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Abstract: Knowledge distance is used to measure the difference between granular spaces, which
is an uncertainty measure with strong distinguishing ability in a rough set. However, the current
knowledge distance failed to take the relative difference between granular spaces into account
under the given perspective of uncertain concepts. To solve this problem, this paper studies the
relative knowledge distance of intuitionistic fuzzy concept (IFC). Firstly, a micro-knowledge distance
(md) based on information entropy is proposed to measure the difference between intuitionistic
fuzzy information granules. Then, based on md, a macro-knowledge distance (MD) with strong
distinguishing ability is further constructed, and it is revealed the rule that MD is monotonic with the
granularity being finer in multi-granularity spaces. Furthermore, the relative MD is further proposed
to analyze the relative differences between different granular spaces from multiple perspectives.
Finally, the effectiveness of relative MD is verified by relevant experiments. According to these
experiments, the relative MD has successfully measured the differences in granular space from
multiple perspectives. Compared with other attribute reduction algorithms, the number of subsets
after reduction by our algorithm is in the middle, and the mean-square error value is appropriate.

Keywords: intuitionistic fuzzy concept; rough set; multi-granularity; relative macro-knowledge distance

1. Introduction

Granular computing (GrC) [1–4] is a new type of computing used to solve problems
by simulating the cognitive mechanism of humans. Information granule is the fundamental
element in GrC for constructing granular spaces. A granular space consists of several
information granules and their relationships, while a granular structure consists of many
granular spaces and their relationships. By fusing the structure and optimization approach
of granularity, Pedrycz [2] introduced the notion of justifiable granularity. Yao [5,6] exam-
ined the two fields of three-way decision and GrC, as well as their interplay. Wang [7,8]
reviewed the GrC work from three aspects, including granularity optimization, granularity
switching, and multi-granulation computing.

As the main GrC model, rough set [9] is a useful tool for handling uncertain knowl-
edge by utilizing existing information granules. Uncertainty measure is a crucial tool for
data analysis in a rough set. Wang [10] introduced a series of uncertainty measures for
selecting the optimal features effectively. Li [11] offered the axiom definition of uncertainty
measure for covering information systems by using its information structures. Sun [12]
investigated the fuzzy neighborhood multigranulation rough set model to construct uncer-
tainty measures. In generalized rough set models, Wang [13] described new uncertainty
measures from the perspectives of the upper and lower approximations. Nevertheless,
these uncertainty measures struggle to distinguish the differences between granular spaces
when they possess the same uncertainty. To address this issue, Qian [14,15] first introduced
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the concept of knowledge distance, and there have been several works on knowledge dis-
tance in recent years. Li [16] proposed an interval-valued intuitionistic fuzzy set to describe
fuzzy granular structure distance, and proved that knowledge distance is a special form of
intuitionistic fuzzy granular structure distance. Yang [17,18] proposed a partition-based
knowledge distance based on the Earth Mover’s Distance and further established the fuzzy
knowledge distance. Chen [19] presented a new measure formula of knowledge distance
by using Jaccard distance to replace set similarity. To measure the uncertainty derived from
the disparities between local upper and lower approximation sets, Xia [20] introduced the
local knowledge distance.

In practical applications, the target concept may be vague or uncertain. As a classical
soft computing tool, the intuitionistic fuzzy set [21] extends the membership from single
value to interval value. For uncertain information, the intuitionistic fuzzy set has more pow-
erful ability than the fuzzy set [22], and it is currently extensively applied in different fields,
i.e., decision-making [23–25], pattern recognition [26,27], control and reasoning [28,29],
and fuzzy reasoning [30,31]. In rough set, an intuitionistic fuzzy concept (IFC) can be
characterized by a pair of lower and upper approximation fuzzy sets. There are many
research works [32–37] on the combination between rough set and the intuitionistic fuzzy
set. In particular, the uncertainty measure of IFC in granular spaces becomes a basic
issue. A novel concept of an intuitionistic fuzzy rough set based on two universes was
proposed by Zhang [32] along with a specification of the associated operators. On the basis
of the rough set, Dubey [35] presented an intuitionistic fuzzy c-means clustering algorithm
and applied it to the segmentation of the magnetic resonance brain images. Zheng [36]
proposed an improved roughness method to measure the uncertainty of covering-based
rough intuitionistic fuzzy sets. These works indicate that intuitionistic fuzzy set and rough
set are suitable mathematical methods for studying vagueness and uncertainty. Current
uncertainty measures failed to distinguish different rough granular spaces with the same
uncertainty when they are used to describe an IFC; that is, it is difficult to reflect on the
differences between them. However, in some situations, such as attribute reduction or gran-
ularity selection, the different rough granular spaces for describing an IFC are necessary to
distinguish. To solve this problem, based on our previous works [17,18], two-layer knowl-
edge distance measures—that is, micro-knowledge distance (md) and macro-knowledge
distance (MD)—are constructed to reflect the difference between granular spaces for de-
scribing an IFC. Finally, in order to analyze the relative differences between rough granular
spaces under certain prior granular spaces, the concept of relative MD applied to data
analysis is also proposed.

The following are the main contributions of our paper: (1) Based on information
entropy, md is designed to measure the difference among intuitionistic fuzzy information
granules. (2) On the basis of md, MD with strong distinguishing ability is further con-
structed, which can calculate the difference between rough granular spaces for describing
an IFC. (3) The relative MD is proposed to analyze the relative difference between two rough
granular spaces from multiple perspectives. (4) An algorithm of attribute reduction based
on MD or relative MD is presented, and its effectiveness is verified by relevant experiments.

The rest of this paper is arranged as follows. Section 2 introduces related preliminary
concepts. In Section 3, the two types of information entropy-based distance measure
(md and MD) are presented. Section 4 presents the concept of relative MD. The relevant
experiments are reported in Section 5. Finally, in Section 6, conclusions are formed.

2. Preliminaries

This part will go through some of the core concepts. Let S = (U, C ∪ D, V, f ) be an
information system, where U, C, D and V represent the universe of discourse, condition
attribute set, decision attribute set and attribute value set corresponding to each object,
respectively, and f : U × C is an information function that specifies the property value of
each object x in U.



Electronics 2022, 11, 3373 3 of 25

Definition 1 (Intuitionistic fuzzy set). Assume that U is the universe of discourse, the following
is the definition of an intuitionistic fuzzy set I on U:

I = {< x, γI(x), υI(x) > |x ∈ U}

where γI(x) and υI(x) denote two nonempty finite sets on the interval [0, 1], which refer to the set
of degrees of membership and non-membership of x on I, respectively, and satisfy the conditions:
∀xi ∈ U, 0 ≤ γI(xi) + υI(xi) ≤ 1.

Note: For convenience, all I below are represented as intuitionistic fuzzy sets on U.

Definition 2 (Average step intuitionistic fuzzy set [38]). Assume that in S = (U, C ∪ D),
R ⊆ C and U/R = {[x]R} = {[x]1, [x]2, · · · , [x]l}, where ∀x ∈ [x]i, i = 1, 2, · · · , l, then,

IR(x) = [γIR
(x), 1− υIR

(x)]

where, γIR
(x) =

∑
x∈[x]i

γIR (x)

|[x]i |
, υIR

(x) =
∑

x∈[x]i
υIR (x)

|[x]i |
. IR(x) is therefore referred to as an average

step intuitionistic fuzzy set on U/R .

As well known, the information entropy as an uncertainty measure is proposed in
rough set theory,

E(x) = ∑
xi∈U

e(xi)

where, e(xi)=− 2µ(xi)log2µ(xi). Let U be a nonempty universe and I be an intuitionistic
fuzzy set on U.

The information entropy of I can be expressed as follows:
(1) When U is continuous.

EI(x) =
∫ b

a
eI(xi) (1)

(2) When U is discrete.
EI(x) = ∑

xi∈U
eI(xi)

where, eI(xi) = −2
∫ 1−υI(xi)

γI(xi)
µlog2µdµ, and µ denotes the membership degree of xi belongs

to the intuitionistic fuzzy set I.
To measure the information entropy of the rough granular space U/R of the IFC, this

paper further proposed the definition of average information entropy as follows:
(1) When U is continuous, the average information entropy of the rough granular

space of I can be denoted by:

EĪR
(x) =

∫ b

a
e ĪR

(x)

(2) When U is discrete, the average information entropy of the rough granular space
of I can be denoted by:

EĪR
(x) = ∑

x∈U
e ĪR

(x) (2)

where, eIR
(x) = −2

∫ 1−υIR
(x)

γIR
(x) µlog2µdµ, and µ denotes the membership degree of x belongs

to the intuitionistic fuzzy set I, IR(x) is the average step intuitionistic fuzzy set of U/R.
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Example 1. Assume that in S = (U, C∪D), R ⊆ C, I = [0.1,0.3]
x1

+ [0.3,0.5]
x2

+ [0.5,0.7]
x3

+ [0.6,0.7]
x4

+
[0.8,0.9]

x5
and U/R = {{x1, x2, x3}, {x4, x5}}.

ĪR(x1) = ĪR(x2) = ĪR(x3) = [
0, 1 + 0, 3 + 0.5

3
,

0.3 + 0.5 + 0.7
3

] = [0.3, 0.5]

ĪR(x4) = ĪR(x5) = [
0, 6 + 0, 8

2
,

0.7 + 0.9
2

] = [0.7, 0.8]

ĪR =
[0.3, 0.5]

x1
+

[0.3, 0.5]
x2

+
[0.3, 0.5]

x3
+

[0.7, 0.8]
x4

+
[0.7, 0.8]

x5

Then

e ĪR
(x1) = e ĪR

(x2) = e ĪR
(x3) = −2

∫ 0.5

0.3
µlog2µdµ = 0.209

e ĪR
(x4) = e ĪR

(x5) = −2
∫ 0.8

0.7
µlog2µdµ = 0.062

By Formula (2),

EĪR
(x) = ∑

x∈U
e ĪR

(x) = 0.209× 3 + 0.062× 2 = 0.751

Definition 3 (Distance measure [39]). Assume that U is the universe of discourse; Y, P and Q are
three finite sets on U. When d(·, ·) meets the following criteria, it is considered a distance measure,
(1) Positive: d(P, Q) ≥ 0;
(2) Symmetric: d(P, Q) = D(Q, P);
(3) Triangle inequality: d(Y, P) + d(P, Q) ≥ d(Y, Q).

Definition 4 (Granularity measure [40]). Assume that in S = (U, C ∪D), G is a mapping from
the power set of C to the real number set. For any R1, R2 ⊆ C, when G meets the following criteria,
it is considered a granularity measure,
(1) G(R1) ≥ 0;
(2) U/R1 ≺ U/R2 ⇒ G(R1) < G(R2);
(3) U/R1 = U/R2 ⇒ G(R1) = G(R2).

Definition 5 (Information measure [41]). Assume that in S = (U, C ∪ D), H is a mapping
from the power set of C to the real number set. For any R1, R2 ⊆ C, when H meets the following
criteria, it is considered an information measure,
(1) H(R1) ≥ 0;
(2) U/R1 ≺ U/R2 ⇒ H(R1) > H(R2);
(3) U/R1 = U/R2 ⇒ H(R1) = H(R2).

3. Information-Entropy-Based Two-Layer Knowledge Distance Measure

Although there are many research works [42–45] on distance measures between intu-
itionistic fuzzy sets from different perspectives, when an IFC is characterized by different
rough granular spaces, respectively, the present fuzzy set distance measures failed to cap-
ture the differences between these granular spaces. In addition, as explained in Section 1,
when an IFC is defined by two granular spaces, the measure result (fuzziness or information
entropy) may be the same. Nevertheless, this does not mean that these two granular spaces
are absolutely equal, and the difference between them for characterizing an IFC cannot
be reflected. To tackle the difficulties listed above, this paper proposed micro-knowledge
distance and macro-knowledge distance based on information entropy, which construct
the two-layer knowledge distance measure in this section.
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Example 2. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, I = [0.1,0.3]
x1

+ [0.3,0.5]
x2

+ [0.5,0.7]
x3

+
[0.6,0.7]

x4
+ [0.8,0.9]

x5
, U/R1 = {{x2}, {x1, x3}, {x4, x5}} and U/R2 = {{x1, x2, x3}, {x4, x5}}.

By Formula (2),

EĪR1
(x) = EĪR2

(x) = 0.751

It shows that calculating the average information entropy does not necessarily distin-
guish and describe two different rough granular spaces. Although the average information
entropy values of U/R1 and U/R2 are the same, U/R2 is superior to U/R1 in terms of gran-
ularity selection, since U/R2 has a coarser granularity and has a stronger generalization
ability for describing IFC.

Assume S = (U, C ∪D), A is a finite set on U. Then, we call the intuitionistic fuzzy set
generated by A as the intuitionistic fuzzy information granule (FIG), abbreviated as FIGA.

Example 3 (Continued example 1). Let P = {x1, x2, x3} and Q = {x4, x5}, then:

IFGP =
[0.1, 0.3]

x1
+

[0.3, 0.5]
x2

+
[0.5, 0.7]

x3

IFGQ =
[0.6, 0.7]

x4
+

[0.8, 0.9]
x5

Definition 6 (Micro-knowledge distance). Assume in S = (U, C ∪ D), IFGP and IFGQ are
two intuitionistic fuzzy information granules on U, hence, the following is the definition of the
md formula:

md(P, Q) =

∑
xi∈U

eIFGP∪IFGQ(xi)− ∑
xi∈U

eIFGP∩IFGQ(xi)

EI(x)

Theorem 1. md(·, ·) is a distance measure.

Proof of Theorem 1. Let IFGY, IFGP and IFGQ be three intuitionistic fuzzy information
granules. Let:

a = ∑
xi∈U

eIFGY∪IFGP(xi)− ∑
xi∈U

eIFGY∩IFGP(xi)

b = ∑
xi∈U

eIFGP∪IFGQ(xi)− ∑
xi∈U

eIFGP∩IFGQ(xi)

c = ∑
xi∈U

eIFGY∪IFGQ(xi)− ∑
xi∈U

eIFGY∩IFGQ(xi)

Because (Y ∪ P−Y ∩ P) + (P ∪Q− P ∩Q) ≥ Y ∪Q−Y ∩Q, then a + b ≥ c.

∑
xi∈U

eFIGY∪FIGP(xi)− ∑
xi∈U

eFIGY∩FIGP(xi)

EI(x)
+

∑
xi∈U

eFIGP∪FIGQ(xi)− ∑
xi∈U

eFIGP∩FIGQ(xi)

EI(x)

≥
∑

xi∈U
eFIGY∪FIGQ(xi)− ∑

xi∈U
eFIGY∩FIGQ(xi)

EI(x)

Then md(Y, P) + md(P, Q) ≥ md(Y, Q).
According to Definition 3, conditions (1) and (2) are obviously satisfied, Therefore,

md(·, ·) is a distance measure.
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Example 4. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, I = [0.3,0.6]
x1

+ [0.2,0.5]
x2

+ [0.5,0.7]
x3

+
[0.7,0.9]

x4
+ [0.6,0.8]

x5
+ [0.1,0.2]

x6
+ [0.2,0.4]

x7
is an intuitionistic fuzzy set on U, A = {x1, x3, x4, x6} and

B = {x3, x4, x5, x7} are two finite sets on U.

FIGA =
[0.3, 0.6]

x1
+

[0.5, 0.7]
x3

+
[0.7, 0.9]

x4
+

[0.1, 0.2]
x6

FIGB =
[0.5, 0.7]

x3
+

[0.7, 0.9]
x4

+
[0.6, 0.8]

x5
+

[0.2, 0.4]
x7

Then,

eI(xi) = −2
∫ 1−υI(xi)

γI(xi)
µlog2µdµ

∑
xi∈U

eFIGA∪FIGB(xi) = 1.009

∑
xi∈U

eFIGA∩FIGB(xi) = 0.277

EI(x) = ∑
xi∈U

eI(xi) = 1.318

From Definition 6,

md(A, B) =
∑

xi∈U
eFIGA∪FIGB(xi)− ∑

xi∈U
eFIGA∩FIGB(xi)

EI(x)
=

1.009− 0.277
1.318

= 0.555

Theorem 2. Let Y, P and Q be three intuitionistic fuzzy sets on U. If Y ⊆ P ⊆ Q, then
md(Y, P) ≤ md(Y, Q).

Proof of Theorem 2. According to condition, because Y ⊆ P ⊆ Q, obviously,

∑
xi∈U

eFIGY∪FIGP(xi) = ∑
xi∈U

eFIGP(xi) ≤ ∑
xi∈U

eFIGY∪FIGQ(xi) = ∑
xi∈U

eFIGQ(xi)

∑
xi∈U

eFIGY∩FIGP(xi) = ∑
xi∈U

eFIGY∩FIGQ(xi)

Then,

∑
xi∈U

eFIGY∪FIGP(xi)− ∑
xi∈U

eFIGY∩FIGP(xi)

EI(x)
≤

∑
xi∈U

eFIGY∪FIGQ(xi)− ∑
xi∈U

eFIGY∩FIGQ(xi)

EI(x)

Therefore, md(Y, P) ≤ md(Y, Q) holds. Similarly, it is easy to get md(P, Q) ≤ md(Y, Q).

Theorem 3. Let Y, P and Q be three intuitionistic fuzzy sets on U. If Y ⊆ P ⊆ Q, then
md(Y, Q) = md(Y, P) + md(P, Q).

Proof of Theorem 3. Theorem 3 obviously holds.

∑
xi∈U

eFIGY∪FIGP(xi) = ∑
xi∈U

eFIGP(xi), ∑
xi∈U

eFIGY∩FIGP(xi) = ∑
xi∈U

eFIGY (xi),

∑
xi∈U

eFIGP∪FIGQ(xi) = ∑
xi∈U

eFIGQ(xi), ∑
xi∈U

eFIGP∩FIGQ(xi) = ∑
xi∈U

eFIGP(xi),

∑
xi∈U

eFIGY∪FIGQ(xi) = ∑
xi∈U

eFIGQ(xi), ∑
xi∈U

eFIGY∩FIGQ(xi) = ∑
xi∈U

eFIGY (xi).
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Then

md(Y, P) + md(P, Q)

=

∑
xi∈U

eFIGY∪FIGP(xi)− ∑
xi∈U

eFIGY∩FIGP(xi)

EI(x)
+

∑
xi∈U

eFIGP∪FIGQ(xi)− ∑
xi∈U

eFIGP∩FIGQ(xi)

EI(x)

=

∑
xi∈U

eFIGQ(xi)− ∑
xi∈U

eFIGY (xi)

EI(x)
= md(Y, Q)

Therefore, md(Y, Q) = md(Y, P) + md(P, Q).

Based on md, this research further created MD, which is formulated as follows, to ex-
press the difference between two rough granular spaces for characterizing an IFC.

Definition 7 (Macro-knowledge distance). Assume that in S = (U, C ∪ D), R1, R2 ⊆ C,
U/R1 = {g1, g2, ..., gn} and U/R2 = {g′1, g

′
2, ..., g

′
m} are two granular spaces induced by R1 and

R2, respectively. Then, the following is the definition of MD between U/R1 and U/R2.

MD(U/R1, U/R2) =
1
|U|

n

∑
i=1

m

∑
j=1

mdij fij (3)

where, mdij = md(gi, g
′
j) and fij =

∣∣∣gi ∩ g
′
j

∣∣∣. Figure 1 shows the relationship between md and MD.

Figure 1. The relationship between md and MD.

Suppose that U/R1 = {g1, g2, ..., gn} is a granular space on U induced by R1, where
gi = {xi1, xi2, · · · , xi|gi |}, Then, gi = sR1(xi1) = sR1(xi2) = · · · = sR1(xi|gi |).

For example,

U/R1 = {{x1, x2}, {x3}, {x4, x5}} = {g1, g2, g3}
g1 = sR1(x1) = sR1(x2) = {x1, x2}
g2 = sR1(x3) = {x3}
g3 = sR1(x4) = sR1(x5) = {x4, x5}

Theorem 4. MD(·, ·) is a distance measure.
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Proof of Theorem 4. Assume that in S = (U, C∪D), R1, R2, R3 ⊆ C, U/R1 = {g1, g2, ..., gn},
U/R2 = {g′1, g

′
2, ..., g

′
m} and U/R3 = {g′′1 , g

′′
2 , ..., g

′′
l } are three granular spaces induced by

R1, R2 andR3, respectively. Obviously, MD(·, ·) is positive and symmetric.

MD(U/R1, U/R2) + MD(U/R2, U/R3) =
1
|U|

n

∑
i=1

m

∑
j=1

mdij fij +
1
|U|

m

∑
j=1

l

∑
k=1

mdij fij

=
1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi)) + md(sR2(xi), sR3(xi)))

MD(U/R1, U/R3) =
1
|U|

n

∑
i=1

l

∑
j=1

mdij fij =
1
|U| ∑

xi∈U
md(sR1(xi), sR3(xi)) (4)

From Theorem 1, md(sR1(xi), sR2(xi)) + md(sR2(xi), sR3(xi)) ≥ md(sR1(xi), sR3(xi))
Then,

1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi)) + md(sR2(xi), sR3(xi))) ≥

1
|U| ∑

xi∈U
md(sR1(xi), sR3(xi))

MD(U/R1, U/R2) + MD(U/R2, U/R3) ≥ MD(U/R1, U/R3)

Therefore, from Definition 3, MD(·, ·) is a distance measure.

In fact, md measures the difference between two sets, and MD measures the difference
between two rough granular spaces, which integrates the md of all sets of the two granular
spaces. According to Theorem 1, Theorem 4 and Formula (4), as long as md in MD is a
distance measure, then MD is a distance measure.

Example 5 (Continued Example 2). According to Formula (3),

MD(U/R1, U/R2) =
1
|U|

3

∑
i=1

2

∑
j=1

mdij fij

=
md11 + md21 ∗ 2 + md32 ∗ 2

5

=
0.356 + 0.209× 2 + 0× 2

5× 0.686
= 0.226

Theorem 5. Assume that in S = (U, C ∪ D), R1, R2, R3 ⊆ C. If R1 ⊆ R2 ⊆ R3, then
MD(U/R1, U/R2) ≤ MD(U/R1, U/R3).

Proof of Theorem 5. As shown in Figure 2, suppose U/R1 = {g1, g2, ..., gn},
U/R2 = {g′1, g

′
2, ..., g

′
m} and U/R3 = {g′′1 , g

′′
2 , ..., g

′′
l } are three granular spaces induced

by R1, R2 and R3, respectively. Because R1 ⊆ R2 ⊆ R3, so U/R3≺U/R2≺U/R1. For sim-
plicity, supposing only one granule g1 can be subdivided into two finer sub-granules g

′
1 and

g
′
2 by ∆R = R2− R1 and only one granule g

′
1 can be subdivided into two finer sub-granules

g
′′
1 and g

′′
2 by ∆R = R3 − R2 (Because more sophisticated examples may be turned into this

scenario, this essay will not go through them again.).
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Figure 2. The relationship of MD among three granular spaces.

According to the above assumption, g1 = g
′
1 ∪ g

′
2, g2 = g

′
3, g3 = g

′
4, · · · , gn = g

′
m

(m = n + 1), g
′
1 = g

′′
1 ∪ g

′′
2 , g

′
2 = g

′′
3 , g

′
3 = g

′′
4 , · · · , g

′
m = g

′′
l (l = m + 1), namely, U/R2 =

{g′1, g
′
2, g2, · · · , gn} and U/R3 = {g′′1 , g

′′
2 , g

′
2, · · · , g

′
m}. Then, from Definition 7,

MD(U/R1, U/R2) =
1
|U|

n

∑
i=1

m

∑
j=1

mdij fij =
1
|U| (md(g1, g

′
1)
∣∣∣g′1∣∣∣+ md(g1, g

′
2)
∣∣∣g′2∣∣∣)

MD(U/R1, U/R3) =
1
|U|

n

∑
i=1

l

∑
j=1

mdij fij

=
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′′
3)
∣∣∣g′′3 ∣∣∣)

Because g
′
1 = g

′′
1 ∪ g

′′
2 , g

′
2 = g

′′
3

MD(U/R1, U/R3)−MD(U/R1, U/R2)

=
1
|U| ((md(g1, g

′′
1)−md(g1, g

′
1))
∣∣∣g′′1 ∣∣∣+(md(g1, g

′′
2)−md(g1, g

′
1))
∣∣∣g′′2 ∣∣∣)

According to Theorem 2, because md(g1, g
′
1) ≤ md(g1, g

′′
1) and md(g1, g

′
1) ≤ md(g1, g

′′
2),

then MD(U/R1, U/R3)−MD(U/R1, U/R2) ≥ 0.
Therefore, MD(U/R1, U/R2) ≤ MD(U/R1, U/R3) holds. Similarly, it is easy to get

MD(U/R2, U/R3) ≤ MD(U/R1, U/R3).

In this paper, the finest and coarsest granular spaces are represented by ω and σ,
respectively. The following corollaries derive from Theorem 5:

Corollary 1. Assume that in S = (U, C∪D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then MD(U/R1, ω)
≥ MD(U/R2, ω).

Corollary 2. Assume that in S = (U, C∪D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then MD(U/R1, σ)
≤ MD(U/R2, σ).

Theorem 6. Assume that in S = (U, C ∪ D), R ⊆ C. According to Definition 4, MD(U/R, ω)
is a granularity measure.
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Proof of Theorem 6. Suppose that R1, R2 ⊆ C,
(1) From Theorem 4, MD(U/R, ω) ≥ 0;
(2) When U/R1=U/R2, obviously, MD(U/R1, ω) = MD(U/R2, ω);
(3) From Corollary 1, if R1 ⊆ R2, then MD(U/R1, ω) ≥ MD(U/R2, ω).

Theorem 7. Assume that in S = (U, C ∪ D), R ⊆ C. According to Definition 5, MD(U/R, σ)
is an information measure.

Proof of Theorem 7. Suppose that R1, R2 ⊆ C,
(1) From Theorem 4, MD(U/R, σ) ≥ 0;
(2) When U/R1=U/R2, obviously, MD(U/R1, σ) = MD(U/R2, σ);
(3) From Corollary 2, if R1 ⊆ R2, then MD(U/R1, σ) ≤ MD(U/R2, σ).

Theorem 8. Assume that in S = (U, C ∪ D), R1 ⊆ R2 ⊆ R3 ⊆ C, then MD(U/R1, U/R3) =
MD(U/R1, U/R2) + MD(U/R2, U/R3).

Proof of Theorem 8. For simplicity, based on the proof of Theorem 5,

MD(U/R1, U/R2) =
1
|U| (md(g1, g

′
1)
∣∣∣g′1∣∣∣+ md(g1, g

′
2)
∣∣∣g′2∣∣∣)

MD(U/R1, U/R3) =
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′′
3)
∣∣∣g′′3 ∣∣∣)

Similarly,

MD(U/R2, U/R3) =
1
|U| (md(g

′
1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g

′
1, g

′′
2)
∣∣∣g′′2 ∣∣∣)

Because g1 = g
′
1 ∪ g

′
2, g

′
1 = g

′′
1 ∪ g

′′
2 and g

′
2 = g

′′
3 .

According to Theorem 3,

MD(U/R1, U/R2) + MD(U/R2, U/R3)

=
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′
2)
∣∣∣g′2∣∣∣)

=
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′′
3)
∣∣∣g′′3 ∣∣∣)

= MD(U/R1, U/R3)

According to Theorem 8, from the perspective of distance, the granular spaces in
hierarchical granular structure are linearly additive, which can be explained by Figure 2
intuitively. Moreover, the following corollaries hold:

Corollary 3. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then
MD(U/R1, U/R2) = MD(U/R1, ω)−MD(U/R2, ω).

Corollary 4. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then,
MD(U/R1, U/R2) = MD(U/R2, σ)−MD(U/R1, σ).

Corollary 5. Assumethat in S = (U, C ∪ D), R ⊆ C. Then MD(U/R, ω) + MD(U/R, σ)= |U|−1
|U| .
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Proof of Corollary 5.

MD(U/R, ω) =
1
|U|

n

∑
i=1

|U|

∑
j=1

mdij fij =
1
|U| ∑

xi∈U
md(sR(xi), {xi})

=
1
|U| ∑

xi∈U

∑ esR(xi)−{xi}(x)
EI(x)

MD(U/R, σ) =
1
|U|

n

∑
i=1

1

∑
j=1

mdij fij =
1
|U| ∑

xi∈U
md(sR(xi), U)

=
1
|U| ∑

xi∈U

∑ eCUsR(xi)
(x)

EI(x)

MD(U/R, ω) + MD(U/R, σ)

=
1
|U| ∑

xi∈U

∑ esR(xi)−{xi}(x)
EI(x)

+
1
|U| ∑

xi∈U

∑ eCUsR(xi)
(x)

EI(x)

=
1
|U| ∑

xi∈U

∑ esR(xi)−{xi}(x) + ∑ eCU sR(xi)
(x)

EI(x)

=
1
|U| ∑

xi∈U

∑ eU−{xi}(x)
EI(x)

=
1
|U| ∑

xi∈U

EI(x)− e(xi)

EI(x)

=
1
|U| ×

|U| × EI(x)− EI(x)
EI(x)

=
|U| − 1
|U|

Therefore, MD(U/R, ω) + MD(U/R, σ) = |U|−1
|U| holds.

From Corollary 3 and Theorem 6, for an IFC, the larger the granularity difference
between granular spaces in hierarchical granular structure, the larger MD between them.
From Corollary 4 and Theorem 7, for an IFC, the larger the information difference be-
tween granular spaces in hierarchical granular structure, the larger MD between them.
From Corollary 5, the larger the information measure, the smaller the granularity measure,
and one measure value can be deduced from another.

Note: By using a suitable md in Formula (3), the method of this paper is able to extend
to quantify the difference between any types of granular spaces. These specifics are outside
the scope of this paper’s discussion.

4. Relative Macro-Knowledge Distance

Section 3 has constructed an MD based on md, which described the difference be-
tween two rough granular spaces of IFC. We regarded this knowledge distance as absolute.
Because in data analysis, sometimes some conditions are known, it is necessary to analyze
the differences between rough granular spaces at this time; that is, to analyze the differ-
ences between rough granular spaces under different prior granular spaces. Inspired by
Wang [46], this section proposes the concept of relative MD and analyzes its properties.

Definition 8 (Relative macro-knowledge distance). Assumethat in S = (U, C∪D), R1, R2 ⊆ C,
U/R is the prior granular space on U, U/R1 = {g1, g2, · · · , gn} and U/R2 = {g′1, g

′
2, · · · , g

′
m}

are two granular spaces induced by R1 and R2, respectively. Then, the relative MD of U/R1 and
U/R2 under U/R is defined as:

RMD((U/R1 , U/R2 )/(U/R)) =
1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) (5)

where, sR1/R(xi) = sR1(xi) ∩ sR(xi) and sR2/R(xi) = sR2(xi) ∩ sR(xi).
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Based on the original MD, this definition adds prior granular space U/R, which reflects
the relative differences between two rough granular spaces from different perspectives.

Theorem 9. RMD(·, ·/·) is a distance measure.

Proof of Theorem 9. Assume that in S = (U, C∪D), U/R is the prior granular space on U.
R1, R2, R3 ⊆ C, U/R1 = {g1, g2, · · · , gn}, U/R2 = {g′1, g

′
2, · · · , g

′
m} and

U/R3 = {g′′1 , g
′′
2 , · · · , g

′′
l } are three granular spaces induced by R1, R2 andR3, respectively.

Obviously, RMD(·, ·/·) is positive and symmetric.

RMD((U/R1, U/R2)/(U/R)) + RMD((U/R2, U/R3)/(U/R))

=
1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) +

1
|U| ∑

xi∈U
md(sR2/R(xi), sR3/R(xi))

RMD((U/R1, U/R3)/(U/R)) =
1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

According to Theorem 1,

md(sR1/R(xi), sR2/R(xi)) + md(sR2/R(xi), sR3/R(xi)) ≥ md(sR1/R(xi), sR3/R(xi))

Then,

1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) +

1
|U| ∑

xi∈U
md(sR2/R(xi), sR3/R(xi))

≥ 1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

RMD((U/R1, U/R2)/(U/R)) + RMD((U/R2, U/R3)/(U/R))

≥ RMD((U/R1, U/R3)/(U/R))

Therefore, from Definition 3, RMD(·, ·/·) is a distance measure.

Example 6. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, I = [0.1,0.3]
x1

+ [0.3,0.5]
x2

+ [0.5,0.7]
x3

+
[0.6,0.7]

x4
+ [0.8,0.9]

x5
. U/R1 = {{x2}, {x1, x3}, {x4, x5}} and U/R2 = {{x1, x2, x3}, {x4, x5}}.

Under the prior granular spaces U/R3 = {{x1, x3, x5}, {x2, x4}} and U/R4 =
{{x1, x5}, {x2, x3, x4}}, the relative MD of U/R1 and U/R2 are as follows:

RMD((U/R1, U/R2)/(U/R3)) =
1
|U| ∑

xi∈U
md(sR1/R3

(xi), sR2/R3(xi)) = 0

RMD((U/R1, U/R2)/(U/R4)) =
1
|U| ∑

xi∈U
md(sR1/R4

(xi), sR2/R4(xi))

=
1
5
× (0 +

0.175
0.686

+
0.209
0.686

+ 0 + 0) = 0.112

From Examples 5 and 6, after adding the prior granular space, the difference between
the two rough granular spaces may change, and when the prior granular space is different,
the obtained results may also be different.

Theorem 10. Assume that in S = (U, C ∪ D), U/R is the prior granular space on U. If
R1 ⊆ R2 ⊆ R3 ⊆ C, then RMD((U/R1, U/R2)/(U/R)) ≤ RMD((U/R1, U/R3)/(U/R)).
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Proof of Theorem 10. According to the conditions, U/R3≺U/R2≺U/R1, then
sR3(xi) ⊆ sR2(xi) ⊆ sR1(xi), xi ⊆ U.

sR1/R(xi) = sR1(xi) ∩ sR(xi)

sR2/R(xi) = sR2(xi) ∩ sR(xi)

sR3/R(xi) = sR3(xi) ∩ sR(xi)

So, sR3/R(xi) ⊆ sR2/R(xi) ⊆ sR1/R(xi).
According to Theorem 2,

md(sR1/R(xi), sR2/R(xi)) ≤ md(sR1/R(xi), sR3/R(xi))

1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) ≤

1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

Therefore, RMD((U/R1, U/R2)/(U/R)) ≤ RMD((U/R1, U/R3)/(U/R)) holds.
Similarly, it is easy to get
RMD((U/R2, U/R3)/(U/R)) ≤ RMD((U/R1, U/R3)/(U/R)).

Theorem 11. Assume that in S = (U, C ∪ D), U/R is the prior granular space on U. If
R1 ⊆ R2 ⊆ R3 ⊆ C, then RMD((U/R1, U/R3)/(U/R)) = RMD((U/R1, U/R2)/(U/R))
+ RMD((U/R2, U/R3)/(U/R)).

Proof of Theorem 11. According to Theorem 10, it can be deduced sR3/R(xi) ⊆ sR2/R(xi) ⊆
sR1/R(xi) from condition R1 ⊆ R2 ⊆ R3 ⊆ C. Additionally, according to Theorem 3,
md(sR1/R(xi), sR3/R(xi)) = md(sR1/R(xi), sR2/R(xi)) + md( sR2/R(xi), sR3/R(xi) ). Then,

1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

=
1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) +

1
|U| ∑

xi∈U
md(sR2/R(xi), sR3/R(xi))

Therefore, RMD((U/R1, U/R3)/(U/R))
= RMD((U/R1, U/R2)/(U/R)) + RMD((U/R2, U/R3)/(U/R)) holds.

From Theorem 11, under the same prior granular space, the relative MD is linearly ad-
ditive.

Theorem 12. Assume that in S = (U, C ∪ D), U/R3 and U/R4 are two prior granular spaces
on U, respectively, R1, R2 ⊆ C. If U/R3≺U/R4,
then RMD((U/R1, U/R2)/(U/R3)) ≤ RMD((U/R1, U/R2)/(U/R4)).

Proof of Theorem 12.

RMD((U/R1 , U/R2 )/(U/R3 ))

=
1
|U| ∑

xi∈U
md(sR1(xi) ∩ sR3(xi), sR2(xi) ∩ sR3(xi))

=
1
|U| ∑

xi∈U

∑
x∈U

e(sR1 (xi)∩sR3 (xi))∪(sR2 (xi)∩sR3 (xi))
(x)− ∑

x∈U
e(sR1 (xi)∩sR3 (xi))∩(sR2 (xi)∩sR3 (xi))

(x)

EI(x)

=
1
|U|

a
EI(x)
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a = ∑
xi∈U

( ∑
x∈U

e(sR1 (xi)∩sR3 (xi))∪(sR2 (xi)∩sR3 (xi))
(x)− ∑

x∈U
e(sR1 (xi)∩sR3 (xi))∩(sR2 (xi)∩sR3 (xi))

(x))

= ∑
xi∈U

( ∑
x∈U

e((sR1 (xi)∪sR2 (xi))∩sR3 (xi))
(x)− ∑

x∈U
e(sR1 (xi)∩sR2 (xi)∩sR3 (xi))

(x))

= ∑
xi∈U

∑
x∈U

e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR3 (xi))
(x)

Similarly,
RMD((U/R1 , U/R2 )/(U/R4 )) = ∑

xi∈U
∑

x∈U
e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR4 (xi))

(x)

According to U/R3≺U/R4, sR3(xi) ⊆ sR4(xi), xi ⊆ U. Obviously,

((sR1(xi) ∪ sR2(xi)− sR1(xi) ∩ sR2(xi)) ∩ sR3(xi))

⊆ ((sR1(xi) ∪ sR2(xi)− sR1(xi) ∩ sR2(xi)) ∩ sR4(xi))

∑
xi∈U

∑
x∈U

e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR3 (xi))
(x)

≤ ∑
xi∈U

∑
x∈U

e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR4 (xi))
(x)

Therefore, RMD((U/R1, U/R2)/(U/R3)) ≤ RMD((U/R1, U/R2)/(U/R4))
holds.

Corollary 6. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, σ is the prior granular space on U,
then RMD((U/R1, U/R2)/σ) = MD(U/R1, U/R2).

Proof of Corollary 6.

RMD((U/R1, U/R2)/σ) =
1
|U| ∑

xi∈U
md(sR1(xi) ∩U, sR2(xi) ∩U)

=
1
|U| ∑

xi∈U
md(sR1(xi), sR2(xi)) = MD(U/R1, U/R2)

Corollary 7. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, ω is the prior granular space on U,
then RMD((U/R1, U/R2)/ω) = 0.

Proof of Corollary 7.

RMD((U/R1, U/R2)/ω) =
1
|U| ∑

xi∈U
md(sR1(xi) ∩ {xi}, sR2(xi) ∩ {xi})

=
1
|U| ∑

xi∈U
md({xi}, {xi}) = 0

Note: From Example 6, when the prior granular space is not the most refined, the rela-
tive MD may also be zero. Therefore, the prior granular space is the most refined granular
space, which is only a sufficient condition for the relative MD to be zero, not a neces-
sary condition.

According to Corollary 6, the absolute MD is the relative MD without any prior
granular space; that is, the absolute MD can be viewed as a special case of the relative MD.
By Corollary 7, when the prior granular space is fine enough, the relative MD between two
different rough granular spaces has been infinitely reduced or even to zero. Combining
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Theorem 12, it follows that RMD((U/R1, U/R2)/ω)) ≤ RMD((U/R1, U/R2)/(U/R)) ≤
RMD((U/R1, U/R2)/σ) is true when ω ≺ U/R≺ σ.

That is, 0 ≤ RMD((U/R1, U/R2)/(U/R)) ≤ MD(U/R1, U/R2).

Theorem 13. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C. Then
RMD((U/R1, U/R2)/(U/R1)) + RMD((U/R1, U/R2)/(U/R2)) = MD(U/R1, U/R2).

Proof of Theorem 13.

RMD((U/R1, U/R2)/(U/R1)) + RMD((U/R1, U/R2)/(U/R2))

=
1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR1(xi), sR2(xi) ∩ sR1(xi)))

+
1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR2(xi), sR2(xi) ∩ sR2(xi)))

=
1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi) ∩ sR1(xi))) +

1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR2(xi), sR2(xi)))

According to Theorem 3,

1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi) ∩ sR1(xi))) +

1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR2(xi), sR2(xi)))

=
1
|U| ∑

xi∈U
md(sR1(xi), sR2(xi)) = MD(U/R1, U/R2)

Therefore, RMD((U/R1, U/R2)/(U/R1)) + RMD((U/R1, U/R2)/(U/R2))
= MD(U/R1, U/R2) holds.

From Theorem 13, an absolute MD was divided into the sum of two unidirectional
relative MD in different directions. That is, the absolute MD of the two granular spaces is
equal to the relative MD of the two granular spaces when the prior granular space is one of
the two granular spaces, plus the relative MD of the two granular spaces when the prior
granular space is the other granular space of the two granular spaces. This theoretically
explains the dialectical unity of relative MD and absolute MD.

5. Experiment and Analysis

This section verifies that MD has a good advantage when describing IFC in multi-
granularity space through relevant experiments. The experimental environments are
Windows 10, Intel Core (TM) I5-10500 CPU (3.10 GHz) and 16GB RAM. The experimental
platform is MATLAB 2022a. We filtered out nine datasets with decision attributes and
a sufficient number of conditional attributes from UCI [47] and Dryad. Meanwhile, we
removed attributes from some datasets that are completely independent of the decision
attributes, such as serial number and date. The dataset’s basic information is recorded in
Table 1, and experiments will use the following formula [48] to convert numerical values
to discrete values. For convenience, the ID numbers in Table 1 will be used to represent
the datasets.

α1(x) = b(α(x)−minα)/σαc

where α(x) represent the attribute value, minα represent the minimum value of α(x) and
σα represent the standard deviation of the attribute.
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Table 1. Experimental dataset.

ID Dataset Instances Condition
Attributes

1 Hungarian Chickenpox Cases Dataset 521 19

2
Data from: Relative importance of chemical attractiveness
to parasites for susceptibility to trematode infection [49] 67 7

3
Waterlow score on admission in acutely admitted patients

aged 65 and over [50] 839 11

4
Data from: Salivary gland ultrasonography as a

predictor of clinical activity in Sjögren’s syndrome [51] 70 10

5
Data from: Development and validation of a postoperative

delirium prediction model for patients admitted to an
intensive care unit in China: a prospective study [52]

300 13

6
Data from: Age of first infection across a range of parasite

taxa in a wild mammalian population [53] 140 12

7 Air Quality 9538 10

8 Concrete 1030 8

9 ENB2012 768 8

5.1. Monotonicity Experiment

In this experiment, some attributes of the dataset in Table 1 were selected. Sup-
pose GL = (GL1, GL2, GL3, GL4, GL5) is a hierarchical quotient space structure consisting
of five granularity layers. GLi = (Ui, Ri ∪ D, V, f ) , Ri represent attribute sets, and
R1 ⊂ R2 ⊂ R3 ⊂ R4 ⊂ R5. As shown in Figure 3, this figure shows that the behavior of
each dataset is similar; that is, MD increases with the increase in the granularity differ-
ence between two granular spaces, and conversely, MD decreases with the decrease in
the granularity difference between two granular spaces. Table 2 summarizes the changes
in the two measures (granularity measure and information measure) based on MD in a
hierarchical quotient space structure as the granularity layer becomes finer. The findings
indicate that these two measures can provide additional information for assessing the
uncertainty of fuzzy concepts. These findings support Theorems 6 and 7. The granularity
measure decreases as the available information increases, while the information measure
increases as the available information increases. According to Table 2, Corollary 5 can also
be verified, the sum of granularity measure and information measure is fixed, and the
result is |U|−1

|U| .

5.2. Attribute Reduction

The so-called attribute reduction is to delete the irrelevant or unimportant attributes
under the condition that the classification ability of the knowledge base remains unchanged.
In data analysis, deleting unnecessary attributes can greatly improve the efficiency of data
analysis, and the subset derived from attribute reduction with prior granular space may be
different from the subset derived from attribute reduction without prior granular space.
Aiming at this problem, this section makes a comparative experiment of attribute reduction
based on relative MD in different prior granular spaces and attribute reduction based on
absolute MD; in this paper, the attributes that divide the prior granular space are called
prior conditions.



Electronics 2022, 11, 3373 17 of 25

(a) ID 1 (b) ID 2 (c) ID 3

(d) ID 4 (e) ID 5 (f) ID 6

(g) ID 7 (h) ID 8 (i) ID 9

Figure 3. The change of MD between different granular spaces. Each dataset is represented by ID
number.

Table 2. Granularity measure and Information measure.

ID (Dataset) Measure GL1 GL2 GL3 GL4 GL5

1 Granularity measure 0.4052 0.1523 0.0790 0.0453 0.0357
Information measure 0.5928 0.8458 0.9190 0.9528 0.9624

2 Granularity measure 0.2952 0.0853 0.0253 0.0060 0.0012
Information measure 0.6899 0.8998 0.9598 0.9791 0.9839

3 Granularity measure 0.5156 0.2604 0.1040 0.0451 0.0191
Information measure 0.4832 0.7384 0.8948 0.9537 0.9797

4 Granularity measure 0.7516 0.3777 0.1916 0.0805 0.0199
Information measure 0.2341 0.6080 0.7942 0.9052 0.9658

5 Granularity measure 0.5249 0.2229 0.1233 0.0653 0.0244
Information measure 0.4717 0.7737 0.8734 0.9314 0.9723

6 Granularity measure 0.4975 0.2463 0.1267 0.0493 0.0155
Information measure 0.4954 0.7466 0.8661 0.9436 0.9773

7 Granularity measure 0.3788 0.3438 0.2087 0.1170 0.0872
Information measure 0.6211 0.6561 0.7911 0.8828 0.9127

8 Granularity measure 0.2557 0.0869 0.0588 0.0217 0.0112
Information measure 0.7433 0.9121 0.9402 0.9773 0.9878

9 Granularity measure 0.3675 0.2237 0.0829 0.0271 0.0066
information measure 0.6312 0.7750 0.9157 0.9716 0.9921

Some attributes of the dataset in Table 1 were selected in the experiment. Taking the
calculation of attribute reduction based on relative MD as an example, Algorithm 1 is the
algorithm used in the experiment. Attribute reduction based on absolute MD only needs
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to change the fourth step in Algorithm 1 to delete the first and last items in conT; that
is, without any prior conditions. In this paper, Algorithm 2 is used to represent attribute
reduction based on absolute MD. Suppose an information system S = (U, C ∪ D, V, f ),
then the calculation formula of attribute importance id is as follows:

id = MD(U/C, U/{C− ci}) (6)

As shown in Figure 4, the attribute importance represents MD between the granular
space after removing attribute i in the dataset and the granular space without removing
this attribute. The larger the distance, the higher the attribute importance degree, and ci
represents attribute i. Therefore, in this paper, the attributes with the largest and smallest
attribute importance of the dataset are selected as prior conditions, and attribute reduction
based on relative MD is carried out. Moreover, attribute reduction based on absolute MD is
also performed without any prior conditions.

Algorithm 1 Attribute reduction based on relative MD

Input: An information system S = (U, C ∪ D, V, f )
Output: Attribute subset R obtained after attribute reduction

1: Let R = C and conT = C
2: Calculate the information entropy of each instance by Formula (1)
3: Calculate the attribute importance of all attributes in conT by Formula (6), and sort this

in ascending order, the result is recorded as conT_rank
4: Take conT_rank(1) or conT_rank(length(conT)) as a prior condition, that is, delete the

last or first item in conT_rank and ensure that the first item or last item in conT_rank
always exists

5: while conT_rank 6= ∅ do
6: conT_rank = conT_rank− {c}, where c is the first element in conT_rank
7: According to Formula (3), calculate MD from the granular space obtained by the

remaining conditions after R− {c} to the granular space obtained by all conditions
8: if MD < ξ then
9: R = R− {c}

10: end if
11: end while
12: Return R

Figure 4. Attribute importance of different attributes.
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(Note: Figure 4 is only used to analyze the importance of the conditional attribute
of a single system, so there is no correlation between the height of the line graph of
different systems).

As shown in Table 3, in the attribute reduction based on absolute MD, ξ is the maxi-
mum absolute MD between the granular space divided by attribute subsets after attribute
reduction and the granular space divided by all attributes. In attribute reduction based
on relative MD, ξ is the maximum relative MD between the granular space divided by
attribute subsets after attribute reduction and the granular space divided by all attributes.
This paper sets ξ to 0.003 and 0.006 for comparison. In the table, numbers are directly used
to represent the serial numbers of the conditional attributes.

According to the analysis in Figure 4 and Table 3:
(1) When the prior conditions are more important attributes, the number of attributes

is significantly reduced compared to the attribute reduction based on absolute MD, which
shows that selecting more important properties increases the cognitive ability of the system,
consistent with Theorem 12.

(2) When the prior condition is an unimportant attribute, compared with the prior
condition is an important attribute, the number of subsets after attribute reduction is
usually more, which also indicates that the more important the prior condition is, the more
cognitive ability of the attribute to the system can be improved.

(3) When ξ is different—that is, the maximum MD between the granular space remains
conditionally divided after attribute reduction and the granular space divided without
reduction changes—the subsets after attribute reduction may be different, which illustrates
the efficiency of this algorithm. The algorithm will obtain different attribute subsets as the
requirements increase and decrease.

(4) The reduced attributes are all attributes with low attribute importance, which
shows the effectiveness of this algorithm in calculating attribute importance.

Table 3. Attribute reduction on each dataset based on different situations.

ID (Dataset) The Original Attributes
(Number)

Attribute Reduction Based on MD
(In Parentheses Is the Number of Attributes after Attribute Reduction)

1 6,16,11,13,4,3,19,15,2,
8,18,17,14,9,1,12,10 (17)

Absolute MD ξ = 0.003 15,2,8,18,17,14,9,1,12,10 (10)
ξ = 0.006 8,18,17,14,9,1,12,10 (8)

Relative MD with attribute 7
as a prior condition

ξ = 0.003 15,2,8,18,17,14,9,1,12,10 (10)
ξ = 0.006 8,18,17,14,9,1,12,10 (8)

Relative MD with attribute 5
as a prior condition

ξ = 0.003 2,8,18,17,14,9,1,12,10 (9)
ξ = 0.006 8,18,17,14,9,1,12,10 (8)

2 3,7,1,4,2 (5)

Absolute MD ξ = 0.003 3,7,1,4,2 (5)
ξ = 0.006 7,1,4,2 (4)

Relative MD with attribute 6
as a prior condition

ξ = 0.003 7,1,4,2 (4)
ξ = 0.006 1,4,2 (3)

Relative MD with attribute 5
as a prior condition

ξ = 0.003 7,1,4,2 (4)
ξ = 0.006 7,1,2 (3)

3 11,8,6,7,4,9,1,5,3 (9)

Absolute MD ξ = 0.003 8,6,7,4,9,1,5,3 (8)
ξ = 0.006 6,7,4,9,1,5,3 (7)

Relative MD with attribute 10
as a prior condition

ξ = 0.003 8,6,7,4,9,1,5,3 (8)
ξ = 0.006 6,7,4,9,1,5,3 (7)

Relative MD with attribute 2
as a prior condition

ξ = 0.003 6,7,4,9,1,5,3 (7)
ξ = 0.006 7,4,9,1,5,3 (6)
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Table 3. Cont.

ID (Dataset) The Original Attributes
(Number)

Attribute Reduction Based on MD
(In Parentheses Is the Number of Attributes after Attribute Reduction)

4 6,2,3,9,10,7,5,1 (8)

Absolute MD ξ = 0.003 6,2,3,9,10,7,5,1 (8)
ξ = 0.006 6,3,9,10,7,5,1 (7)

Relative MD with attribute 4
as a prior condition

ξ = 0.003 6,3,9,10,7,5,1 (7)
ξ = 0.006 6,3,10,7,5,1 (6)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 3,9,10,7,5,1 (6)
ξ = 0.006 3,10,7,5,1 (5)

5 12,13,1,6,3,4,7,2,9,
5,11 (11)

Absolute MD ξ = 0.003 1,6,3,4,7,2,9,5,11 (9)
ξ = 0.006 6,3,4,7,2,9,5,11 (8)

Relative MD with attribute 10
as a prior condition

ξ = 0.003 1,6,3,4,7,2,9,5,11 (9)
ξ = 0.006 3,4,7,2,9,5,11 (7)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 3,4,7,2,9,5,11 (7)
ξ = 0.006 3,4,2,9,5,11 (6)

6 7,9,8,11,5,10,6,3,4,
1 (10)

Absolute MD ξ = 0.003 9,8,5,10,6,3,4,1 (8)
ξ = 0.006 8,5,10,6,3,4,1 (7)

Relative MD with attribute 12
as a prior condition

ξ = 0.003 8,11,5,10,6,3,4,1 (8)
ξ = 0.006 8,5,10,6,3,4,1 (7)

Relative MD with attribute 2
as a prior condition

ξ = 0.003 11,5,10,6,3,4,1 (7)
ξ = 0.006 5,10,6,3,4,1 (6)

7 6,1,4,5,2,10,7,9 (8)

Absolute MD ξ = 0.003 1,4,5,2,10,7,9 (7)
ξ = 0.006 1,4,5,2,10,7,9 (7)

Relative MD with attribute 3
as a prior condition

ξ = 0.003 1,4,5,2,10,7,9 (7)
ξ = 0.006 1,5,2,10,7,9 (6)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 1,5,2,10,7,9 (6)
ξ = 0.006 4,5,2,10,7,9 (6)

8 5,3,7,1,4,6 (6)

Absolute MD ξ = 0.003 3,7,1,4,6 (5)
ξ = 0.006 3,7,1,4,6 (5)

Relative MD with attribute 2
as a prior condition

ξ = 0.003 3,7,1,4,6 (5)
ξ = 0.006 7,1,4,6 (4)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 3,7,1,4,6 (5)
ξ = 0.006 7,1,4,6 (4)

9 4,1,2,5,6 (5)

Absolute MD ξ = 0.003 1,2,5,6 (4)
ξ = 0.006 2,5,6 (3)

Relative MD with attribute 3
as a prior condition

ξ = 0.003 2,5,6 (3)
ξ = 0.006 2,5,6 (3)

Relative MD with attribute 7
as a prior condition

ξ = 0.003 2,5,6 (3)
ξ = 0.006 2,5,6 (3)

As shown in Figure 5, Algorithm 1 and Algorithm 2, respectively, represent the
attribute reduction based on absolute MD and the attribute reduction based on relative
MD with important condition as a prior condition proposed in this paper. Algorithm
3, Algorithm 4, and Algorithm 5 denote three attribute reduction algorithms based on
Mi’s fuzziness, entropy-based fuzziness, and secondary fuzziness, respectively, where the
left figure shows the case of ξ = 0.003, and the right figure shows the case of ξ = 0.006.
From Figure 5, the number of remaining attribute subsets in Algorithm 1 after attribute
reduction is appropriate. In addition, after adding the prior conditions, the number of
subsets obtained after attribute reduction is significantly reduced in Algorithm 2, indicating
that our algorithm greatly improves the cognitive ability of the system. Figure 6 shows
the average value of the mean-square error before and after attribute reduction in three
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different regression models (random forest regression, decision tree regression and GBDT
regularization) after the normalization of the nine datasets. In the figure, the prior condition
of relative MD1 is the least important attribute, and the prior condition of relative MD2
is the most important attribute. After attribute reduction, we discover that the mean-
squared error does not significantly change, and sometimes even decreases. This shows the
feasibility of our algorithm and also shows that the algorithm can be effectively used in
data analysis.
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Figure 5. Average number of attribute subsets after five different attribute reductions.
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(g) ID 7 (h) ID 8 (i) ID 9

Figure 6. Average value of the mean-square error on each dataset. Each dataset is represented by
ID number.

This paper also conducted a series of comparative experiments using the five algo-
rithms mentioned above to compare the mean-square error values following the reduction
of five different attributes. The experimental results are shown in Figure 7. In order to unify
the standard, ξ = 0.003 is used. Except for the datasets with ID 8 and ID 9, the mean-square
error values obtained by our algorithm are in the middle. From Figure 6, after attribute
reduction of dataset ID 8 and dataset ID 9, the mean-square error does not change much.
Therefore, the reason for this result is that the correlation between some attributes of the
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dataset itself and the decision attributes is too large or too small. There is still room for
improvement in this regard.
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Figure 7. Average value of the mean-square error of five different attribute reductions. Each dataset
is represented by ID number.

6. Conclusions and Discussion

In this paper, the macro-knowledge distance of intuitionistic fuzzy sets is proposed to
measure the difference between granular spaces effectively. Under the given perspective
of uncertain concepts, the current knowledge distance failed to account for the relative
difference between granular spaces. As a result, we further propose the relative macro-
knowledge distance and demonstrate its practicability through relative attribute reduction
experiments. These results provide a new perspective to current knowledge distance
research by measuring the relative differences between different granular spaces under
prior granular spaces. The conclusions are as follows:

(1) Macro-knowledge distance increases with the increase in the granularity differ-
ence between two granular spaces, and vice versa. The sum of granularity measure and
information measure is always |U|−1

|U| .
(2) After attribute reduction, the number of subsets obtained by our algorithm is

appropriate, and in comparison to other algorithms, our mean square error is suitable. In
the analysis of data, the more important the prior condition is, the more it can improve the
cognitive ability of the attributes.

Under specific circumstances, the relative macro-knowledge distance is able to remove
unnecessary attributes in practical applications, which can significantly increase the accu-
racy of attribute reduction and the effectiveness of data analysis. The characteristics of the
data will be more thoroughly understood during the attribute reduction process.
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