# Electrical Characterization of Through-Silicon-via-Based Coaxial Line for High-Frequency 3D Integration (Invited Paper)

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theories of Coaxial TSVs

## 3. Coaxial-like TSVs

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

TSV | Through-silicon-via |

3D | Three dimensional |

RF | Radio frequency |

MEMS | Microelectromechanical Systems |

S-G | Signal-ground |

DRIE | Deep reactive ion etching |

AR | Aspect ratio |

BCB | Benzocyclobutene |

ABF | Ajinomoto Build-up Film |

p.u.l | per-unit-length |

TEM | Transverse Electromagnetic |

FEM | Finite Element Method |

## References

- Liu, X.; Sun, Q.; Huang, Y.; Chen, Z.; Liu, G.; Zhang, D.W. Optimization of TSV leakage in via-middle tsv process for wafer-level packaging. Electronics
**2021**, 10, 2370. [Google Scholar] [CrossRef] - Ait Belaid, K.; Belahrach, H.; Ayad, H. Numerical laplace inversion method for through-silicon via (TSV) noise coupling in 3D-IC design. Electronics
**2019**, 8, 1010. [Google Scholar] [CrossRef][Green Version] - Tian, W.; Ma, T.; Liu, X. TSV technology and high-energy heavy ions radiation impact review. Electronics
**2018**, 7, 112. [Google Scholar] [CrossRef][Green Version] - Kim, J.; Pak, J.S.; Cho, J.; Song, E.; Cho, J.; Kim, H.; Song, T.; Lee, J.; Lee, H.; Park, K.; et al. High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Trans. Compon. Packag. Manuf. Technol.
**2011**, 1, 181–195. [Google Scholar] - Xiong, W.; Dong, G.; Wang, Y.; Zhu, Z.; Yang, Y. 3-D Compact marchand balun design based on through-silicon via technology for monolithic and 3-D integration. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
**2022**, 30, 1107–1118. [Google Scholar] [CrossRef] - Wang, Z. 3-D integration and through-silicon vias in MEMS and microsensors. J. Microelectromech. Syst.
**2015**, 24, 1211–1244. [Google Scholar] [CrossRef] - Xu, Z.; Lu, J.Q. Three-dimensional coaxial through-silicon-via (TSV) design. IEEE Electron Device Lett.
**2012**, 33, 1441–1443. [Google Scholar] [CrossRef] - Adamshick, S.; Coolbaugh, D.; Liehr, M. Feasibility of coaxial through silicon via 3D integration. Electron. Lett.
**2013**, 49, 1028–1030. [Google Scholar] [CrossRef] - Jung, D.H.; Kim, H.; Kim, S.; Kim, J.J.; Bae, B.; Kim, J.; Yook, J.M.; Kim, J.C.; Kim, J. 30 Gbps high-speed characterization and channel performance of coaxial through silicon via. IEEE Microw. Wirel. Compon. Lett.
**2014**, 24, 814–816. [Google Scholar] [CrossRef] - Wu, W.C.; Chang, E.Y.; Hwang, R.B.; Hsu, L.H.; Huang, C.H.; Karnfelt, C.; Zirath, H. Design, fabrication, and characterization of novel vertical coaxial transitions for flip-chip interconnects. IEEE Trans. Adv. Packag.
**2009**, 32, 362–371. [Google Scholar] - Ho, S.W.; Rao, V.S.; Khan, O.K.N.; Yoon, S.U.; Kripesh, V. Development of coaxial shield via in silicon carrier for high frequency application. In Proceedings of the 2006 8th Electronics Packaging Technology Conference, Singapore, 6–8 December 2006; pp. 825–830. [Google Scholar]
- Yook, J.M.; Kim, Y.G.; Kim, W.; Kim, S.; Kim, J.C. Ultrawideband signal transition using quasi-coaxial through-silicon-via (TSV) for mm-wave IC packaging. IEEE Microw. Wirel. Compon. Lett.
**2020**, 30, 167–169. [Google Scholar] [CrossRef] - Qian, L.; Xia, Y.; He, X.; Qian, K.; Wang, J. Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration. IEEE Trans. Compon. Packag. Manuf. Technol.
**2018**, 8, 1336–1343. [Google Scholar] [CrossRef] - Shen, W.W.; Chen, K.N. Three-dimensional integrated circuit (3D IC) key technology: Through-silicon via (TSV). Nanoscale Res. Lett.
**2017**, 12, 56. [Google Scholar] [CrossRef] [PubMed][Green Version] - Yu, L.; Yang, H.; Jing, T.T.; Xu, M.; Geer, R.; Wang, W. Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs. In Proceedings of the 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–11 November 2010; pp. 686–693. [Google Scholar]
- Yook, J.M.; Kim, J.C.; Park, S.H.; Ryu, J.I.; Park, J.C. High density and low-cost silicon interposer using thin-film and organic lamination processes. In Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; pp. 274–278. [Google Scholar]
- Malta, D.; Vick, E.; Goodwin, S.; Gregory, C.; Lueck, M.; Huffman, A.; Temple, D. Fabrication of TSV-based silicon interposers. In Proceedings of the 2010 IEEE International 3D Systems Integration Conference (3DIC), Munich, Germany, 16–18 November 2010; pp. 1–6. [Google Scholar]
- Bao, X.; Ocket, I.; Bao, J.; Doijen, J.; Zheng, J.; Kil, D.; Liu, Z.; Puers, B.; Schreurs, D.; Nauwelaers, B. Broadband dielectric spectroscopy of cell cultures. IEEE Trans. Microw. Theory Tech.
**2018**, 66, 5750–5759. [Google Scholar] [CrossRef] - Bao, X.; Wang, L.; Wang, Z.; Zhang, J.; Zhang, M.; Crupi, G.; Zhang, A. Simple, fast, and accurate broadband complex permittivity characterization algorithm: Methodology and experimental validation from 140 GHz up to 220 GHz. Electronics
**2022**, 11, 366. [Google Scholar] [CrossRef] - Ho, S.W.; Yoon, S.W.; Zhou, Q.; Pasad, K.; Kripesh, V.; Lau, J.H. High RF performance TSV silicon carrier for high frequency application. In Proceedings of the 2008 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 1946–1952. [Google Scholar]
- Chen, X.; Tang, J.; Xu, G.; Luo, L. Process development of a novel wafer level packaging with TSV applied in high-frequency range transmission. Microsyst. Technol.
**2013**, 19, 483–491. [Google Scholar] [CrossRef] - Lee, W.C.; Min, B.W.; Kim, J.C.; Yook, J.M. Silicon-core coaxial through silicon via for low-loss RF Si-interposer. IEEE Microw. Wirel. Compon. Lett.
**2017**, 27, 428–430. [Google Scholar] [CrossRef] - Farooq, M.; Graves-Abe, T.; Landers, W.; Kothandaraman, C.; Himmel, B.; Andry, P.; Tsang, C.; Sprogis, E.; Volant, R.; Petrarca, K.; et al. 3D copper TSV integration, testing and reliability. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 1–7. [Google Scholar]
- Hummler, K.; Smith, L.; Caramto, R.; Edgeworth, R.; Olson, S.; Pascual, D.; Qureshi, J.; Rudack, A.; Quon, R.; Arkalgud, S. On the technology and ecosystem of 3D/TSV manufacturing. In Proceedings of the 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, USA, 16–18 May 2011; pp. 1–6. [Google Scholar]
- Tippet, J.C.; Chang, D.C. Characteristic impedance of a rectangular coaxial line with offset inner conductor. IEEE Trans. Microw. Theory Tech.
**1978**, 26, 876–883. [Google Scholar] [CrossRef] - Bao, X.; Crupi, G.; Ocket, I.; Bao, J.; Ceyssens, F.; Kraft, M.; Nauwelaers, B.; Schreurs, D. Numerical modeling of two microwave sensors for biomedical applications. Int. J. Numer. Model. Electron. Netw. Devices Fields
**2021**, 34, e2810. [Google Scholar] [CrossRef] - Lukic, M.; Rondineau, S.; Popovic, Z.; Filipovic, S. Modeling of realistic rectangular/spl mu/-coaxial lines. IEEE Trans. Microw. Theory Tech.
**2006**, 54, 2068–2076. [Google Scholar] [CrossRef] - Bao, X.; Ocket, I.; Bao, J.; Liu, Z.; Puers, B.; Schreurs, D.M.P.; Nauwelaers, B. Modeling of coplanar interdigital capacitor for microwave microfluidic application. IEEE Trans. Microw. Theory Tech.
**2019**, 67, 2674–2683. [Google Scholar] [CrossRef] - Gugliandolo, G.; Tabandeh, S.; Rosso, L.; Smorgon, D.; Fernicola, V. Whispering gallery mode resonators for precision temperature metrology applications. Sensors
**2021**, 21, 2844. [Google Scholar] [CrossRef] [PubMed] - Gugliandolo, G.; Naishadham, K.; Donato, N.; Neri, G.; Fernicola, V. Sensor-integrated aperture coupled patch antenna. In Proceedings of the 2019 IEEE International Symposium on Measurements & Networking (M&N), Catania, Italy, 8–10 July 2019; pp. 1–5. [Google Scholar]
- Gugliandolo, G.; Aloisio, D.; Campobello, G.; Crupi, G.; Donato, N. Development and metrological evaluation of a microstrip resonator for gas sensing applications. In Proceedings of the 24th IMEKO TC-4 International Symposium, Palermo, Italy, 14–16 September 2020; pp. 14–16. [Google Scholar]
- Bao, X.; Liu, S.; Ocket, I.; Bao, J.; Kil, D.; Zhang, S.; Cheng, C.; Feng, K.; Avolio, G.; Puers, B.; et al. Coplanar waveguide for dielectric material measurements at frequencies from 140 GHz to 220 GHz. In Proceedings of the 90th ARFTG Conference Digest, Boulder, CO, USA, 28 November–1 December 2017; pp. 1–4. [Google Scholar]
- Bao, X.; Liu, S.; Ocket, I.; Liu, Z.; Schreurs, D.M.; Nauwelaers, B.K. A modeling procedure of the broadband dielectric spectroscopy for ionic liquids. IEEE Trans. NanoBiosci.
**2018**, 17, 387–393. [Google Scholar] [CrossRef] [PubMed] - Ong, N. Microwave cavity-perturbation equations in the skin-depth regime. J. Appl. Phys.
**1977**, 48, 2935–2940. [Google Scholar] [CrossRef] - Costamagna, E.; Fanni, A. Characteristic impedances of coaxial structures of various cross section by conformal mapping. IEEE Trans. Microw. Theory Tech.
**1991**, 39, 1040–1043. [Google Scholar] [CrossRef] - Li, Q.; Zhang, Y.; Qu, L.; Fan, Y. Quasi-static analysis of multilayer dielectrics filled coaxial line using conformal mapping method. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018; pp. 1–3. [Google Scholar]

**Figure 1.**Schematics of the coaxial TSV in the $z-$plane and the transformed $t-$plane with (

**a**) standard, (

**b**) multi-layer, and (

**c**) fan-shaped dielectric.

**Figure 2.**The comparison of R and $\omega L$ and the comparison of G and $\omega C$ at frequencies from 1 GHz to 40 GHz, when ${R}_{D}$, ${R}_{D}$, and c are 57 $\mathsf{\mu}$m, 25 $\mathsf{\mu}$m, and 10 $\mathsf{\mu}$m, respectively, and the dielectric is silicon (${\epsilon}_{r}$ = 11.9, $tan\delta $ = 0.015, and $\rho \u2a7e$ 100 $\mathsf{\Omega}$-cm).

**Figure 3.**Impacts on the characteristic impedance of the (

**a**) dielectric constant and (

**b**) dielectric loss tangent values of the single substrate, (

**c**) thickness of a BCB ring inserted in a Si substrate, (

**d**) position of a BCB ring in a Si substrate, and (

**e**) angle of a fan-shaped air area in a Si substrate.

**Figure 4.**(

**a**) Schematics of the coaxial-like TSV in the $z-$plane and the transformed $t-$plane with off-centered inner conductor. (

**b**) Comparison between simulated and calculated characteristic impedance of the off-centered coaxial-like TSV.

**Figure 5.**(

**a**) Schematics of the coaxial-like TSV in the $z-$plane and the transformed $t-$plane with TSV-based outside ground conductor. (

**b**) Comparison between simulated and calculated characteristic impedance of connected-TSV-based coaxial-like TSVs, with the connected TSV number ranging from 6 to 13.

**Figure 6.**Simulation results of coaxial-like TSVs with different ground-TSV number, where the left axis is the characteristic impedance (its magnitude is completely overlapped with its real part) and the right axis is the TSV center distance in the natural logarithmic form.

n | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|

P ($\mathsf{\mu}$m) | 50.00 | 57.62 | 65.33 | 73.10 | 80.90 | 88.74 | 96.59 | 104.46 |

${R}_{Deff}$ ($\mathsf{\mu}$m) | 28.12 | 36.02 | 43.74 | 51.64 | 59.55 | 67.57 | 75.39 | 83.44 |

${Z}_{cCal}$ ($\mathsf{\Omega}$) | 7.05 | 21.89 | 33.54 | 43.50 | 52.05 | 59.61 | 66.18 | 72.26 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhao, Z.; Li, J.; Yuan, H.; Wang, Z.; Gugliandolo, G.; Donato, N.; Crupi, G.; Si, L.; Bao, X.
Electrical Characterization of Through-Silicon-via-Based Coaxial Line for High-Frequency 3D Integration (Invited Paper). *Electronics* **2022**, *11*, 3417.
https://doi.org/10.3390/electronics11203417

**AMA Style**

Zhao Z, Li J, Yuan H, Wang Z, Gugliandolo G, Donato N, Crupi G, Si L, Bao X.
Electrical Characterization of Through-Silicon-via-Based Coaxial Line for High-Frequency 3D Integration (Invited Paper). *Electronics*. 2022; 11(20):3417.
https://doi.org/10.3390/electronics11203417

**Chicago/Turabian Style**

Zhao, Zhibo, Jinkai Li, Haoyun Yuan, Zeyu Wang, Giovanni Gugliandolo, Nicola Donato, Giovanni Crupi, Liming Si, and Xiue Bao.
2022. "Electrical Characterization of Through-Silicon-via-Based Coaxial Line for High-Frequency 3D Integration (Invited Paper)" *Electronics* 11, no. 20: 3417.
https://doi.org/10.3390/electronics11203417