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Abstract: Detection performance evaluation is one of the inevitable problems for marine wireless
sensor networks (MWSNs) deployed for target detection. However, it is a very complicated problem
since it associates many different aspects, such as emitter power, range, radar cross-section, weather,
geography, working mode, and so on. Targeting this problem, this paper incorporates the Poisson
point process model into describing the ranges from sensors to targets. The relationship between
sensors and a target is built from the perspective of detection probabilities. Then, a new consistent,
conservative target detection probability evaluation is derived within a CFAR framework, and the
further global detection probability of the whole MWSN on the target is developed. Additionally, the
rationality of this modeling approach is demonstrated via simulation results, which is in accord with
the actual situation.

Keywords: constant false alarm rate; covariance intersection; detection probability; poisson point
process; marine wireless sensor networks; modeling approach

1. Introduction

Recently, marine wireless sensor networks (MWSNs), composed of many sensors with the
capability of wireless communication, and primary data processing floating on the sea, have
been widely used in various applications, such as ocean remote sensing [1,2], maritime search
and rescue [3,4], target detection (including air vessel and submarine detection) [5–8], and so on.
Due to their low cost and mobile deployment, the energy budgets, communication capabilities,
and the detection capabilities of the individual sensors in the MWSNs for target detection are
always limited. Thus, to achieve better MWSN detection performance, detection fusion is
necessary. However, it is an intractable task to fuse the individual detection performance from
different sensors and consequently attain the global detection performance evaluation for the
MWSNs. The reasons are two-fold. The first, as mentioned above, is that the communication
capabilities of individual sensors are limited. The second is that the locations of the sensors
usually change randomly because of harsh weather and rolling waves.

Most research in this area is divided into two parts. The main work focuses on the
signal detection area, designed to obtain a high signal-to-noise ratio around the region of
target echo signals [9,10]. However, no specific estimation of target detection probability
is concerned, and the corresponding detection value is not given [11,12]. Another part
concentrates on developing filters with unknown target detection probability, attempting to
alleviate the dependency of the algorithm’s performance on the target detection probability.
The fundamental mathematical derivation of a random finite set framework with an
unknown background can be found in [13–15]. The influence of clutter rate on target
detection probability is analyzed in [16]. Furthermore, a direct estimation of the clutter
rate is incorporated into the cardinalized probability hypothesis density filter [17], and
the same method is introduced in the Generalized Labeled multi-Bernoulli filter [18].
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The Expectation Maximization and Markov chain Monte Carlo are used to calculate the
clutter rate from real-time data at a heavy computation burden and cost [19]. Clutters are
treated as a pseudo-measurement and used to jointly estimate the detection probability [20].
Nevertheless, all the research is developed on the assumption that the target detection
probability is the same and the range from the sensor to the target is not considered, which
does not conform to reality. In addition, the estimation of the target detection probability in
a network with a random position is rarely studied.

Motivated by this, in this paper the fusion of the detection performance by different
individual sensors and the evaluation of the global detection performance for the MWSNs
is addressed. Specifically, we first use the Poisson point process (PPP) to characterize
the spatial distribution of the individual sensors. Then, by introducing the covariance
intersection (CI) algorithm, a new consistent and conservative method to evaluate the global
detection performance of the MWSN is proposed. In summary, the main contributions of
this paper are as follows:

First, we introduce the PPP model to describe the ranges from sensors to a target and
reveal the relationship between ranges and target detection probability from the perspective
of range probability;

Second, we incorporate the proposed range probability into the radar equation and achieve
a target detection probability estimation through a constant false alarm rate (CFAR) detector;

Finally, we achieve a new consistent, conservative, and global detection performance
evaluation for the whole MWSN by applying the CI algorithm.

The rest of the paper is organized as follows. Section 2 presents the system model and
analyzes the detection performance of individual sensors. Section 3 describes the proposed
method for evaluating global detection performance. Section 4 presents simulation results,
followed by the conclusion in Section 5.

2. Background

To detect potential targets in a two-dimensional marine region <, we suppose that
considerable wireless sensors are stochastically deployed in the region <, constituting
a marine wireless sensor network (MWSN) for target detection. As shown in Figure 1,
consider a target exists in this region. For convenience, the origin of the Cartesian coordinate
system is set to the location of the target, and these sensors are listed as s1, s2, . . ., in
increasing order, according to the distance between them with the target. Accordingly, the
distance between si and the target is denoted as Di, and it follows that D1 ≤ D2 ≤ · · ·.
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These distances are illustrated in Figure 1, and are increasingly arranged around
the same target center. Similar to [21], the distribution of the number and the spatial
distribution of these sensors in the MWSN are jointly modeled by a homogeneous Poisson
point process (PPP) with intensity λ(s), where s ∈ Rm, m ≥ 1. A realization of the PPP
with intensity λ(s), i.e., (n, {x1, x1, . . . , xn}), has the following two features [22]:

First, the number of elements in the realization, n ≥ 0, follows the Poisson distribution
with the probability mass function:

p(n) =
(
∫
< λ(s)ds)

n

n!
e−
∫
< λ(s)ds (1)

Second, the distribution of each element in the realization is subject to the following
probability density function:

p(x) =
λ(s)∫
< λ(s)ds

(2)

A PPP is homogeneous if there exists some constant α ≥ 0 leading to λ(s) = α.
After modeling the distribution of the number and the spatial distribution of these

sensors via a PPP, it is straightforward that Di is a random variable. According to [22,23],
Di follows the following generalized Gamma distribution:

pDi (r) =
m(λcmrm)i

rΓ(i)
e−λcmrm

=
m

(i− 1)!
(λcm)

irmi−1e−λcmrm
(3)

where:

cm =
πm/2

Γ(m/2 + 1)
(4)

and r is the volume of the m-dimensional ball of radius r [21]. Specifically speaking, in a
two-dimensional Euclidean space, m = 2, then we have:

pDi (r) =
2

(i− 1)!
(λπ)ir2i−1e−λπr2

(5)

Additionally, the expectation and variance are listed as:

E[Di] =
Γ(i/2 + 1)√
λπ(i− 1)!

(6)

V[Di] =
n((n− 1)!)2 − Γ2(i + 1/2)

λπ((n− 1)!)2 (7)

3. Methodology

For clarity, we summarize the notation used for the variables of the following part,
and the corresponding meanings of those variables are given, see Table 1.

Supposing that the sensors in the MWSN detect the target by detecting the emitted
energy of the target St, then the received energy at the i-th sensor is a function of the
pate-loss coefficient γ and the distance between the target and this sensor Di [24], and can
be simplified as:

Sr(Di) = γ
St

4πD2
i

(8)
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Table 1. Notation of variables.

Notations Meanings

St emitted energy of a target

γ loss coefficient

Di distance of i-th sensor to a target

PD detection probability

PF false alarm rate

m space dimension

χi signal-to-noise ratio

λ Poisson intensity

δ2
i noise power

The detection performance of each sensor is evaluated by its detection rate PD and
false alarm rate PF. To achieve reliable detection performance, a constant false alarm rate
(CFAR) detector, which achieves maximum detection rate given a false alarm rate [11],
is suggested to be adopted in each sensor. For convenience, suppose that all sensors are
preset at the same given false alarm rate PF. Then, the detection rate of the i-th sensor can
be described as [25]:

PDi =
1
2

er f c(er f c−1(2PF)−
√

χi/2) (9)

where er f c(x) is the error compensation function defined as:

er f c(x) =
2√
π

∫ +00

x
e−t2

dt (10)

χi is the signal-to-noise ratio (SNR) at this sensor, i.e., χi = Si(Di)/δ2
i , and δ2

i is
the noise power at this sensor. Substituting Equation (8) and Equation (5) into χi, the
expectation of SNR at the i-th sensor, if m = 2, is derived as:

E(χi) =
γλSt

4δ2
i

(
(i− 1)!
Γ(i + 1)

)−1

(11)

Continuing to substitute the above equation into Equation (9), we obtain the final
expression of the expectation of the detection probability:

E(χi) =
γλSt

4δ2
i

(12)

√
E(χi)

2
=

√
γλSt(i− 1)!

2
√

2δi
√

Γ(i + 1)
(13)

E(PDi ) =
1
2

er f c(er f c−1(2PF)−
√

χi/2)

≈ 1
2

er f c(er f c−1(2PF)−
√

E(χi)

2
)

=
1
2

er f c(er f c−1(2PF)−
√

γλSt(i− 1)!
2
√

2δi
√

Γ(i + 1)
)

(14)

It is worth noting that the second line in Equation (14) is an approximation formula
because no analytic form of the integration of the Gaussian function exists. Without strictly
speaking, the formula in Equation (14) is workable. Equation (14) is very meaningful since
it presents the expectation of the detection probability of each sensor in these MWSNs,
which can be taken as the effective index to evaluate the detection performance of each
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sensor. However, from the view of the party that deploys the MWSNs, a more interesting
issue is the global detection performance of the MWSNs compared to that of a single sensor.

Evaluating the global detection performance of the MWSN is a challenging task.
Roughly speaking, the difficulties are attributed to two reasons. The first is that the
detection fusion scheme in the MWSNs is uncertain, which depends on various factors,
such as communication capacities and the data processing capacities of individual sensors,
while the detection fusion scheme has obvious effects on the global detection performance
of the MWSNs. The second is that the confidence of the detection probabilities of individual
sensors is not easy to weigh, which results in the intractable confidence of global detection
performance.

In this paper, the covariance intersection (CI) algorithm presented in [26] is introduced
to produce a consistent, conservative, and global detection performance evaluation for
the MWSNs. As mentioned before, the detection probability of the i-th sensor E(PDi ),
shown in Equation (14), depends on the distance Di, whose expectation E[Di] and variance
V[Di] are derived in Equations (6) and (7), respectively. Therefore, we suggest using V[Di]
to weigh the confidence of E(PDi ) [27–29]. Then, inputting E(PD1), E(PD2), · · · , and the
corresponding V[D1], V[D2], · · · , the global detection performance of the MWSNs via the
CI algorithm is:

E[PD f ] = (w1V−1[D1]E[PD1 ] + w2V−1[D2]E[PD2 ] + · · ·)V[D f ] (15)

V[D f ] = [(w1V−1[D1]) + (w2V−1[D2]) + · · ·]
−1

(16)

1 = w1 + w2 + · · · (17)

where w1, w2, · · · are fusion weights determined by minimizing the trace or determinant
of V[D f ]. The proposed method to evaluate the global detection performance of the
MWSNs consists of Equations (15)–(17). Thereinto, E[PD f ] is the CI-based fused detection
probability, which can be taken as a consistent and conservative criterion to evaluate the
global detection performance, and V[D f ] is the corresponding confidence.

4. Simulation Results

Due to the space limitation, a simple radar scenario [30–32] is used to show the
performance of the proposed method. Suppose that there is a target whose emitter power
is 1000 W in the two-dimensional marine region <. The number of sensors in the MWSN is
set to 100. The pate-loss coefficient is γ = 0.1, the false alarm rate of a CFAR detector is
set to PF = 0.001, λ in a PPP process is set to 10, the dimension is m = 2, and the power of
noise at all sensors can be regarded as 1 due to simplification. Then, the evaluation results
of the SNR χi and E(PDi ) are shown in Figures 2 and 3.

From Figures 2 and 3, it can be seen that the SNR decreases with the increase of the
range from sensor to target, which is in accord with the practical situation. The bigger
sensor index means a larger range from the sensor to the target, leading to a lower target
detection probability. The detection probability also deteriorates from 1 to hit 0, and
the curve confirms the radar equation and the normal receiver operator characteristic
(ROC) curve.

To evaluate the global detection performance of the MWSNs, the CI algorithm is used
to calculate the final result. For the sake of simplicity, we use the order index to weight the
corresponding E[PD1 ], i.e.:

wi =
(100− i)2

∑
i
(100− i)2 (18)
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The final evaluation result of PD is 0.7147. To test the influence of varying λ on the
detection probability PD, the number of sensors is fixed at 100, and the value of λ is ordered
from 1 to 128 at an exponential rate 2. The results are shown in Figure 4.

From Figure 4, it can be seen that the larger detection probability of the whole MWSNs
means the increase of parameter λ. It indicates that the expectations of distances between
the sensors and the target are shorter when λ gets larger if the number of sensors is constant
in the whole network. Assuming that sensors are ordered by ascending distance to a target,
the distances of the first 10 sensors to the target if λ = 20 are expected to be smaller than the
distances of the first 10 sensors if λ = 10. This verifies the fact that the association between
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the distance and detection probability is positive, and the simulation results shown in
Figure 4 match this fact.
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5. Conclusions

Target detection probability is a key parameter in updating the step of a tracker or a
filter, determining the weight between prediction results and measurements. Especially in
MMWSN scenarios, the estimation of the target detection probability should take ranges
from multiple sensors of the target into account, and those ranges usually are different
and vary with time. To cope with this issue, this paper models the range distribution of
multiple sensors in these scenarios with the target in the center using the PPP theory. The
essence of this approach regards the distance between a target and a sensor as an annulus
or a circle, and the probabilities of those circles of sensors are mathematically developed
within the PPP framework. Based on this model, the range expectation of multiple sensors
to a target is obtained. The relationship between the expected range obtained and the
final target detection probability estimation is revealed in a CFAR detector. Furthermore,
the CI method is introduced to calculate the global detection performance of the MWSNs,
and the simulation results demonstrate the rationality of the presented method. More
precisely, Figures 2 and 3 show the target detection probability estimation within the range
probability space, which matches the common empirical trend. The same number of sensors
will be closer to the target if the parameter λ is larger, which naturally brings a higher target
detection probability.

Future work will focus on extending this modeling method of a multi-sensor target
tracking framework, such as a multi-sensor random finite set filter framework or traditional
probability data association framework, which will lead to interesting results. Besides,
finding an analytic approximation of Equation (14) is also an interesting mathematical
question, key to the mathematical integrity interpretation of this method. The Taylor
expansion or Gaussian approximation are promising approaches.
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