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Abstract: Network slicing enables the multiplexing of independent logical networks on the same
physical network infrastructure to provide different network services for different applications.
The resource allocation problem involved in network slicing is typically a decision-making problem,
falling within the scope of reinforcement learning. The advantage of adapting to dynamic wireless
environments makes reinforcement learning a good candidate for problem solving. In this paper,
to tackle the constrained mixed integer nonlinear programming problem in network slicing, we
propose an augmented Lagrangian-based soft actor–critic (AL-SAC) algorithm. In this algorithm, a hi-
erarchical action selection network is designed to handle the hybrid action space. More importantly,
inspired by the augmented Lagrangian method, both neural networks for Lagrange multipliers and
a penalty item are introduced to deal with the constraints. Experiment results show that the proposed
AL-SAC algorithm can strictly satisfy the constraints, and achieve better performance than other
benchmark algorithms.

Keywords: network slicing; augmented Lagrangian; reinforcement learning; hybrid action space;
soft actor–critic (SAC)

1. Introduction

With the rapid development of industrial internet of things (IIoT), more and more
devices are connected and controlled via wireless networks. Providing precise services
for these devices to fulfill their diverse requirements becomes a fundamental issue in IIoT.
Facing this challenge, three application scenarios are defined by International Telecommu-
nication Union (ITU) and Fifth Generation Public Private Partnership (5G-PPP) [1,2], that is,
enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC),
and massive machine type communication (mMTC). In more detail, the eMBB scenario
provides devices with requirements on high transmission rate, such as high-definition
surveillance video in factories, whose peak rate for each camera can be greater than
10 Gbps [3]. mMTC refers to the scenarios, where a large number of devices connect simul-
taneously while the requirements on the transmission rate and delay are not critical [4].
In contrast, URLLC serves applications with a strict transmission on reliability, and latency,
such as automatic operators and controllers [5].

To satisfy these disparate scenarios within one network infrastructure, a network
slicing technique was proposed. It divides a physical network into multiple independent
logical networks [6,7], where each network slice is isolated from others and provides
one kind of network service via dedicated resource allocation. To efficiently allocate
resources and meet the dynamic of wireless networks, many intelligent algorithms have
been proposed. For instance, in [8], the genetic algorithm, ant colony optimization with
a genetic algorithm, and quantum genetic algorithm were used to jointly allocate radio
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and cloud resources to minimize the end-to-end response latency experienced by each
user. In [9], two deep learning technologies, supervised and unsupervised learning, were
introduced to jointly optimize user association and power allocation problems, combining
the data-driven and model-driven learning. The study in [10] exploited a learning-assisted
slicing and concurrent resource allocation process to jointly to improve the users’ service
reliability and resource utilization rate.

Following 5G network architecture, edge servers with caching and computing ca-
pacities are deployed close to the base stations (BSs). Such kinds of deployment enables
the intelligent cooperative among the neighboring BSs, which is suitable for the network
slicing for an intelligent factory. Resource allocation is a dynamic programming problem,
which can also be solved effectively by reinforcement learning (RL). In [11], RL was utilized
to dynamically update the number of radio resource units allocated to each slice, where
a utility-based reward function was adopted to achieve efficient resource allocation. Coop-
erative proximal policy optimization was adopted in RL to maximize resource efficiency
by considering different characteristics of the different network slices in [12]. A general
framework was proposed in [13] that uses RL to achieve dynamic resource management
of dynamic vehicle networks in realistic environments. Moreover considering the high
complexity and combinatorial nature of the future heterogeneous networks consisting
of multiple radio access technologies and edge devices, a multi-agent DRL-based method
was utilized in [14,15]. Specifically, in [14], deep Q-network (DQN) algorithm was used
in each agent to assign radio access technologies, while the multi-agent deep deterministic
policy gradient (DDPG) algorithm to allocate power. The authors in [15] investigated
a multi-agent cooperative problem in resource allocation aiming at improving the data
process ability of wireless sensor networks and eliminating the non-stationary problem
for channel allocation.

However, resource allocation problems in a wireless network always involve con-
straints, e.g., the device’s various requirements on average latency, cumulative through-
put, or the average package loss rate, which cannot be solved well by traditional RL. To
manage the constraints, constrained Markov decision processes (CMDP) arose, which
mainly include four classes: (1) penalty function method: it adds penalty terms into the opti-
mization objective to construct an unconstrained optimization problem. Such as in [16],
the logarithmic barrier function is introduced as a penalty. (2) Primal- dual method: it uses
the Lagrangian relaxation technique to transform the original problem into a dual problem,
for instance [17,18]. (3) Direct policy optimization: it replaces the objective or constraint
in the original problem by a more tractable function, such as [19–21]. (4) Safeguard uses
an extra step mechanism to guarantee the constraint in each training step [22].

In addition to the constraint problem, the discrete-continuous mixed action space
is involved in our work. Inspired by the concepts of the augmented Lagrangian similar
to the primal-dual method, we propose an augmented Lagrangian-based soft actor–critic
(AL-SAC) algorithm to solve the network slicing problem with constraints and the hybrid
action space. The main contributions of this paper are as follows.

• A two-stage action selection is designed by considering a hierarchical policy net-
work to solve the hybrid action space problem in RL, which can significantly reduce
the action space;

• A penalty-based piece-wise reward function and a constraint-handling part involving
neural networks for Lagrangian multipliers and cost functions are introduced to solve
the constraint problem;

• Simulation results show that our proposed algorithm satisfies the constraints, and
AL-SAC has a higher reward value than the DDPG algorithm with a penalty item.

2. System Model and Problem Formulation

This section firstly presents the network model of network slicing and transmission
rate model. Then, considering various requirements of different network slices, the con-
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straints of different types of devices are developed. Finally, a constrained mixed integer
nonlinear problem is formulated.

2.1. Network Model

As illustrated in Figure 1, we consider a wireless IIoT with multiple BSs and de-
vices with different network requirements. We denote the set of BSs and devices by
M = {1, 2, . . . , M} and N = {1, 2, . . . , N}. Moreover, the devices are categorized into
three typical scenarios, i.e., eMBB, mMTC, and URLLC, which are denoted by NeM, NuR
and NmM, respectively. Hence, NeM ∪NuR ∪NmM = N .

Base Station

VR

Water Meter

Surveillance

IIoT
Robotic Arm

Automatic Car

(a)

eMBB Slice 

mMTC Slice

URLLC Slice

Physical Infrastructure

Access 

Network

Transport 

Network

Core 

Network

Network slicing management system

(b)

Figure 1. The system model of network slicing. (a) Example of wireless IIoT; (b) the architecture
of network slices.

We further denote the bandwidth available in the m-th BS by Bm, m ∈ M, and its
transmission power by Pm. Additionally, a binary variable xmn ∈ {0, 1} is used to denote
the association between BS-m and device-n, and accordingly, bmn, the bandwidth allocated
by the BS-m to the device-n if xnm = 1; otherwise, xnm = 0.

2.2. SINR and Transmission Rate

Denote the distance between the m-th BS and the n-th device by dnm, and hnm the chan-
nel fading gain, the received SINR received at the n-th device from the m-th BS can be
expressed as [23]

Γnm =
Pm A0d−α

nmhnm

∑m′∈M,m′ 6=m Pm′A0d−α
nm′hnm′ + σ2

(1)
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where A0 denotes the path losses at the reference distance dnm = 1 and α denotes the path-
loss exponent; σ2 denotes the noise power. Hence, the transmission rate that the n-th device
can achieve when associated with the m-BS can be calculated as

Rnm = bnm × log2(1 + Γnm). (2)

For the n-th device, the transmission rate achieved is given by

Rn = ∑
m∈M

xnm × Rnm. (3)

2.3. Requirements of Different Network Slices

As mentioned before, each device belongs to one typical scenario. To provide the trans-
mission service required, three corresponding network slices are defined. That is,

• eMBB slice: The devices served by this network slice require a high transmission rate,
such as the device with real-time streaming of high-resolution 4K or 3D video [24].
That is, the transmission rate achieved by these devices has a minimum requirement:

Rn ≥ R0, ∀n ∈ NeM, (4)

where R0 denotes the rate threshold.
• URLLC slice: The devices served by this network slice have a strict requirement

on delay, which include the transmission delay, queuing delay, propagation delay,
and routing delay [25]. Denoted them by T1, T2, T3, T4, respectively, the end-to-end
delay can be calculated as T1 + T2 + T3 + T4. The minimum requirement for wireless
transmission delay is as follows:

L
Rn
≤ T0, ∀n ∈ NuR, (5)

where L denotes the packet length, and T0 denotes the delay threshold. As mentioned
in [26], the achievable rate of a URLLC wireless link, i.e., Equation (4) in [26], can
be approximated by the Shannon capacity when the block length is large. For this
reason, in this work, we use the Shannon capacity to calculate the link rate and focus
on the transmission time independent of the other delay components [27].

• mMTC slice: The devices served by this network slice have no strict rate or latency
requirements [27]. Hence, to ensure the basic wireless connection, a minimum band-
width B0 should be allocated to support the connection. That is,

∑
m∈M

bnm ≥ B0, ∀n ∈ NmM. (6)

2.4. Problem Formulation

The aim of network slicing design is maximizing the overall utility achieved by
the devices in the system, Firstly, inside each network slice, to achieve fairness among
the inner-slice devices, the proportional fairness is utilized as the utility function of each
device [28]. That is,

Un = log(Rn). (7)

More importantly, considering the disparity of throughput in three network slices,
weight preference is utilized to balance their contribution to the overall utility [29]. In this
work, we use weM, wuR and wmM to denote the weight for the devices in eMBB, URLLC
and mMTC slices, respectively.

Hence, we have the following optimization problem, via the BS-device association
and bandwidth allocation to maximize the overall system utility:
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max
bnm ,xnm

weM ∑
n∈NeM

Un + wuR ∑
n∈NuR

Un + wmM ∑
n∈NmM

Un. (8)

s.t. ∑
n∈N

xnm · bnm ≤ Bm, ∀m, (9)

∑
m∈M

xnm = 1, xnm = {0, 1}, ∀n ∈ N , (10)

Rn ≥ R0, ∀n ∈ NeM, (11)

∑
m∈M

bnm ≥ B0, ∀n ∈ NmM, (12)

L
Rn
≤ T0, ∀n ∈ NuR, (13)

In addition, (9) represents the bandwidth allocated to the associated users that cannot
exceed the overall bandwidth in this BS; (10) indicates that a device only can be associ-
ated with one BS at one-time instance; and (11), (12) and (13) represent that the network
requirements in each slice introduced above.

In essence, the above problem is a constrained mixed integer problem. In the following,
we propose an augmented Lagrangian-based reinforcement learning (RL) with a soft actor–
critic (SAC) framework to solve this problem. Then, with the optimal results on the device-
BS association and the bandwidth allocated to each device, an extra but simple procedure is
needed to complete the slicing details: /(1) Calculate the number of radio resource blocks
(RRB) needed for each slice in one BS, and determine the corresponding collection of RRBs.
(2) Each BS allocates a subset of the RRBs belonging to the slice to each serving device.

3. Proposed Augmented Lagrangian-Based Reinforcement Learning

In the considered scenario, the agent deploying the proposed algorithm can be the edge
server in the 5G architecture. Since the edge server is deployed neighboring the BSs, and
with the channel information feedback from the BSs, the proposed algorithm can give
the optimal device-BS association and each device’s bandwidth.

In this section, the basic of the augmented Lagrangian method is firstly presented.
Then, the hybrid action space, state space, and reward function are defined. Finally,
the architecture and workflow of the proposed AL-SAC algorithm are elaborated.

3.1. Preliminary of Augmented Lagrangian Method

The augmented Lagrangian method not only replaces the constrained optimization
problem with an unconstrained problem but also introduces a penalty term to accelerate
convergence [30]. Given an objective function f (x) to maximize with parameter x and
the constraint functions ci(x) > 0, this optimization problem can be solved by its dual
problem as follows:

min
λ>0

max
x

L(x, λ, µ) , f (x) + ∑
i

λici(x) +
µ

2 ∑
i
||ci(x)||2, (14)

where λ denotes the Lagrange multiplier vector for the constraints, and µ denotes the pa-
rameter for the penalty term.

Then, the typical solving process alternatively optimizes λ and x during iterations.
Generally at t-th iteration, λ

(t)
i is updated according to the rule as

λ
(t)
i = λ

(t)
i + µ(t)ci(x(t)). (15)

Additionally, when the constraint is not satisfied, µ is enlarged with a scalar.



Electronics 2022, 11, 3385 6 of 17

3.2. Definition of State, Action and Reward in RL

To solve this problem using the framework of RL, in the following, we further define
the corresponding state, action spaces, and the reward function in this problem.

3.2.1. State Space

In reinforcement learning, the state space represents the environment observed by
an agent. Hence, in our scenario, the wireless environment, i.e., the channel condition
between BSs and devices, is defined as the state. Since in the factory, the location of devices
are fixed, the channel condition only related to the channel fading gain, that is, the state
space, can be expressed as

s(t) = {h(t)nm, ∀m, ∀n}. (16)

Based on the state, we can calculate the SINR by (1), and then the transmission rate
and other parameters involved in the optimization problems.

3.2.2. Hybrid Action Space

Considering the discrete and continuous variables involved in problem (8), a hybrid
action space is used in this problem. That is, the discrete action,

a1 = {xnm, n ∈ N , m ∈ M}, (17)

which represents the association between devices and BSs; the continuous action

a2 = {bnm, n ∈ N , m ∈ M}, (18)

which represents the bandwidth assigned by BS.
Since a BS only allocates bandwidth resources to its associating devices, we have

that only when xmn = 1, then bmn > 0. Hence, a hierarchical policy network is designed,
where we divide the action selection into two stages to significantly reduce the action space,
as illustrated in Figure 2, association action a1 is selected at Stage-1 based on the state s,
and then at Stage-2, bandwidth allocation action a2 is chosen based on the set {s, a1}.

In t-th time episode, we denote the action for the whole system as

a(t) = {a(t)
1 , a(t)

2 }. (19)

Environment 

2 (continuous-action)a

s

1(discrete-action)a

Policy Network

Fully Connected Layer Fully Connected Layer

Fully Connected Layer Fully Connected Layer

Dis.Dist.Layer
Mean Layer Log Std Layer

Stage 1

Stage 2

Figure 2. The structure of two-stage action selection.
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3.2.3. Reward Function

In (8), we have multiple constraints. For the association constraint, i.e., (10), and
the requirement constraints of the devices, i.e., (11)–(13), we directly map the actions
to the corresponding ranges. As for bandwidth constraints (9), we consider an augmented
Lagrangian method to constrain the total bandwidth since it cannot be handled at the time
of action selection.

Motivated by the augmented Lagrangian method, we introduce the penalty into
the design of the reward function. In more detail, that is, when the bandwidth constraints
of all BS are satisfied, the reward function equals the original weighted overall utility, i.e.,
(8), which can be calculated as

r = weM ∑
n∈NeM

Un + wuR ∑
n∈NuR

Un + wmM ∑
n∈NmM

Un, (20)

Otherwise, the reward equals the penalty item similar to the augmented Lagrangian
method, that is,

r = ∑
m∈M′

(Bm − Gm), (21)

where the set M′ just involves BSs that do not satisfy the bandwidth constraint, and
Gm = ∑n∈N xnmbnm represents the overall bandwidth used in m-th BS. In (21), it means
when the total bandwidth constraint is not satisfied, the reward is a negative value related
to the exceeded bandwidth.

3.3. Proposed AL-SAC Algorithm

The framework of SAC includes the actor and critic parts, which are for policy evalua-
tion and policy improvement, respectively. A policy is the function that returns a feasible
action for a state, denoted by π. That is,

a ∼ π(×|s). (22)

In SAC, the algorithm aims to find the optimal policy which maximizes the average
of the entropy of the policy and the expected reward. That is,

argmax
π

E
[

T

∑
t=0

γt
(

r(t) + H
(

π
(
a(t)|s(t)

)))]
, (23)

where γ (0 < γ ≤ 1) is the discount factor; H(π(a|s)) denotes the Shannon entropy
of policy π. Considering the hybrid action spaces in our problem, the Shannon entropy
for policy π involves the entropy calculation of two parts:

H
′
(π(a|s)) = β1H(π(a1|s)) + β2H(a2|s), (24)

where β1 and β2 are the entropy temperatures.
As illustrated in Figure 3, the architecture of the proposed AL-SAC algorithm incorporates

a constraint part in addition to the original actor, critic parts, and replay buffer. Specifically,

• Actor part: it deploys a policy network denoted by π, which generates the policy
of device association and bandwidth allocation;

• Critic part: it deploys a value network and a Q-value network, denoted by V and Q,
estimating the value of state and state-action, respectively;

• Constraint part: it deploys Lagrangian multiplier networks and cost networks, de-
noted by L and C, estimates the cost value of constraints and adjusting the Lagrangian
multipliers accordingly.

• Replay buffer: it is used in DRL to store the tuples, i.e., {s(t), a(t), r(t), s(t+1), G(t)
m },

from which the sampled tuples are used in neural network training.



Electronics 2022, 11, 3385 8 of 17

In the following, we describe the updating process of each neural network component
in the three parts network.

Cost 

Network

Cost 

Network

Constraint

1 1( , )j jC

Replay Buffer

Policy 

Network

Loss for Policy 

Network

Actor

( )Jp qÑ

( )p q

...

( , )M Mj jC

( 1)( )tV
f

+
s

( )( , )tQ fj qs

( ) ( )( | )t t

qp a s

( ) ( ) ( ) ( 1) ( ), ,t t t t t

m, ,r G+
s a s

Environment

( )JÑ
L
l

Lagrangian Multiplier 

Network

Lagrangian Multiplier 

Network

1( )lL
...

( )MlL

Critic

Value 

Network
Loss for Value 

Network

( )J fÑ
V

( )( )tVf s( , )f fV

Loss for Q-Value 

Networks

Q-Value

Network

( ) ( )( | )t t

qp a s

( )yQ

( )J jÑ
Q

( )J yÑ
Q

Store transition

( ) ( )( | )t t

qp a s
( )t
s

( )( , )tQ fy qs

Figure 3. The architecture of proposed AL-SAC algorithm.

3.3.1. Value Network V
This network is utilized for estimating the state value and target state value, i.e., Vφ(s)

and Vφ̄(s), where φ and φ̄ are parameters, and φ̄ is updated by an exponentially moving
average of the value network weight [31]. In the learning process, this network is trained
by minimizing the squared residual error

JV (φ) = E
[

1
2

(
Vφ

(
s(t)
)
−E

[
Qψ

(
s(t), a(t)) log πθ

(
a(t)|s(t)

)])2
]

, (25)

Then, the gradient in (25) can be estimated by an unbiased estimator and used in the up-
date of the neural network. That is,

∇φ JV (φ) = ∇φVφ(s(t))(Vφ(s(t))−Qψ(s(t), a(t)) + log πθ(a(t)|s(t))). (26)

3.3.2. Q-Value Network Q
To evaluate the reward function, a Q-value network is deployed to calculate the state-

action value for each action, i.e, Qψ

(
s, a
)
, where ψ denote the parameter of the neural

network. This network is trained by minimizing the soft Bellman residual

JQ(ψ) = E
[

1
2

(
Qψ

(
s(t), a(t))− (r(t) + γEs(t+1)

[
Vφ̄(s

(t+1))
]))2

]
, (27)

where Vφ̄(s(t+1)) is target state value mentioned above to enhance the training stability.
Then, this neural network is updated by

∇ψ JQ(ψ) = ∇ψQψ

(
s(t), a(t))(Qψ

(
s(t), a(t))− r(t) − γVφ̄

(
s(t+1))). (28)
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3.3.3. Constraint Networks C
Multiple constraint networks are also deployed to estimate the constraints cost ex-

pectation for bandwidth allocation. Similar to double deep Q-learning, each constraint
network has two separated Q-value networks with parameters ϕm and ϕ̄m. They are
involved in generating the continuous action-state value for m-th BS, i.e., Cϕm(h

(t)
m , b(t)

m ),
where we define the state in m-th BS as

h(t)
m = {hnm, ∀n, xnm = 1}, (29)

which be utilized for estimating the value allocated bandwidth. Moreover, we also define
the continuous action

b(t)
m = {bnm, ∀n}. (30)

This network is trained by minimizing the loss. That is,

JC(ϕm) = E
[

1
2

(
Cϕm

(
h(t)

m , b(t)
m
)
−
(

r(t) + γCϕ̄m(h
(t+1)
m , b(t+1)

m )
))2

]
, (31)

They can be updated by

∇ϕm JC(ϕm) = ∇ϕm Cϕm

(
h(t)

m , b(t)
m
)(

Cϕm

(
h(t)

m , b(t)
m
)
− r(t) − γCϕ̄m(h

(t+1)
m , b(t+1)

m )
)

, (32)

where Cϕ̄m(h
(t+1)
m , b(t+1)

m ) is the target action-state value for the training stability, where ϕ̄m
is periodically updated by copying ϕm.

3.3.4. Lagrangian Multiplier Network L
To update Lagrange multiplier λ in (15), we also deploy Lagrangian multiplier net-

works. As mentioned in Section 3.1, we can learn λ by minimizing the objective function
according to the constraints’ verification. That is,

J(λ) = E
[

∑
m

λm
(

Bm − Gm
)]

. (33)

3.3.5. Policy Network π

This network searches the optimal policy according to the estimated values generated
by networks in the critic and constraint part. It generates an action based on policy π
for each state, i.e., πθ(×|s), where θ is the parameter of the policy network. As mentioned
earlier, we consider a two-stage action selection. Specifically, the discrete action will be
selected first, i.e., the BS connection state will be determined. Then with the corresponding
channel state between the device and BS, the bandwidth allocation is determined.

Then, we can update π by maximizing the following function

Jπ(θ) = E
[

log
(
πθ(a(t)|s(t))

)
−Qψ + ∑

m∈M

(
λmQϕm(h

(t)
m , b(t)

m )
)]

. (34)

The gradient of (34) can be approximated by

∇θ Jπ(θ) =∇θ log πθ(a(t)|s(t)) +
(
∇a(t) log πθ(a(t)|s(t))−

∇a(t)Qψ(s(t), a(t)) + ∑
m∈M

(
λmQϕm(h

(t)
m , b(t)

m )
))
∇θ fθ(ε

(t); s(t)),

(35)

where a(t) = fθ(ε
(t); s(t)), ε(t) is an input vector sampled from Gaussian distribution, and

πθ is defined implicitly in terms of fθ [31].
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The workflow of the proposed AL-SAC algorithm is summarized in Algorithm 1.
Specifically, lines 2–6 illustrate the experience collected from the environment with the cur-
rent policy, and then the update of the networks is presented in lines 8–18.

Algorithm 1 Augmented Lagrangian-based soft actor–critic (AL-SAC)

Initialize: Initialize network parameters φ, φ̄, θ, ψ, ϕm, m = 1, . . . , M, Lagrange multiplier
λ, µ, and replay buffer D.

Initialize: Initialize the time episode T, and batch size K.
1: for each time episode t = 1, . . . , T do
2: Observe the environment s(t).
3: Select the action a(t) ∼ πθ(s(t)).
4: Calculate total bandwidth allocated in each BS, i.e., G(t)

m = ∑n∈N xnm × bnm.
5: Calculate the reward r(t) depending on G(t)

m , i.e., (20) or (21).
6: Update the replay memory buffer D ← D ∪ {s(t), a(t), r(t), s(t+1), G(t)

m }.
7: if t > K then
8: Randomly select a batch of samples (s(t), a(t), r(t), s(t+1)) from the replay mem-

ory buffer D.
9: Update the value network V by φ← φ− ξV∇φ JV(φ).

10: Update the Q-value network Q by ψ← ψ− ξ∇ψ JQ(ψ).
11: Update the cost networks C by ϕm ← ϕm − ξm∇ϕ JQ(ϕm).
12: Update the policy network π by θ ← θ − ξπ∇θ Jπ(θ).
13: Update the Lagrangian multiplier networks L by λm ← λm − µ∇λm J(λ) .
14: if Constraints not satisfy the requirement then
15: Enlarge the µ with a scalar.
16: end if
17: Update the parameter φ̄ by φ̄← δφ + (1− δ)φ̄.
18: ϕ̄m in cost networks are periodically updated by copying ϕm.
19: end if
20: end for

4. Simulation

In this section, we first test the performance of the proposed AL-SAC algorithm in var-
ious scenarios, and also verify the constraints required. Moreover, compare it with other
benchmark algorithms, including the original SAC algorithm, and the DDPG algorithm
with a penalty item dealing with constraints. In the end, the network service constraints
for devices with different weights proportion are shown.

4.1. Parameter Setting

We consider a wireless scenario with multiple BSs and eMBB/URLLC/mMTC devices,
where the locations of devices are randomly distributed. The channel fading between
a device and BS follows a Rayleigh distribution, varying with time. Combining the distance-
based path loss and fading, the channel condition in an episode can be calculated.

In the simulation, the number of BSs is M = 2, the number of devices in eMBB, URLLC,
and mMTC slices are (3, 3, 4) or (5, 5, 5). Three different weight designs are considered,
that is, (weM, wUR, wmM) = ( 1

3 , 1
3 , 1

3 ), (
2
3 , 1

6 , 1
6 ), or ( 1

10 , 3
5 , 3

10 ). Furthermore, the transmission
power Pm, the path loss exponent α and noise power σ2 are set as 2 W, 3.09 and 10−9 W,
respectively [32]. For mMTC devices, B0 = 0.18 MHz, for eMBB devices, R0 = 4 Mbps,
for URLLC devices, T0 = 20 ms. The available bandwidth for each BS is set as Bm = 10, 12.5,
or 15 MHz, the neural networks are trained by the Adam optimizer, and batch size is set
as K = 256. All these simulation parameters are also listed in Table 1 for clarity.
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Table 1. Settings of parameters.

Parameter Value

Number of BSs, M 2

Number of devices, N 10 or 15

Number of devices in different slices, NeM, NUR, NmM 3,3,4 or 5,5,5

Transmission power, Pm 2 W

Path loss exponent, α 3.09

Noise power, σ2 10−9 W

Minimum bandwidth allocated for mMTC devices, B0 0.18 W

Minimum transmission rate for eMBB devices, R0 4 Mbps

Maximum delay for URLLC devices, T0 20 ms

Maximum bandwidth for each BS, Bm 10, 12.5, 15 MHz

Weight, (weM, wUR, wmM) ( 1
3 , 1

3 , 1
3 ), (

2
3 , 1

6 , 1
6 ), (

1
10 , 3

5 , 3
10 ).

Batch size, K 256

In Figure 4, we plot the average reward achieved by the proposed AL-SAC algorithm
when the maximum bandwidth Bm = 10, 12.5, and 15 MHz available with the number
of devices N = 10 for each BS, respectively, as well as B = 10 MHz, N = 15. Firstly,
it is observed that in all cases, the proposed AL-SAC algorithm converges, although
a slight fluctuation exists when Bm = 15 MHz, N = 10. Secondly, we can see that with
the growth of available bandwidth, the curve of achieved reward is a little less stable.
The reason behind this is that the bandwidth allocation options for multiple devices also
increase, i.e., the action space. Thirdly, it can be seen that with the growth of available
bandwidth resources, the reward achieved by the proposed algorithm increases apparently,
which implies increasing system utilities due to more radio resources being available.
Lastly, compared with Bm = 15 MHz, N = 10, the proposed AL-SAC algorithm with
Bm = 15 MHz, N = 15 can reach similar reward but more converge speed because when
more devices share the same limited bandwidth resources, the weighted overall utility is
not higher. Moreover, the action space for each device reduces when the devices number
increases, resulting in more stable performance.
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Figure 4. Performance for AL-SAC algorithm with different maximum available bandwidths.
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Meanwhile, to verify the proposed algorithm can provide an effective solution to the
constrained RL problem, in Figure 5, we also show the bandwidth constraint in the same
scenarios as Figure 4. It clearly can be seen that in all the cases, the proposed AL-SAC
can meet bandwidth requirements after 100 episodes. This also shows that the proposed
algorithm can provide a feasible and effective solution to the constraint optimization
problem considered.
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id
th

/M
H

z

Bm = 10 MHz, N = 10

Bm = 12.5 MHz, N = 10

Bm = 15 MHz, N = 10

Bm = 15 MHz, N = 15

Figure 5. Total bandwidth allocated for all devices during training process.

In Figures 6 and 7, we compare the performance of the proposed AL-SAC algorithm
with two benchmark algorithms: the DDPG algorithm with the penalty involved in the re-
ward function, termed as penalty DDPG [33] and the original soft actor–critic algorithm
without constraint handling, termed as SAC [31]. Observe from Figure 6, the SAC algorithm
achieves the highest reward, which is much larger than those achieved by AL-SAC and
Penalty DDPG. However, from Figure 7, we can see that the overall bandwidth allocated
exceeds the maximum bandwidth constraint. Hence, it can be concluded that the high
reward achieved by the SAC algorithm is because it cannot handle the constraint of the action
sum, resulting in more radio resources being available, i.e., BS cannot satisfy the constraints
in (9).

More importantly, comparing the rewards achieved by the proposed AL-SAC and
Penalty DDPG, we can see that from Figure 7, both of them satisfy the maximum band-
width, and the proposed AL-SAC algorithm significantly outperforms the Penalty DDPG
algorithm due to the larger reward achieved. The reason behind this is that although
Penalty DDPG can meet bandwidth constraints relying on the penalty item in the rewards,
the proposed AL-SAC has a strong capability in handling much smaller discrete and con-
tinuous action spaces by two stage-design, and the introduction of the constraint part can
make the optimizing process more effective. Specifically, the proposed AL-SAC algorithm
achieves an improvement of around 42.1% in reward compared to the Penalty DDPG algorithm
after 5000 episodes. Moreover, from Figure 7, the overall bandwidth allocated of the proposed
AL-SAC algorithm is a little larger than the Penalty DDPG, which is both under the maxi-
mum bandwidth Bm = 10 MHz constraint. It shows that the policy of device association and
bandwidth allocation trained by the proposed AL-SAC algorithm are more efficient.
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Figure 6. The reward achieved by different algorithms during the training process.
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Figure 7. The total bandwidth allocated by different algorithms.

4.2. Results and Analysis

Furthermore, in Figure 8, we tend to verify the performance of each device in different
network slices. We consider the scenario of the maximum bandwidth Bm = 10 MHz;
the number of devices N = 15; the minimum rate requirement for eMBB device R0 = 4
Mbps; the minimum delay requirement for URLLC device T0 = 20 ms; and the minimum
bandwidth requirement for mMTC device B0 = 0.18 M. It can be seen from the figure
that the proposed AL-SAC algorithm can make all of the devices in various network slices
meet their corresponding constraints in three slices, while the Penalty DDPG algorithm
cannot. As shown in Figure 8a,b, the device eMBB-3 cannot achieve the required rate,
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and the devices URLLC-3 and URLLC-5 exceed the maximum delay in (5). Moreover,
comparing the transmission rate, delay and bandwidth constraint in the three sub-figures,
it can be seen that the network performance achieved by the device in one slice is more
even when the proposed AL-SAC algorithm is adopted. This means a better fairness
performance is obtained by our proposed AL-SAC algorithm.
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Figure 8. Network service constraints for devices in different network slices. (a) The achieved
transmission rate of devices in eMBB network slice; (b) the achieved delay of devices in URLLC
network slice; (c) the achieved bandwidth of devices in mMTC network slice.

To see the results affected by different weights, in Figure 9, we also plot the average
reward achieved by the proposed AL-SAC algorithm when weight (weM, wUR, wmM) =
( 1

3 , 1
3 , 1

3 ), (
2
3 , 1

6 , 1
6 ), and ( 1

10 , 3
5 , 3

10 ) with the maximum bandwidth Bm = 15 MHz, n = 10,
respectively. It can be seen that (1) comparing the blue and orange bars in Figure 9a, the total
bandwidth allocated to the eMBB slices grows when weight weM increases. (2) Comparing
the blue and yellow bars in Figure 9b, the overall delay in the URLLC slice reduces when
weight wUR increases. (3) Comparing the yellow bars in Figure 9a,c, the overall bandwidth
allocated grows proportionally for devices in mMTC slices when weight wmM. This is
because the agent will more attention to the slice with the higher weight.
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Figure 9. Network service constraints for devices in different network slices with various weights combi-
nation. (a) The achieved transmission rate of devices in eMBB network slice; (b) the achieved delay
of devices in URLLC network slice; (c) the achieved bandwidth of devices in mMTC network slice.

5. Conclusions

In this paper, we investigated the network slicing problem in IIoT, where the device
association and bandwidth allocation for devices in different slices are jointly optimized.
By formulating it as a constraint mixed integer nonlinear programming problem with con-
tinuous and discrete variables, a Lagrangian-based SAC algorithm is proposed to solve it using
DRL. Aiming to maximize the total weighted utility under limited bandwidth resources, cost
neural networks and Lagrangian multiplier networks are introduced to update the Lagrangian
multipliers and the penalty term is introduced also to the reward function. Moreover, specifically,
a novel two-stage actions selection network is presented based on DRL to handle the hybrid
actions and decrease the action space simultaneously. Our results verify that the proposed
AL-SAC algorithm can effectively meet the constraint and achieve better performance than
other benchmark algorithms in terms of average reward and fairness.
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