, respectively), fulfilling the
requirement for stud leakage detection in real-world working environments.

Keywords: stud locations; YOLOv3; multiple scales; K-medians; focal loss

1. Introduction

With the rapid development of science and technology, intelligent industrial produc-
tion lines are gaining popularity, and the control of production quality by enterprises is
becoming increasingly stringent. The ability to identify studs accurately and at a high
speed directly determines the intelligence and efficiency of the production line. This is
a key issue in the quality control of automotive companies. The traditional method of
manually identifying studs is unsuitable for the intelligent development of automotive
production lines for many reasons, such as its slow detection speed, low efficiency, high
false detection rate, tendency to cause fatigue, and the partly luminous and heat-generating
workpieces, which are harmful to the human eye [1].

In response to the problems with manual inspection methods, experts and researchers
have conducted extensive research on contactless inspection methods.

Traditional processing methods are primarily based on lasers, ultrasonic sensors, and
manual feature extraction. Auerswald et al. [2] used laser lines to detect fractures and defects
in large gear workpieces. Li et al. [3] proposed an industrial inspection method based on
multilaser scanner point clouds with high detection accuracy; however, these sensors are
expensive. Guo et al. [4] used ultrasonic technology to detect defects on the workpiece surface,
which achieved good results in terms of cost reduction but failed to achieve better optimization
in terms of reliability and visualization. With the continuous development of computer vision
techniques, the extraction of manually designed features from workpiece images to achieve
the rapid recognition of defects has become a popular topic in industrial inspection. Lee
et al. [5] developed a histogram-based workpiece recognition method and used the difference,
mean, and standard deviation to analyze workpiece images for recognition. Kumar et al. [6]
proposed a method for workpiece welding recognition based on the gray-level co-occurrence
matrix, which is suitable for the texture recognition of workpieces. However, both methods
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require certain assumptions, e.g., a separable workpiece detection region. Therefore, they
cannot detect the scene in the entire field of view, and the methods are very sensitive to
hyperparameter settings. Zhang et al. [7] proposed a detection method for aluminum alloy
wheel artifacts that incorporated adaptive threshold segmentation and morphology. However,
the improper selection of smoothing operators and thresholds can cause the method to fail
to extract image features. Shi et al. [8] proposed an improved Sobel detection algorithm for
railway track surface artifact identification that uses filters to reduce image noise and remove
artifact surface defect features. This method uses a filter to reduce image noise and extract
features from the surface of the workpiece. However, it is not suitable for all random texture
images and suffers from feature correlation. These methods are limited by the need to design
explicit features based on the actual working conditions of the workpiece. Expert knowledge
and manual design are essential, and the omission of key features, for example, can lead to
poor detection results. As a result, these methods are more difficult to automate efficiently.

With the increase in hardware computing power, deep learning-based recognition meth-
ods are now used in various fields to automatically acquire target features and their valid
information without requiring the manual design of the explicit features of the object to be
detected. This advantage effectively avoids the problem of traditional recognition methods
that require expert knowledge and manual configurations. In recent years, convolutional
neural networks (CNNs) [9] have been extensively used in the field of workpiece stud image
recognition and target detection [10,11]. Liu et al. [12] proposed an online stud measurement
method based on photometric stereo measurements and deep learning theory. It uses a
CNN to determine the key points of screws on automotive workpieces and can measure
multiple studs with high accuracy. Current target detection algorithms in deep learning
can be broadly classified into two main categories: those based on candidate regions and
those based on regression [13]. Candidate region-based target detection algorithms are also
known as two-stage approaches, i.e., the target detection problem is divided into two stages.
Candidate regions are generated in the first stage. For example, Ren et al. [14] proposed the
Faster R-CNN algorithm, which effectively speeds up the detection rate. Wang et al. [15]
proposed an automatic tag welding robot based on a cascaded R-CNN target detection
system that automatically identifies and picks up screws for welding.

Although the two-stage algorithm can achieve high accuracy in target detection [16],
it still requires a selective search algorithm to generate candidate regions. Hence, the
detection speed is inevitably limited by the need for repeated candidate region selection.

Regression-based detection techniques have emerged as solutions to above issue, re-
quiring only one stage and performing regression directly on the projected target.
Redmon et al. [17] proposed the YOLO (You Only Look Once) algorithm, which concen-
trates on classification, localization, and detection in a single network. The input image
can directly obtain the bounding box and predicted value of the target in the image after
only one network calculation. However, because of the crude design of the network, it
cannot satisfy the accuracy requirements of real-time target detection. Small and multiple
targets cannot be accurately localized and are easily missed. Redmon et al. proposed the
YOLOv2 [18] and YOLOv3 [19] models. YOLOv3 is an updated version of YOLOv1 and
YOLOv2 that introduces the feature pyramid concept and adds a batch normalization (BN)
layer to the boundary prediction. It predicts large, medium, and small targets at three
scales by adding multiscale prediction and a basic backbone network [20–22]. However,
when targeting small targets, the traditional YOLOv3 model fails to detect large or medium
targets [23]. Missed weld stud detection on automobile workpieces is a classic example of
the challenge of tiny target detection in a complex environment. Hence, this paper pro-
poses a new deep learning algorithm to achieve automatic feature extraction and general
detection model to solve the problem of the real-time detection and localization of studs
on automobile workpieces. The improved YOLOv3 deep learning algorithm is based on
the traditional YOLOv3 network model, and this study improves and optimizes it using
an image pyramid structure and focal loss function. The following is a description of this
study’s main contributions. Experiments show that these methods are effective.
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1. In this study, the layer in the prediction model are increased from three to four to more
precisely anticipate the workpiece location of the stud. The image pyramid structure
is employed to gather stud feature information at various scales, and shallow feature
fusion is trained at different sizes to obtain additional stud contour details.

2. The positive and negative sample imbalance problem will reduce the model’s training
efficiency and detection accuracy, and it is resolved in this study using the focal
loss function. The focal loss function can decrease the weight of the straightforward
background classes, allowing the algorithm to concentrate more on detecting the
foreground classes and increasing the detection accuracy of studs.

3. A median-based approach is used to solve the problem that the model’s K-means
clustering algorithm [18] is sensitive to the initial cluster centers and outliers. The
K-medians approach is robust to noisy points or outliers, avoiding the model falling
into a local optimum and thus improving the accuracy of the model for stud detection.

2. Improved YOLOv3 Model

This section first describes the conventional YOLOv3 model. Then, the modifications
made in this study to increase its performance on stud detection and localization are presented.

2.1. Framework of the YOLOv3 Model

YOLOv3 is a typical single-stage detection technique that transforms the detection
problem into a regression problem. It differs from R-CNN, Fast R-CNN, and Faster R-CNN,
which are two-stage algorithms that employ a region candidate network to create a sequence
of candidate anchor boxes, and it It draws on the idea of feature pyramid network (FPN) to
extract features from images at different scales.

2.1.1. Backbone Network of YOLOv3

The backbone network of YOLOv3 is Darknet-53 network [24–26], which contains
53 convolutional layers, mainly consisting of 1 × 1 and 3 × 3 convolutional layers. The
Darknet-53 network is based on three FPN scales, downsampling by 8×, 16×, and 32×,
to generate feature maps corresponding to large, medium, and small scales. The deep
small-scale feature maps are upsampled by the FPN module and merged with the shallow
large-scale feature maps, as shown in Figure 1. By continually optimizing the step size of
the convolution unit and downsampling three times to provide a more detailed small-scale
feature map, the Darknet-53 network manages the size of the output feature map. Small-
scale feature maps offer more in-depth semantic information because they have a wider
perceptual range. Simultaneously, more precise image features are provided by shallow
large-scale feature maps.
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2.1.2. FPN

The objective of the FPN is to construct feature pyramids out of the hierarchical
semantic characteristics of the convolutional network itself [27]. In the YOLOv3 network,
the FPN module combines the shallow network position information with the abstract
image data recovered from the deep network. For instance, a 26 × 26 feature map is
created after being downsampled four times and is then sent to two channels using a
sequence of convolutions. Following the upsampling procedure, one channel is fused with
the 5× downsampled feature map, and the combined feature map is used as the final
prediction output, which is a 26 × 26 output feature map. The final result for the regression
prediction is a 52 × 52 feature map produced by the three downsampling operations,
which is fused with the other channel handled by the upsampling module. Using the FPN
module and top-down approach, the YOLOv3 network produces three scale feature maps
of 52 × 52, 26 × 26, and 13 × 13.

2.1.3. Residual Networks

The main difference between YOLOv3 and YOLOv2 is the conversion of the feature
extractor network Darknet-19 to Darknet-53 and the extensive introduction of residual
networks [28]. In addition, the skip connections of the residual network are added to the
network structure. This approach is a good solution to the problem of gradient disappear-
ance or divergence because of the large number of network layers. As shown in Figure 1,
RESn represents a residual network module consisting of n residual units. The residual
unit contains two convolutional layers with convolutional kernel sizes of 1 × 1 and 3 × 3.
By setting the size of the convolutional kernel, the array can be first downdimensioned and
then updimensioned, which can reduce the number of computational parameters. In the
residual network, the output x of the first channel is processed using two convolutional
layers to obtain the value f (x), which is directly added to the value of x in the second
channel. This structure ensures that the deep network model converges as much as possible
during the training process. The deeper the network layers, the better the learning of object
features and the higher the detection accuracy.

2.2. Methods for Improving the YOLOv3 Model
2.2.1. Multiscale Training and Multiscale Prediction

The traditional YOLOv3 model extracts depth features through the upsampling mod-
ule and fuses feature maps at different scales, thus enabling the network to learn deep
and shallow features and eventually predict the feature maps. As shown in Figure 1, the
YOLOv3 model takes the input images and predicts feature maps at scales of 52 × 52 × 255,
26 × 26 × 255, and 13 × 13 × 255 after downsampling 8 ×, 16 ×, and 32 ×, respectively.
The 32 × downsampled feature maps have a larger sensory field and are suitable for detect-
ing large targets. The 26 × 26 × 255 features, fused by a series of convolutional units and
upsampling at the 13 × 13 × 255 scale, have a medium-scale field of view and are suitable
for medium-scale target detection. The 52 × 52 × 255 features are similar in principle and
ideal for detecting small targets.

Each image is scaled to 416 × 416 on the input side of YOLOv3; however, when the
target size is too small, the feature map tends to lose target details during downsampling,
and the detection performance degrades. The standard YOLOv3 algorithm will have
difficulties identifying stud targets when the pixel area of the stud targets in the automotive
workpiece images is less than 9 × 9. Second, while higher-fold downsampling yields a
wider perceptual field and allows for the extraction of deeper semantic characteristics, it
is easy to lose some target location data, impacting the localization accuracy. The shallow
features of the stud weld’s speckle shadow texture, which are critical for target recognition
because the target stud has a tiny contour in the workpiece image, should be given greater
weight in the feature map fusion. The standard YOLOv3 can recognize small targets
using an 8× downsampled feature map, but it cannot properly learn the shallow stud
features. This study modifies the YOLOv3 algorithm to address these issues. The specific



Electronics 2022, 11, 3430 5 of 20

improvement is as follows: the image size is first adjusted to 608 × 608 on the input side to
maintain more stud shape features and the subtleties of the weld joints and weld marks.
To train the deep network to understand the shallow properties of the microscopic size of
the stud contour, the features acquired from 4×, 8×, and 16× downsampling are blended.
Combining the stud weld mark’s speckle shadow texture with deep semantic abstraction
characteristics increases the fraction of the external stud features.

Additionally, by connecting the 8× downsampling fusion feature map with the 4× down-
sampling feature map, this approach increases the number of prediction layers from three to
four. The 4× downsampling fusion feature map was employed to find smaller target studs.
Figure 2 depicts the altered YOLOv3 structure used in this study.
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2.2.2. Improving the Loss Function of YOLOv3

This subsection describes the improvements to the loss function of the YOLOv3
algorithm. Introducing the focal loss function can effectively alleviate the impact of sample
category imbalance on the detection algorithm, thus improving its detection accuracy.

The loss function of the traditional YOLOv3 algorithm contains three components: the
bounding-box localization bias loss, bounding-box confidence loss, and predicted category
probability loss. The bounding-box confidence loss uses binary cross-entropy as the loss
function, which takes the following form [29].
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i

)
log(1− Cj

i )
]

−
S2

∑
i=0

Iobj
ij ∑

c∈classes

[
P̂j

i log(Pj
i ) +

(
1− P̂j

i

)
log(1− Pj

i )
]

(1)



Electronics 2022, 11, 3430 6 of 20

In Equation (1), λcoord and λnoobj represent the loss weights for the coordinates and loss
weights without the target confidence, respectively; S2 represents the total number of input
images partitioned into grid cells; B represents the number of predicted bounding boxes
for which each grid is responsible; Iobj

ij denotes that the jth bounding box of the ith grid cell

matches the object in that cell; and Inoobj
ij denotes that the jth bounding box of the ith grid

cell does not match the object in that cell. Further, (xi, yi, wj
i , hj

i) and (x̂j
i , ŷj

i , ŵj
i , ĥj

i) denote

the predicted target box coordinates and true target box coordinates, respectively; (Cj
i , Pj

i )
denotes the confidence level of the predicted target box and class of the predicted target;
and (Ĉj

i , P̂j
i ) denotes the confidence level of the real target box and class of the real target.

In the automotive stud inspection task, one image generates many inspection regions,
but only a small amount of target stud information is usually contained in these inspection
regions. This phenomenon leads to unbalanced sample classes and an excessive number of
negative samples, which account for most of the total loss value, ultimately resulting in poor
model optimization. To further improve the accuracy of recognition, when designing the
loss function for the confidence of the bounding box and the predicted category probability,
the proposed method uses the focal loss function [30] to replace the standard cross-entropy
loss function. This function makes the model focus more on hard-to-classify samples during
training by reducing the weights of the easy-to-classify samples. The focal loss function
(FL) is given by the following equation.

FL(pt) = −αt(1− pt)
γ log(pt), pt =

{
P, γ = 1

1− P, other
(2)

In Equation (2), (1− pt)
γ represents the modulation factor; αt represents the weight

hyperparameters that control the positive and negative samples; and γ represents the
hyperparameters that manipulate the difficult and easy classification samples.

Integrating Equations (1) and (2), the total loss function of the improved algorithm is
as follows.
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j
i
γ log(1− Cj

i )]−
S2

∑
i=0

Iobj
ij ∑

c∈classes
[P̂j

i α(1− Pj
i )

γ log(Pj
i )

+1− P̂j
i )α(P̂j

i )
γ log(Pj

i )]

(3)

For example, the grid prediction feature map size S2 is 13 × 13, the values of i, j. are 6,
5, respectively; the value of Iobj

ij is 1; the value of Inoobj
ij is 0; the values of Ĉj

i and P̂j
i are all 1;

the width of the feature map Wimage is 13 and the height of the feature map Himage is 13, as
shown in Figure 3. To overcome the imbalance between positive and negative samples, the
hyperparameters α, γ, λcoord, and λnoobj are set to values from previous work [17–19,31,32],
which are 0.95, 8, 5, and 0.5, respectively, applicable to the stud image dataset used in this
paper. The set of parameters (xi, yi, wj

i , hj
i) can be solved from the predicted parameters

(tx, ty, tw, th, Cj
i , Pj

i ) of the output feature map and the following equations:
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xi = σ(tx), yi = σ
(
ty
)
, wj

i = tw, hj
i = th (4)

where σ is the sigmod activation function.
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Then, the true values (x̂j
i , ŷj

i , ŵj
i , ĥj

i) can be obtained as follows.

x̂j
i = gx − Cx, ŷj

i = gy − Cy, ŵj
i = log(

gw

Pw
), ĥj

i = log(
gh
Ph

) (5)

where, pw =
aw

Wimage
; ph =

ah
Himage

;
(
Cx, Cy

)
are the center coordinates of the anchored box,

(aw, ah) are the width and height of the anchored box, (gx, gy) are the center coordinates of
the ground truth box, (gw, gh) are the width and height of the anchored box, respectively,
on the feature map. Joining Equations (4) and (5) and the other parameter values, the loss
value is determined.

2.2.3. Improved Clustering Algorithm

The size of the anchor box used for localization directly influences the precision of
target identification according to the network detection technique. YOLOv3 employs the
K-means clustering technique, which splits the provided set of samples into K (K >= 1)
clusters based on the magnitude of the distance between the samples and clusters of targets
in the training set based on the sizes of their bounding boxes. The key to the K-means
algorithm, which is essentially an unsupervised clustering method based on maximum
expectation, is that it reduces the distances between samples within a cluster as much
as possible after several repetitions while allowing the distances between samples across
clusters to remain large [33]. However, there are two issues with this algorithm [34]: (i) The
initial clustering centers affect its sensitivity. This approach produces varying clustering
results and localization accuracies when several clustering centers are used. The model
gradient descent solution can enter a local optimum because of the random selection of
K centroids, resulting in unstable clustering. (ii) Sensitivity to noise and outliers. K-means
uses the average of the distances between samples in a cluster as a reference for the next
step in calculating the cluster centers. The mean is a measure that is highly susceptible to
outliers; even a drastic outlier can move the standard away from most datasets. Therefore,
any sample data, especially if it contains noise, can substantially affect the calculation of
new points and cause errors. In stud image target detection, a small number of either large
or small image targets can exist because of inconsistencies in the in-camera shot height,
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camera resolution, and the object’s actual size. These inconsistent large and small targets
can have an impact on the clustering performance of the K-means algorithm.

By contrast, the median-based K-medians clustering algorithm can effectively improve
this situation, and the idea of the improved clustering algorithm is as follows.

The size of the ground truths can be expressed as follows.

θ = {(B1), (B2), . . . , (Bn−1), (Bn)}, Bi = {Wi, Hi} (6)

In Equation (6), Wi and Hi represent the width and height of the ith ground truth;
n indicates the quantity of samples.

Firstly, the initial cluster center is determined by randomly choosing a set of samples
Bi, then computing the distance metric d between each sample in the dataset and c1. The
maximum value in d becomes the second cluster center c2. This is expressed as follows.

d
(

Bi, cj
)
= 1− IOU

(
Bi, cj

)
, i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , k

IOU
(

Bgti, Bpdj

)
=

Bgti ∩ Bpdj

Bgti ∪ Bpdj

(7)

In Equation (7), Bgti represents the ith ground truth; Bpdj is the jth prediction frame;

and IOU
(

Bgti, Bpdj

)
denotes the intersection ratio of the ground truth and center of the

bounding box cluster.
The above steps are repeated until K centroids are obtained, and all centroids C are

recorded as β = {C1, C2, . . . . . . , Ck−1, Ck}. The distance from each data point to the centroid
d
[
Ci, BJ(Ci)

]
is calculated, and that data point is classified as belonging to the class of the

closest centroid to achieve local optimization, which is implemented as follows.

d
[
Ci, BJ(Ci)

]
= min

{
d
[
Ci, Bj(Ci)

]
, j = 1, 2, 3 . . . k

}
(8)

In Equation (8), Ci denotes the ith random centroid and Bj(Ci) denotes the jth sample
that corresponds to the centroid.

Each class of centroids is calculated as a new centroid, BJ(Ci + 1), to achieve regional
optimality as follows.

BJ(Ci + 1) =
1
k

k

∑
i=1,i≤k

d
[
Ci, Bj(Ci)

]
, j = 1, 2, 3, . . . , k (9)

The above steps are repeated until each class of centers does not change substantially
after several iterations, at which point the optimal global solution has been obtained.

In the proposed method, the operation of finding the mean value in the original
K-means clustering algorithm is replaced with finding the median in the K-medians algo-
rithm. On the one hand, the median is highly robust to noisy points or outliers, avoiding
the effect of anomalous target sizes and thus improving the target detection accuracy.
On the other hand, the inference procedure of the YOLOv3 network is unrelated to the
K-medians clustering method. The specific approach is shown in Figure 2. First, 12 more
appropriate anchor box sizes with the same role as the network prior frame are generated
by the K-medians clustering algorithm. Training the model based on the size of the anchor
boxes implies that it does not typically impose any computational drain on the model
and reduces the complexity of the algorithm during detection. The improved clustering
algorithm facilitates the accurate localization of small targets such as studs.
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2.2.4. Optimized Convolution Units

In a convolutional neural network, the input distribution of all the hidden layers
changes as the parameters of the neurons in the previous layer change. This leads to
problems such as slower forward propagation of the network, inability to use dynamically
changing learning rates, and sensitivity of network training to initialization parameters.
The BN layer, located between the convolutional and activation layers in the CBL (Con-
volutional, batch normalization and leaky relu layer) module of the convolutional unit,
improves the ability of the trained model to fit new samples, reduces gradient disap-
pearance, and facilitates model convergence. Therefore, the BN layer is widely used in
the network training process to accelerate the convergence of the model and solve the
overfitting problem [35].

However, adding a BN layer to the network forward propagation process results in
an increase in computation, which leads to a decrease in the forward inference speed and
consumes more memory resources. To overcome these disadvantages, this section describes
how the proposed method incorporates the BN layer into the convolutional layer to reduce
the memory resources required for forward propagation of the network and to improve the
target detection speed of the model without affecting the effectiveness of target detection.
The BN layer is calculated as follows.

F̂i,j = WBN × Fi,j + bBN (10)

In Equation (10), F̂i,j denotes the normalized result; WBN represents the BN layer
weight; bBN represents the BN layer bias; and Fi,j represents the feature map processed by
the convolutional layer, which is represented as follows.

Fi,j = Wconv × fi,j + bconv (11)

In Equation (11), Wconv represents the weight matrix of the convolutional layer; fi,j rep-
resents the convolution layer; bconv represents the bias of the convolutional layer.

The BN layer was incorporated into the convolution layer in the following manner.

F̂i,j = WBN ×
(
Wconv × fi,j + bconv

)
+ bBN

= (WBN ×Wconv)× fi,j + (WBN × bconv + bBN) = W × fi,j + b
(12)

In Equation (12), W represents WBN ×Wconv and b represents WBN × bconv + bBN .

3. Experiments and Results

This section evaluated the stud detection algorithm proposed in this paper using
images of studs from automotive workpieces.

3.1. Stud Dataset

In this evaluation, 4000 stud images were collected from the site of an automotive
production line. The images contain different types of stud targets in near and far views,
and some data samples are shown in Figure 4. As shown in Figure 4, there is significant
background noise interference when automotive workpieces are inspected on the produc-
tion line, such as jigs, protective fences, and other auxiliary equipment in the work section.
In addition, in some views, stud targets are difficult to identify because they occupy a small
area in the field of view. Real-time detection of stud targets on a production line is hence
challenging.
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3.2. Details of the Implementation

The entire study dataset was divided into a training set and a test set using a ratio of
8:2. The improved YOLOv3 algorithm was implemented using the PyTorch framework [36],
and the experimental environment is summarized in Table 1.

The input image size is 608 × 608, as required by the proposed algorithm. The original
data were augmented and extended by flip transforms, random trimming, translation,
and saturation and hue adjustments. Table 2 lists the initial parameter settings for model
training. The number of input training images per batch was 16. The number of training
epochs was 100.

Figure 5 compares the effect of the change in loss values when training the model in
this study (orange) and the original YOLOv3 model (blue) using the stud image dataset. The
horizontal coordinates indicate the number of training epochs, and the vertical coordinates
indicate the total loss value. Figure 5 shows that the YOLOv3 model starts to converge at
about the 80th epoch. Although the initial loss value of the model proposed in this paper
is significantly larger than that when the YOLOv3 model is adopted, Focal Loss is used
to calculating the error when designing the bounding box confidence loss function and
predicted category probability. Therefore, after 96 times of training, its loss value converges
to about 2.4. It is lower than 2.7 of the loss value of the original YOLOv3 model. To sum up,
when the model proposed in this paper is adopted, the total Loss obtained by training is
smaller. The model in this paper has better convergence.

Table 1. Experimental configuration and parameters.

Configuration Parameter

CPU Intel Core 10,900
GPU NVIDIA RTX 3090 ti 24 G
RAM 32 G

Operating system Windows 10

Table 2. Initialization parameters of training.

Algorithm Image Size Batch Size Momentum Learning Rate Decay

Improved YOLOv3 608 × 608 16 0.9 0.001 0.0005
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3.3. Evaluation Methods

The average intersection over union (AvgIOU) [37], precision (P), and recall (R) were
used to evaluate the performance of stud detection after stud target prediction [14,38,39].
The AvgIOU is a standard evaluation metric used to quantify the precision of target
identification by employing the AvgIOU between the prior frame created by the model and
the ground truth of the training set to evaluate the proposed clustering. The performance
of the proposed clustering method is assessed using the AvgIOU between the prior frame
created by the model and the ground truth of the training set. The proposed method has
the same nine predefined initial frames as the original YOLOv3, and the robustness of the
algorithm localization is assessed by calculating the overlap between the prior frames and
real samples.

The precision contains a percentage of true positives (TP) and false positives (FP).
Recall is the probability of the accuracy of the detected workpiece studs [40]. The precision
(P) and recall (R) are defined as follows.

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

Average precision (AP) and mean average precision (mAP) are the integral of the
accuracy recall curve and average accuracy of all types of studs on the workpiece, respec-
tively [41]. These indicators are expressed as follows.

AP =
∫ 1

0
P(R)dR (15)

mAP =
1
N

N

∑
i=1

APi (16)

Here, N is the number of workpiece stud types; APi represents the average precision
value of the ith workpiece stud types.

In an industrial production environment, the speed of detection of a model is a critical
evaluation metric that is usually expressed as the FPS.

FPS =
NumFigure
TotalTime

(17)
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In Equation (17), NumFigure represents the number of images detected, and TotalTime
represents the total time spent detecting the images.

The F1 value is the summed average of precision and recall. Neither precision nor
recall alone can be used as an indicator of a model’s performance, and hence the F1 value
is used because it is compatible with precision and recall.

F1 = 2× precision× recall
precision + recall

(18)

3.4. Experimental Results and Analysis
3.4.1. Anchor Box Optimization Experiments

The AvgIOU values were compared for the proposed clustering approach with those
of the K-means method using the automotive workpiece stud image dataset. The results
are presented in Table 3. As the number of cluster centers increases, the two algorithms’
AvgIOU values increase, with the critical point being when the cluster centers are equal
to seven. When K is less than seven, the slope of the AvgIOU curve is more significant,
and when K more than seven, the curve gradually flattens out, as shown in Figure 6. This
is because, as the number of clustering centers increases, there is a better fit between the
a priori anchor box generated by the model and the ground truth box. However, it is
essential to note that too many clustering centers increase the computational complexity
of the algorithm during forward propagation and backpropagation. In practice, when the
output layer of the network structure model consists of four nodes, 12 clustering centers
are required to meet the detection requirements. When the number of clustering centers is
12, the AvgIOU values of the proposed algorithm and the YOLOv3 algorithm are 74.68%
and 73.05%, respectively. The new clustering method applied in the proposed algorithm
improves the results of the YOLOv3 algorithm by 1.63%. Therefore, the proposed clustering
method is effective.

Table 3. Comparison of the AvgIOU (%) results from the two clustering method on the studs dataset.

Algorithm K

2 3 4 5 6 7 8 9 10 11 12
K-means 48.18 54.68 58.85 63.03 65.20 68.12 69.21 70.58 71.28 71.89 73.05

K-medians 51.34 58.14 63.02 65.38 67.91 70.14 71.13 72.12 73.20 73.89 74.68
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3.4.2. Ablation Experiments

Ablation experiments were performed in this study for comparative analysis and to
show the efficacy of each proposed module. The YOLOv3 model was used as the baseline
for the comparison analysis, with the YOLOv3 model’s structure improved by the addition
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of multiscale prediction branches, the use of the K-medians technique for clustering, and
the optimization of the original loss function. Additionally, headless studs are difficult to
identify because they are small targets. Various enhancement techniques were evaluated
with an Intersection over Union (IOU)threshold of 0.5, and the experimental findings are
compared in Table 4.

Table 4. Experiments with different modules on the studs dataset. S: multiscale training and multiscale
prediction, K: K-medians clustering algorithm, F: focal loss function, @: IOU threshold value.

Model Multiscale K-Medians Focal Loss
Average Precision (AP @ 0.5) (%)

mAP (%)
Hexagonal Stud Headless Stud

YOLOv3 × × × 78.70 75.61 77.16
YOLOv3 + S

√
× × 79.91 78.65 79.28

YOLOv3 + K ×
√

× 79.52 75.91 77.72
YOLOv3 + F × ×

√
79.72 76.64 78.18

YOLOv3 + S + K
√ √

× 80.51 79.01 79.76
YOLOv3 + S +F

√
×

√
80.76 79.24 80.00

Improved YOLOv3
√ √ √

81.42 79.41 80.42

The model proposed in this study achieved an mAP of 80.42%, which is a 3.26%
improvement in the mAP values of the original YOLOv3 algorithm. The AP values of the
improved YOLOv3 for detecting both types of studs were improved by 2.72% and 3.8%,
respectively, compared with the results of the original YOLOv3 model. This demonstrates
the superior detection capability of the proposed model when detecting small targets
such as studs. Table 3 reveals that the mAP value is improved by 2.12% when multiscale
branches are added for prediction. The 3.04% increase in AP in the detection of headless
studs implies that the improved model is better at capturing information regarding small
targets in the original image. The reason for this result is that the proposed model has an
enhanced ability to extract detailed feature information from the backbone network by
predicting targets at multiple scales, particularly by effectively using feature information
from the shallow layers of the image.

When clustering using the K-medians algorithm, the mAP value increases to 77.72%.
This is attributed to the fact that the proposed clustering algorithm selects better clustering
centers in the initial stage, which not only reduces the effect of noise points on the size of
the anchor frame but also reduces unnecessary fitting behavior and increases the likelihood
that the algorithm will avoid falling into a local optimum. Comparing the experimental
results of the original loss function using the focus loss function alone and YOLOv3, with
the former having an mAP value of 78.18% and the latter having an mAP value of 77.16%,
which is a favorable result. In the focus loss function, as the number of iterations increases,
the modulation factor equalizes the weights of complex and easy-to-classify samples and
reduce the consequences of the easy-to-classify samples, allowing the model to focus more
on the hard-to-classify examples during training. When the network model extracts the
stud feature information, the grid weight for the stud object is considerable, thus enhancing
the target feature information. The grid weight for the background is smaller, which
reduces the impact of complex background features and ultimately reduces the effect of the
samples on the total loss.

3.4.3. Experimental Analysis of Different Models

Comparative experiments on the proposed model and different target detection mod-
els (DPM(Deformable Parts Model), R-CNN, Faster R-CNN, SSD, and YOLOv3) were
conducted on the self-built stud dataset. The primary analysis metrics were the AP values,
mAP values, and detection speed (FPS) of the different algorithms for the two types of
stud detection. The experimental results are listed in Table 5. Compared with the DPM,
R-CNN, Faster R-CNN, SSD, and YOLOv3 models, the proposed method improved the
mAP values by 17.84%, 35.75%, 8.47%, 17.69%, and 3.26%, respectively. The modified
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approach substantially improves the recognition accuracy for studs when compared with
the R-CNN and Faster R-CNN algorithms. It also has a significant advantage in terms of
detection speed because the proposed method is a single-stage detection algorithm that
does not use a complex region proposal network but instead treats the detection process
as a regression problem. When compared with YOLOv3, the improved method has a
0.05-s disadvantage in terms of detection speed. However, the proposed model has a better
characterization of the target and is better able to find stud targets in a complex production
line background environment while satisfying real-time requirements.

Table 5. Results of several algorithms’ detection on the studs dataset. @: IOU threshold value.

Model
Average Precision (AP @ 0.5) (%)

mAP (%) Detection Speed (s)
Hexagonal Stud Headless Stud

DPM 70.53 54.62 62.58 0.61
R-CNN 50.25 39.06 44.67 - -

Faster R-CNN 73.51 70.39 71.95 0.86
SSD 67.21 58.25 62.73 0.42

YOLOv3 78.70 75.61 77.16 0.27
Improved YOLOv3 81.42 79.41 80.42 0.32

To further evaluate the advantages and efficiency of the improved method for small-
target detection, comparing the experimental results obtained by the mainstream methods
when detecting small studs (headless studs), as shown in Table 6. The AP values of the
four models for the small-stud dataset are 70.39%, 58.25%, 75.61%, and 79.41%, respectively.
The AP values of the YOLOv3 model are higher than those of the SSD and Faster R-CNN
models, and the method achieves an improvement of 3.8% over the YOLOv3 model.

Table 6. Comparison of test results of four models on headless stud dataset.

Model Precision (%) Recall (%) AP (%) F1 (%)

Faster R-CNN 81.24 68.32 70.39 74.22
SSD 55.18 67.65 58.25 60.78

YOLOv3 88.34 74.91 75.61 81.07
Improved YOLOv3 89.20 81.07 79.41 84.94

The precision and recall (P–R) curve plots for each method are shown in Figure 7.
The vertical coordinates indicate the change in precision, and the horizontal coordinates
indicate the change in recall. The larger the area under the P-R curve, the better the
detection performance of the model. As shown in Figure 7, the precision of the SSD model
decreases substantially as the recall rate increases. The precision of Faster R-CNN reaches
86% when the recall rate reaches 64% and decreases substantially as the recall rate continues
to increase. Compared to the first two models, the precision of the YOLOv3 model slowly
decreased as the recall rate increased. When the recall rate reached 74%, the model had a
precision rate of 90.2%, but it also showed a somewhat decreasing trend. In contrast, the
method in this paper plots the P-R graph curve with a larger area enclosed by the axes and
performs better in terms of recall and precision, reaching 91% precision when the recall
rate is 80%, while the method in this paper is significantly higher than other algorithms in
terms of F1 values. In summary, our method can identify small targets, such as studs on
automotive workpieces, and, in practice, better meets the industry’s requirements for stud
detection algorithms in real-time.
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3.4.4. Analysis of the Experimental Results

In this study, images were selected from the test dataset for the target detection exper-
iments. The detection results were compared with those of the Faster R-CNN, SSD, and
YOLOv3 algorithms to qualitatively evaluate the detection performance of the proposed
method for automotive workpiece studs. The results are shown in Figure 8a–c. In Figure 8a,
all four algorithms can detect and locate studs when there are two types of studs in the
image, but the Faster R-CNN algorithm has three missed detections for headless studs and
one false detection for hexagonal studs. The SSD algorithm had five missed and two false
detections. The YOLOv3 algorithm has two missed detections and one erroneous detection.
The proposed model has only one missed detection. Comparing the experimental results
in Figure 8b, the Faster R-CNN and SSD models have substantially lower detection perfor-
mance for small studs and cannot effectively complete the identification in a long-range
view with complex background features. The YOLOv3 model obtains fewer missed and
false detections for both types of studs, but still suffers from missed detections of headless
studs. Comparing the YOLOv3 model with the proposed model, the latter is more likely
to capture small target features, such as automotive workpiece studs, effectively reducing
the problems of the YOLOv3 model. Figure 8c reveals that the proposed model has the
best IOU for detection and more accurate localization than the other three algorithms. The
above analysis demonstrates that the improved model has a high detection accuracy for
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both types of automotive studs and performs well in the close-range views. Although
there are some missed detections in the long-range view, the improved model has better
multiscale stud recognition and positioning accuracy than the other algorithms.
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4. Discussion and Conclusions

This study proposed a stud leakage detection algorithm based on an improved
YOLOv3 model, which was designed to detect studs in automotive workpieces. Firstly,
increased the prediction layers of the model structure was increased from three layers to
four layers, extracting more details of the stud contours. Secondly, the focal loss function
was introduced into the algorithm to solve the positive and negative sample imbalance
problem. Finally, an improved K-median clustering method instead of K-means in the
original algorithm was used to reduce the adverse effects of noisy points or outliers and
prevent the algorithm from falling into local optima and overall oscillations to some extent.
The experimental results showed that the modified clustering algorithm achieved an Av-
gIOU value of 74.68% on the stud dataset, which is 1.63% higher than that of the previous
work. The overall algorithm mAP value is 80.3%, compared to 77%, 71.95%, and 62.73% for
the conventional YOLOv3, Faster R-CNN, and SSD, respectively. The improved method
can achieve a detection speed of 0.32 s to process an image, meeting the requirements of
real-time stud detection. The series of experiments conducted in this study demonstrated
the effectiveness of the proposed method for stud-detection tasks.

However, in this study, there is still the problem of false detection due to inadequate
feature extraction in the case of insufficient light or backlight.In addition, the method still has
room for improvement regarding detection speed.Therefore, the next step should improve
the algorithm robustness in low-light scenes by adding an attention mechanism, and increase
detection speed by reducing the algorithm complexity using model distillation techniques.
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