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Abstract: A WGAN-GP-based ECG signal expansion and an SE-ResNet1D-based ECG classification
method are proposed to address the problem of poor modeling results due to the imbalanced sample
distribution of ECG data sets. The network architectures of WGAN-GP and SE-ResNet1D are
designed according to the characteristics of ECG signals so that they can be better applied to the
generation and classification of ECG signals. First, ECG data were generated using WGAN-GP on the
MIT-BIH arrhythmia database to balance the dataset. Then, the experiments were performed using
the AAMI category and inter-patient data partitioning principles, and classification experiments were
performed using SE-ResNet1D on the imbalanced and balanced datasets, respectively, and compared
with three networks, VGGNet, DenseNet and CNN+Bi-LSTM. The experimental results show that
using WGAN-GP to balance the dataset can improve the accuracy and robustness of the model
classification, and the proposed SE-ResNet1D outperforms the comparison model, with a precision of
95.80%, recall of 96.75% and an F1 measure of 96.27% on the balanced dataset. Our methods have the
potential to be a useful diagnostic tool to assist cardiologists in the diagnosis of arrhythmias.

Keywords: electrocardiograms; generative adversarial networks; deep residual networks; squeeze
and excitation networks; wavelet threshold denoising

1. Introduction

Cardiovascular disease is one of the leading causes of death in China, with approx-
imately 330 million people now suffering from cardiovascular disease nationwide [1].
Electrocardiograms (ECGs) are routinely used in clinical practice to identify cardiac abnor-
malities. ECG is a bio-signal acquisition technique that uses an ECG machine to capture
the electrical signals generated by the electrical activity cycle of the heart from the body’s
surface. ECG is generated by different electrical activities of the heart through depolari-
sation and repolarisation. It is a vital tool for diagnosing early features of coronary heart
disease, myocardial ischaemia and other non-cardiovascular diseases. However, ECG
analysis and diagnosis are usually performed by specialist physicians, which consumes a
lot of time and effort and squeezes out medical resources. Automated ECG diagnosis is
now becoming commonplace, not only eliminating the possibility of human error, but also
allowing algorithms to be embedded in on-the-go devices such as mobile phones to readily
diagnose ECGs collected through wearable ECG monitoring devices.

Researchers have tried to develop automatic ECG signal classification methods, which
require minimal human involvement, to detect cardiac abnormalities. Among these
methods, Deep Neural Network (DNN) models have underpinned state-of-the-art per-
formances [2,3], especially on small-scale ECG datasets such as the MIT-BIH arrhythmia
database [4]. However, most existing methods of ECG classification suffer from the follow-
ing problems:

• The training of the model relies on a large number of accurately annotated datasets,
while ECG, as a sensitive medical dataset involving patient privacy, is difficult to
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obtain in large quantities, and the datasets need to be annotated and proofread by
professional doctors, which will consume a lot of medical resources [5,6].

• ECGs have a predominantly normal heart rate and a low abnormal heart rate, so the
sample size between each category of the ECG dataset is often highly imbalanced. The
imbalance in the number of samples of ECG signals from different categories affects
the performance of the classifier. Models trained on imbalanced datasets usually do
not perform well, especially in the determination of abnormal categories [7,8].

• The experiments in most papers randomly disrupted the heartbeats of all patients and
then divided the training and test sets, which resulted in high test accuracy but poor
practical results. This is because ECG signals vary significantly from patient to patient,
and therefore, the generalization performance of the model is reduced in this training
approach [9].

In recent years, some researchers have taken note of these issues and have initi-
ated some studies to generate ECGs [10–14] and use deep learning models to classify
ECGs [15–20], but have not achieved good performance in multi-classification, especially
in inter-patient. Currently, generation and classification tasks are the most prominent
applications of supervised learning. WGAN-GP is widely used for generating time-series
data [21,22]. SENet and ResNet have also achieved good performance in the area of image
classification, but to our knowledge, it is rarely used in its one-dimensional form, espe-
cially for the classification of physiological signals. In this paper, we propose to use the
improved WGAN-GP to generate ECG signals to balance the dataset and then classify the
dataset before and after balancing using SE-ResNet1D, respectively, to compare the impact
of the dataset before and after balancing on the classification performance of the model.
Specifically, a more realistic inter-patient method is used for the classification of the dataset,
resulting in a stronger generalization performance of the model. The contributions of our
paper are as follows:

• We improve the structure of WGAN-GP. A Bi-GRU layer is embedded into the genera-
tor of the neurogenerative model to endorse the temporal constraint for better ECG
synthesis.

• We redesigned the structure of SE-ResNet to a one-dimensional model to classify ECG
signals.

• Our experimental dataset was divided using AAMI and inter-patient, which is more
in line with the medical reality. Our experiments demonstrate that the above improve-
ments can significantly improve the performance of arrhythmia classification.

The remainder of the paper is structured as follows. We present related work in
Section 2 and background in Section 3. The proposed method is explained in detail in
Section 4. In Section 5, the processing and division of the data set are described in detail.
Then, the experimental results and analysis are presented in Section 6. Finally, Section 7
presents the conclusions of the paper and discusses the limitations of our method and
future work.

2. Related Work
2.1. Deep Learning Network-Based ECG Classification

In recent years, DNN-based methods have achieved excellent performance in clas-
sifying small-scale ECG datasets. For instances, Maweu et al. [10] proposed a modular
framework of CEFEs using Convolutional Neural Networks (CNN) to interpret ECG signals
for interpretability. To classify the ECG signals without feature extraction, Chen et al. [11]
developed a multi-channel multi-scale DNN model, which is an end-to-end structure. In
order to enhance the performance of the DNN model, long short-term memory (LSTM)
and attention were added along with convolutional layers, which were utilized to extract
key features. An automatic MI detection system was proposed by Rai et al. [12]. CNN,
hybrid CNN-LSTM, and ensemble techniques were used to analyze ECG signals in order
to select the best performing model. To create the model, they employed 123,998 ECG
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beats from the PTB diagnostic database and MIT-BIH arrhythmia database. Based on
the region of cardiac involvement, Jahmunah et al. [13] developed DenseNet and CNN
models for the classification of healthy participants and patients with ten types of MI.
The Physikalisch-Technische Bundesanstalt database was used to pre-process ECG signals,
and an R peak detection technique was used to extract the ECG beats. Attallah et al. [14]
suggested a new pipeline dubbed ECG-BiCoNet to explore the possibility of using ECG
data for diagnosing COVID-19. Five deep learning models with various structural designs
are used by ECG-BiCoNet. Each deep learning technique’s two separate layers are used to
extract two levels of features for ECG-BiCoNet.

2.2. GAN Based ECG Signal Synthesize

The signal synthesis task is to learn the real data distribution from the dataset. One
such deep learning method is Generative Adversarial Networks (GAN), which was initially
proposed to generate realistic synthetic images [23]. Recently, some researchers have
used it to synthesize ECG signals to expand the dataset for the purpose of improving
model classification. For instance, Li et al. [15] conducted an automated myocardial
infarction detection model SLC-GAN, which used generative adversarial networks (GAN)
to create single-lead ECG data with high morphological similarity. CNNs containing real
ECG data and artificial ECGs from the GAN were used to automatically diagnose MI.
In order to produce multi-view ECG signals, Chen et al. [16] proposed a unique disease-
aware generative adversarial network dubbed ME-GAN. ME-GAN acquires panoptic
electrocardio representations tailored to heart disorders and projects the representations
onto several standard perspectives. To address the data insufficiency issue, Rafi et al. [17]
created a novel generative adversarial network-based deep learning technique dubbed
HeartNet. A multi-head attention mechanism atop the CNN architecture compresses
the deep learning technique that is being offered. By using GAN and creating more
training samples, adversarial data synthesis was able to overcome the primary problem of
insufficient data labels. In order to increase the amount of data in the arrhythmia dataset
and address the issue of imbalanced arrhythmia data, Ma et al. [18] introduced ECG Deep
Convolution Generative Adversarial Networks (ECG-DCGAN). Additionally, the ECG
signals were automatically classified using the CNN model without the usage of artificial
feature extraction. Ma et al. [19] converted the time series into Gramian angular summation
field (GASF) images to aid the classifier in obtaining the rich information included in the
ECG signals. They used the conditional Wasserstein generative adversarial network with
gradient penalty CWGAN-GP model to amplify the minor categories in order to solve the
imbalanced data problem. Wu et al. [20] used the Short Term Fourier Transform (STFT)
based SpectroGAN and the Smooth Wavelet Transform (SWT) based WaveletGAN models
to generate three ECG signals, left bundle branch block, right bundle branch block and
normal heartbeat, and a new evaluation method to assess the reliability of the generated
ECG signals, but the short length of the training samples involved in the experiments was
not conducive to the generation of valid data for long segments.

3. Background
3.1. WGAN-GP

Generative Adversarial Networks (GAN) [24] was first proposed by Ian Goodfellow
in 2014, and GAN was initially applied to generate realistic, non-existent images in the
training set to learn the distribution of data in the training set by adversarial training.

The structure of the original GAN is not suitable for discrete data and one-dimensional
time-series data. However, ECG signals are rich in diversity and are also one-dimensional
time-series data, so the original GAN is not suitable for the task of generating ECGs. The
WGAN proposed by Arjovsky et al. [25] improves the original GAN by replacing the
JS scatter used in the original GAN with the Wasserstein distance. Gulrajani et al. [26]
proposed WGAN-GP and pointed out the existence of weight clipping in WGAN leading
to the problem of parameter concentration and proposed to solve it by applying gradient
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penalty to each sample individually. The discriminator in WGAN-GP can learn reasonable
parameter values and thus solve the challenge of slow convergence of the network.

3.2. SE-ResNet

Deep residual network (ResNet) [27] was proposed by Kai-Ming He from Microsoft
Asia Research Institute and won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [28] in 2015. Squeeze Excitation Neural Networks (SENet) [29], the champion
model of ILSVRC2017, proposes a structure of squeeze and excitation blocks that allows
the network to perform channel-based recalibration of features.

SE-ResNet is a network model that introduces a squeeze block and incentive block
structure on top of the ResNet model. It has been applied to image classification with
good performance. Zhao et al. [30] applied its two-dimensional form to the classification of
12-lead ECGs, but this model is only suitable for large data sets.

4. Proposed Method
4.1. WGAN-GP Based ECG Synthesised Model

We redesigned the generator and discriminator of GAN according to the characteristics
of one-dimensional continuity of ECG signals, and the architecture of WGAN-GP is shown
in Figure 1. A one-dimensional convolutional layer with feature extraction function [23]
and a Bi-directional Gate Recurrent Unit (Bi-GRU) was added to the generator to extract the
features of the signal and learn the distribution of the real data. The discriminator consists
of several one-dimensional convolutional layers, a one-dimensional pooling layer and a
fully connected layer.

Real/
Fake

z

G

Real ECG

Synthesised
ECG

Bi-GRU
Conv1D

Upsampling
Conv1D

Upsampling
Conv1D
Conv1D
Flatten
Dense

Activation
Reshape

Conv1D
MaxPooling

Conv1D
MaxPooling

Conv1D
MaxPooling

Conv1D
Dropout

MaxPooling
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D

Figure 1. Architecture of WGAN-GP.

Bi-GRU is an improved RNN that is more suitable for acquiring features of the
ECG [31]. The Gate Recurrent Unit (GRU) consists of a memory unit, an input gate, an
output gate and a forgetting gate. Each memory unit is cyclically connected to each other
and the non-linear gating unit controls the input and output of data from each memory
unit. However, the unidirectional GRU only processes the forward information and ignores
the backward information, which is equally important in the ECG signal and affects the
final output. The Bi-GRU model is a combination of a forward GRU and a backward GRU,
with the output taking into account both the forward and backward input information, and
in the task of this model, both the forward and backward band features can be taken into
account. Where the reset gate is used to weaken features of low relevance in the previous
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unit and the update gate is used to determine the features that need to be passed from the
previous unit to the next. The Bi-GRU model is implemented as follows.

rt = σ(Wr · [ht−1; xt] + br) (1)

zt = σ(Wz · [ht−1; xt] + bz) (2)

h̃t = Tanh(Wh · [(rt � ht−1); xt] + bh) (3)

ht = (1− zt)� ht−1 + zt � h̃t (4)

where x denotes the input at the time t, σ denotes the activation function, rt and zt denotes
the output of the reset gate and update gate, h̃t and ht denotes the candidate output and
the actual output, respectively, and � denotes multiplication one by one.

The ultimate goal of training a GAN is to find the Nash equilibrium point of a zero-
sum game. Both generators and discriminators want to minimize their cost functions, and
it is often difficult to reach the Nash equilibrium point in the process of adversarial training.
In addition, the adversarial training of GAN penalizes poorly generated samples and
generators often choose to generate samples with known small penalties in order to avoid
penalties, resulting in generating too homogeneous a variety of samples and eventually
falling into pattern collapse [32]. In this paper, we add Batch Normalization between layers
to prevent pattern collapse and improve training stability.

The ECG signals generated by the model at different stages are plotted as pictures,
as shown in Figure 2. Figure 2a shows the high-dimensional random noise input at the
beginning of training, and the output is also completely noisy at this time; Figure 2b
shows the output at 100 rounds of training, where the output can be seen to have some
of the morphological features of ECG, but the generated samples are still more noise
biased; Figure 2c shows the output at 300 rounds of training, where the generated has the
morphology of ECG, but it is not smooth enough; Figure 2d shows the output at 800 rounds
of training when the generated ECG can successfully fool the discriminator and make it
lose its judgment, and the adversarial training enters the Nash equilibrium state and the
network converges.
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Figure 2. ECG generated at different stages: (a) beginning of the training; (b) 100 rounds; (c) 300
rounds; (d) 800 rounds.

4.2. SE-ResNet1D Based ECG Classification Model

In this paper, we improve on the SE-ResNet model by replacing the 2D convolutional
and 2D pooling layers originally used for image feature extraction with the 1D convo-
lutional and 1D pooling layers used for temporal signal feature extraction to build the
SE-ResNet1D ECG classification model, and redesign the overall network architecture and
training parameters so that it can be better adapted to the task of arrhythmia classification.

The ECG SE-ResNet1D architecture is shown in Figure 3. The network has 17 modules,
including a convolutional layer input module, a SoftMax output module and 15 blocks.
Each connection block contains three convolutional layers for feature extraction and an SE
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module for modeling the spatio-temporal relationships between ECG channels. In the SE
module, it can be seen that it first extracts features through the Global Pooling layer, reduces
the feature dimensionality and then ramps back to the original dimensionality through two
Fully Connected layers (FC). The two FC layers have more nonlinearity and can better fit the
correlation within the ECG signal features, and the ECG features are enhanced by channel
dynamic feature recalibration so that features that are clearly abnormal receive more weight.
Finally, the weights are normalized by the Sigmoid activation function and then the features
of each channel are weighted by the scale operation. The first convolutional layer and the
initial cell of the SE-ResNet connection block have 64 convolutional filters, after which
the number of filters is increased by a factor of two for every other connection block. A
Dropout layer with a probability value of 0.5 is used between each convolutional layer, and
L2 regularization is added to the weights of each layer to prevent overfitting of the model.
Finally, the probability values of the five categories are output via the fully connected layers
and the SoftMax activation function.

The model was trained using random initialization weights for a total of 50 rounds.
The optimization was performed using the Adam optimizer, with the initial learning rate
set to 0.003 and the batch size set to 64.

Input
Conv1D

BN

SoftMax
Dense

BN

N S V F Q

Se-ResNet×15

Conv1D
BN

Conv1D
BN

Dropout
Conv1D

MaxPooling

Scale

Global Pooling
FC

ReLU

Sigmoid
FC

Figure 3. Architecture of SE-ResNet1D.

5. Datasets and Data Pre-Processing
5.1. Introduction to the Data Set

The experimental dataset we used was the MIT-BIH arrhythmia database [4], open-
sourced by MIT, which has been widely used by the academic community since it was
made public in 1978 and has become the most widely used small ECG dataset in academic
research today. The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings, obtained from 47 subjects studied by the BIH
Arrhythmia Laboratory. Twenty-three recordings were chosen at random from a set of
4000 24-h ambulatory ECG recordings collected from a mixed population of inpatients
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(about 60%) and outpatients (about 40%) at Boston’s Beth Israel Hospital; the remaining 25
recordings were selected from the same set to include less common but clinically significant
arrhythmias that would not be well-represented in a small random sample. All ECGs are
automatically annotated by the machine with the R-peak positions and calibrated by two
cardiologists.

5.2. Data Pre-Processing
5.2.1. Heartbeat Segmentation

The annotation file of the MIT-BIH arrhythmia database indicates the R-peak location
of each beat, but not all data sets are annotated with the R-peak location. In order to
demonstrate the universality of the method, our experiment uses the QRS wave detection
method proposed by Lourenco et al. [33] to find the R-peak, and after obtaining the R-peak
location, the beats are intercepted by taking a section of sampling points forward and
backward. The length of each intercepted heartbeat is 216 sampling points.

5.2.2. Wavelet Threshold Noise Reduction

ECG signals are often disturbed by interference from EMG noise during acquisition,
and the interference of these noises can make it difficult for the network to converge, so
we use wavelet threshold denoising [34] to remove the noise, and the flow of the wavelet
threshold denoising method is shown in Figure 4.

Noise-containing ECG

Wavelet coefficients for each 
scale

New wavelet coefficients for each 
scale

Noise-free ECG

Decomposition to wavelet threshold

Threshold marshal selection

Wavelet inversion to reconstruct signal

Figure 4. Wavelet threshold denoising method.

The wavelet threshold function is shown in Equation (5) and Equation (6), where N
denotes the length of the high-frequency coefficients for each scale of the wavelet and the
scale is 9, respectively, λ denotes the threshold value, σ is a constant with a value of 0.674,
w denotes the high-frequency wavelet coefficients.

λ = σ
√

2 log(N) (5)

wλ =

{
[sgn(w)](|w| − λ), |w| ≥ λ

0, |w| < λ
(6)

A comparison of the ECG signals in the MIT-BIH arrhythmia database before and after
denoising using wavelet thresholding is shown in Figure 5, where it can be seen that the
denoised ECG signal removes the interference of inotropic noise while maximizing the
preservation of ECG characteristics.
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Figure 5. Comparison of ECG signals before and after wavelet threshold denoising: (a) Original ECG
signal; (b) Denoised signal.

5.2.3. Data Set Partitioning

There are 15 different heartbeat annotations in the MIT-BIH arrhythmia database,
which are widely used in academic research to classify them into five categories using the
American Association for the Advancement of Medical Instrumentation (AAMI) classifi-
cation criteria [35], as shown in Table 1, which Both the original number of beats and the
number after generating a beat-balanced dataset using WGAN-GP are shown in Table 1.

Table 1. Category and number of the dataset.

AAMI MIT-BIH Number of Original Number of Balanced

Normal (N) N, L, R 4551 5000
Supraventricular (S) A, a, J, S, j, e 1010 5000

Ventricular (V) V, E 2177 5000
Fusion1 (F) F 552 5000

Unkonwn (Q) /, f, Q 792 5000
1 Fusion denotes the fusion of ventricular and normal beat.

Medical data has an inter-patient principle and an intra-patient principle when di-
viding the training and test sets [36]. The inter-patient principle separates the training
and test sets by the patient. The intra-patient principle directly assigns patients randomly
by breaking up their records. Most of the experiments in papers studying ECG use the
intra-patient approach, which has high classification accuracy but it does so by training
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some of the heartbeats of the same patient and then testing the rest of the heartbeats of the
same patient. This is not a rigorous approach, resulting in an inflated experimental result
but poor generalization performance of the model, and this classification is not realistic.
Our experiments follow the inter-patient principle and separate the test set and training set
by the patient, i.e., the heartbeats of patients appearing in the training set will not appear
in the test set, which is more realistic. The division of the training and test sets is shown in
Table 2.

Table 2. Train set and test set division under the inter-patient.

Data Set Record

Train 101,103,112,113,115,117,121,122,123,124,200,201,203,
205,207,208,209,210,212,213,214,215,217,219,220,221,
222,223,228,231,232,233,234

Test 100,102,104,105,106,107,108,109,111,114,116,118,119,213

6. Experiments
6.1. Experimental Settings

The experiments were deployed on a tower workstation with a Core i9-10920X pro-
cessor (3.5 GHz), Quadro RTX6000 graphics card (24 GB of video memory), running on
64 G RAM, and a deep learning environment using Window Sever 2019 + Python 3.8 +
Keras 2.2. Classification experiments were performed using SE-ResNet1D was used to do
classification experiments on imbalanced and balanced datasets, respectively, and com-
pared with three networks, DenseNet [37], VGGNet [38] and CNN+Bi-LSTM [39]. For each
experiment, 80% of the samples were randomly selected for training and 20% for testing. A
10-fold cross-validation was used during the training process, dividing all the samples into
10 copies, with 9 of them randomly selected as the training set and the remaining 1 as the
validation set, thus improving the confidence of the experimental results.

For the model evaluation, Precision (P), Recall (R) and F1 Measure (F1) are used as
metrics to compare our method with benchmark models.

6.2. Experimental Results and Analysis

In our work, we conducted two groups of comparison experiments, and the experi-
mental results are shown on the left of Table 3. First, the classification performance was
tested using SE-ResNet on the imbalanced MIT-BIH arrhythmia database and compared
with three deep learning algorithms, DenseNet, VGGNet and CNN+Bi-LSTM. As can be
seen from Table 3, with an imbalanced number of categories in the dataset, SE-Resnet1D
achieved a precision rate of 93.16%, a recall rate of 93.31% and an F1 value of 93.23%,
with the classification performance outperforming the other three methods in different
evaluation metrics.

Then, based on the above experimental results, we generate ECG signals to balance
the MIT-BIH arrhythmia database by WGAN-GP and then conduct further experiments
using the same four algorithms. As can be seen from Table 3, after data balancing with
WAGN-GP, the classification performance of all four algorithms was significantly improved,
especially the SE-ResNet1D effect was significantly improved, achieving a precision rate of
95.8%, a recall rate of 96.7% and an F1 value of 96.2% on the balanced dataset. Compared to
the imbalanced results, the precision rate improved by 2.64%, the recall rate by 3.44% and
the F1 value by 3.04%. The experimental results show that for imbalanced medical data,
eliminating data imbalance by generating data with WGAN-GP can effectively improve
the classification results.
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Table 3. Comparison of experimental results.

Methods
Original Data Balanced Data

Precision Recall F1 Precision Recall F1

SE-Resnet1D 93.16 93.31 93.23 95.80 96.75 96.27
DenseNet 91.55 92.13 91.84 93.76 93.39 93.75
VGGNet 88.16 90.22 89.13 93.90 94.18 94.04

CNN+Bi-LSTM 86.12 89.50 87.78 90.36 91.92 91.13

We further compared the results of the proposed method with other inter-patient
studies in recent years. As shown in Table 4, the proposed method obtained the best per-
formance compared to previous studies of five Classifications [40–42]. Liu et al. proposed
ECVT-Net [43] has better performance, but can only classify normal and abnormal classes.

Table 4. Performance comparison with previous studies.

References Classes Algorithm Performance

Li et al. [40] 5 classes ResNet
Sensitivity of 94.54% , Positive

predictivity of 93.33% and
Specificity of 80.80%

Liu et al. [43] 2 classes ECVT-Net
Accuracy of 98.88%, Precision
of 98.84% and Sensitivity of

98.94%

kaur et al. [41] 5 classes

feature fusion with novel
feature set based on

fractional-order and fibonacci
series

Accuracy of 92.5%, Sensitivity
of 89.89% and Positive
predictivity of 95.54%

Sidrah et al. [44] 2 classes
2 LSTM layers, 1 fully

connected layer and 1 dropout
layer

Accuracy of 86.5%

Niu et al. [42] 5 classes MPCNN
Accuracy of 96.4% and F1 of

76.6% for SVEB, 89.7% for
VEB

Proposed method 5 classes WGAN-GP and SE-ResNet1D Precision of 95.8%, Recall of
96.75% and F1 of 96.27%

7. Discussion and Conclusions

Deep learning has achieved good performance in ECG automatic classification and
diagnosis, yet there are still problems such as high annotation cost, imbalanced datasets and
unreasonable dataset partitioning during training. In order to solve the above problems and
improve the performance of the model for arrhythmia classification on imbalanced datasets,
we propose an algorithmic model for balancing datasets by generating ECG signals via
WGAN-GP, which adds a Bi-GRU layer to the generator based on the characteristics of
one-dimensional continuity of ECG signals to compensate for the shortcomings of previous
GAN-based algorithms for one-dimensional temporal signal generation. The experiments
were validated on the MIT-BIH arrhythmia database, and we used SE-ResNet1D on a pre-
and post-balanced dataset, respectively, and compared it with three other deep learning-
based classification algorithms. The experimental results show that the WGAN-GP+SE-
ResNet1D approach can achieve good results on datasets with a small sample size and
imbalanced distribution.

Currently, there are two technical limitations to our model. First, our model cannot be
successfully migrated from multiple training datasets to a completely different test dataset
and the model trained using data from one lead does not work well for other leads either.
To the best of our knowledge, very few works focus on cross-lead model issues. Therefore,
the future work is a combination of migration learning and domain generation-based
methods that can be used to improve the portability of the model, improve the accuracy of
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the model on ECG signals with different devices, different leads and different sampling
rates, and make the model more robust. In addition, it is hard to explain the results of the
presented model in the sense that we cannot determine the specific ECG morphology that
results in the classification. Future work will involve expanding our model to incorporate
improved explainability through prototype learning and attention.
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