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Abstract: Recent years have witnessed a rapid growth of code-reuse attacks in advance persistent
threats and cyberspace crimes. Carefully crafted code-reuse exploits circumvent modern protection
mechanisms and hijack the execution flow of a program to perform expected functionalities by
chaining together existing codes. The sophistication and intricacy of code-reuse exploits hinder
the scrutinization and dissection of them. Although the previous literature has introduced some
feasible approaches, effectiveness and reliability in practical applications remain severe challenges.
To address this issue, we propose Horus, a data-driven framework for effective and reliable de-
tection on code-reuse exploits. In order to raise the effectiveness against underlying noises, we
comprehensively leverage the strengths of time-series and frequency-domain analysis, and propose
a learning-based detector that synthesizes the contemporary twofold features. Then we employ a
lightweight interpreter to speculatively and tentatively translate the suspicious bytes to open the
black box and enhance the reliability and interpretability. Additionally, a functionality-preserving
data augmentation is adopted to increase the diversity of limited training data and raise the generality
for real-world deployment. Comparative experiments and ablation studies are conducted on a dataset
composed of real-world instances to verify and prove the prevalence of Horus. The experimental
results illustrate that Horus outperforms existing methods on the identification of code-reuse exploits
from data stream with an acceptable overhead. Horus does not rely on any dynamic executions and
can be easily integrated into existing defense systems. Moreover, Horus is able to provide tentative
interpretations about attack semantics irrespective of target program, which further improve system’s
effectiveness and reliability.

Keywords: intrusion detection; vulnerability exploit; machine learning; code-reuse attack; malware
detection

1. Introduction

Identifying and defending against vulnerability exploits in the wild is an ongoing
challenge. Although various protection mechanisms have been proposed, such as Address
Space Layout Randomization (ASLR) and Data Execution Prevention (DEP) make it more
difficult to exploit vulnerabilities, they can still be bypassed by carefully-crafted code-
reuse attacks. Unlike ordinary shellcode-injection attacks, where external instructions are
placed sequentially in memory, code-reuse attacks repurpose existing codes to perform
specified computations, making the analysis and detection of exploits more difficult. Due
to its versatility and concealment, code-reuse attack has increasingly become a mainstream
means to generate control-flow hijacking exploits for memory corruption vulnerabilities.

Code-reuse attack is implemented by reusing existing assembly instructions in the
memory space of the target software. Attackers can achieve the expected functionality
by linking some certain instruction fragments (namely gadgets) chosen from the code
section with executable permission of the target process. By leveraging code-reuse attacks,
attackers are able to achieve arbitrary code execution without the injection of any code,
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and bypass DEP protections. Additionally, code-reuse attacks combined with memory
disclosure techniques circumvent the widely-used protection mechanism of Address Space
Layout Randomization(ASLR). Furthermore, various emerging methods are carried out
after the release of Return Oriented Programming (ROP) [1,2], such as Jump Oriented
Programming (JOP) [3], Block Oriented Programming (BOP) [4], etc. These methods extend
the diversity of code-reuse attacks and also exacerbate the difficulty of prevention and
detection against them.

Detection of code-reuse attacks relies on identifying their distinct characteristics from
normal instances. One feasible countermeasure is to identify some specific runtime features
distinct from normal executions. By monitoring the register or memory status, we can
discover the anomalous control-flow jumps and violations related to the code-reuse attacks.
While we are able to obtain an accurate detection with detailed information based on
such dynamic methods, the heavy resource consumption and the requirement of prior
knowledge on target program hinder their network-level usage and limit those methods
within host-based application. In order to obtain real-time detection for code-reuse exploits
explicit in data stream, static methods are more reasonable choices. Through statistical
analysis or pattern matching based on statically inspecting the value characteristics of
data stream, the local specificity can be figured out to facilitate the detection and location
of code-reuse snippets hidden in consecutive bytes. Compared to dynamic methods,
static methods can provide lightweight and universal countermeasures for code-reuse
exploits detection. Furthermore, static methods can be packed as a promising and portable
component integrated into practical network-based defense systems. However, current
static methods still face several challenges:

• First, current static methods suffer from high false positives and low effectiveness,
especially during practical deployment due to the low signal-to-noise ratio.

• Second, massive static detection systems solely provide detection results without
necessary explanations, especially the black-box property of learning-based method,
cause an interpretable and readable problem, which hinders the further analysis on
located suspicious bytes.

• Third, publicly available code-reuse exploit samples are still scarce both in amount and
diversity, which limits the practicality and generalization of learning-based methods,
and causes severe performance degradation when handling unseen and evolving
instances.

In this paper, we propose Horus, an effective and reliable static detection framework
for code-reuse exploits hidden in real-world data streams, such as network traffic, to tackle
those challenges stated above. We build a static detection model that combines time-series
and frequency-domain analysis along with adversarial data augmentation. In addition,
an interpreter component is subsequently adopted to provide deterministic evidence of
suspicious codes in order to make results more interpretable and readable. Consequently,
we are able to obtain highly reliable and interpretable detection results against code-reuse
exploits for further investigation during real-world application. Thus, the main contribution
of the paper is as follows:

• We propose a novel static detection model with collaborative analysis of time-series
and frequency-domain characteristics of code-reuse codes in the byte level, which can
largely alleviates the adverse effects caused by background noise bytes and raise the
signal-to-noise ratio to enhance the model’s effectiveness.

• We innovatively introduce a corpus-based interpretation mechanism to enhance the
interpretability and readability of the outputs from our framework. We feed the
suspicious bytes into a corpus-based interpreter module to tentatively recover the
hidden attack semantics, which can provide a preliminary explanation for further
investigation and forensics.

• Additionally, we adopt a functionality-preserving data augmentation strategy to in-
crementally generate feasible exploits for the extension of training data. By expanding
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the original dataset with variant samples, we can increase the diversity of training
data, which will greatly improve the generalization and practicality of our framework.

2. Background and Related Work

In this section, we first briefly introduce the background knowledge of code-reuse
exploits and the technical principles of code-reuse attacks. Then we comprehensively
review and compare the current detection methods for code-reuse exploits in various
dimensions to highlight the strength of our proposed method.

2.1. Code-Reuse Exploits

The manipulation of vulnerability exploits has been evolving along with the growth
of defensive techniques in sophistication. Generally, early control-flow hijacking attacks
consists of two steps. The attacker would first inject shellcode that performs attacker’s
desired behaviors such as spawning a shell, into the memory space of the target program.
Then the attacker exploits a vulnerability to redirect the control flow to the injected shell-
code. At this point, the attacker could execute arbitrary instructions in the context of the
vulnerable program. However, direct code injection attacks have been largely eliminated
due to the widespread adoption of W⊕X security mechanism such as DEP and NX. As
a typical implementation of W⊕X security mechanism, DEP marks all user-controllable
memory regions with an attribute value as non-execution. It means that the attacker cannot
directly turn the control flow to the externally injected codes after control flow hijacking.
The attacker is only allowed to restrict the control flow within the memory regions with exe-
cutable property. Code-reuse exploit is a technique for exploiting a security vulnerability by
chaining together unintended instruction sequences already present in the memory space
of the compromised program. The instruction sequences, also called gadgets, are carefully
chosen from the “.data” section of the binary loaded in the memory space according to
some certain rules. Because the memory regions where the gadgets located are inherently
marked as executable, the malicious codes implemented by the gadgets can effectively
bypass the executable-space protection. Considering the fact that executable protection
has been adopted as a basic security feature integrated modern software systems, code-
reuse attacks have become universal approaches to circumvent mitigations implemented in
modern operating systems. Although emerging mitigation mechanisms such as ASLR (Ad-
dress Space Layout Randomization) are proposed to increase the difficulty of vulnerability
attacks, code-reuse exploits are still effective measures with various evolvingly-spawned
schemes. For instance, information leakage operations can be added to the gadget chain to
infer code location, and then the carefully crafted exploits can be generated to bypass the
ASLR mechanism. Moreover, the proven Turing Complete of code-reuse attacks also make
them considered as the primary attack technique of choice for nearly all modern exploits of
memory safety vulnerabilities.

A representative code-reuse exploit which leverages the ROP technique is shown
in Figure 1. In the view of composition, the exploit is composed of gadget addresses
and immediate operands. From the perspective of dynamic runtime characteristics, the
execution of compromised program would deviate from the expected control flow. Each
gadget can be considered as a tiny function, and attackers chain the gadgets by multiple
entry addresses and “ret” instruction. The attacker is able to reuse and chain the codes
already exist in the program’s memory space to execute arbitrary code by manipulating the
return addresses.

Despite the fact that the composition of code-reuse fragments varies according to the
concrete vulnerability environments, some common characteristics remain in both dynamic
domain and static domain. Hence, those commodities are used as distinguishing features
to detect underlying code-reuse exploits.
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Figure 1. A typical example of code-reuse exploit with ROP techinique.

2.2. Detection Methods of Code-Reuse Exploits

Various methods have been proposed to identify the code-reuse exploits on the founda-
tion of commodities that exist in current attack schemes. Those methods can be categorized
into dynamic and static methods, depending on whether the transmitting data are required
to be fed to the corresponding program for execution.

2.2.1. Dynamic Methods

Under dynamic methods, researchers distinguish the code-reuse exploits from benign
data by leveraging the runtime information acquired from execution environment. It
requires researchers to precisely rebuild the target execution environment to ensure that
the exploits can be performed as intended. The basic principle and assumption of dynamic
methods is that there will be some anomalies triggered in CPU registers or memory once
exploits executed. Therefore, hardware and software technologies are employed to perform
checks on CPU registers or memory to collect related clues from a running system.

Some researchers proposed to monitor the sequence of instructions executed by a
program and flag instruction streams with a high frequency of “ret” operations as exploits.
For instance, DROP [5] inspects instruction sequences ending in “ret” operation based on
dynamic binary instrumentation. Then we can check whether ROP malicious code exists
by comparing the number of instructions in each gadget-like sequence and the length of
contiguous gadget-like sequences with defined thresholds separately. Unexpected jumps
of instructions can also be utilized as an important identifier of code-reuse attacks [6,7].
Ropecker [8] relies on hardware-assisted LBR (Last Branch Recording ) to identify the
indirect branch instructions to determine whether there exists an excessively long series
of gadget-like instruction sequences. Xede [9] monitors the presence of unexpected re-
turns based on a whole-system virtualization platform and raises alerts when there are N
consecutive mismatched return addresses.

CFI (Control Flow Integrity)-based methods keep track of the control flow transfer
of the target program. Those methods verify the legitimacy of each control flow transfer
by checking whether the flow transfer exists in the legitimate control flow graph sets.
Ropdefender [10] and ROP-Hunt [11] instruments all return instructions issued during
program execution and checks the existence of code-reuse attacks by recognizing the
control flow corruptions. Argos [12] employs dynamic taint tracing to examine whether
the EIP register is tainted by input data. The literature [13] presents a novel scheme named
code shredding for detecting invalid control-flow transfers based on address checksums.
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However, the software-based CFI always cause huge resource consumption. To mitigate the
heavy computation overhead, CFIMon [14] leverages the branch tracing store mechanism
of modern processors to collect runtime traces and detect violation of control flow integrity.
kBouncer [15] monitors indirect branch events to discover abnormal control transfers.
RipRop [16] counts the indirect branches and produces alarms when the counter exceeds a
threshold. ROPStop [17] monitors and verifies the program counter and callstack based on
the Dyninst binary modification toolkit.

Pattern matching on some runtime features is an alternative strategy can be taken
to hunt code-reuse exploits. SCRAP [18] defines attack signatures based on runtime
features from hardware, and then performs a dynamic detection of code-reuse attacks.
EigenROP [19] builds an unsupervised learning-based detector that takes advantage of
architecture-agnostic statistical characteristics of the program, such as memory reuse dis-
tance, register traffic load, and memory locality gathered from snapshots. ROPSentry [20]
detects ROP attacks at runtime by observing different hardware events between which
ROP exploits trigger and normal programs.

Memory forensics is also an effective way to recognize code-reuse gadgets for revealing
the existence of code-reuse attacks. The literature [21] focuses on analyzing code reuse
attacks embedded in various document formats. Authors scan the data regions of the
snapshot to find gadget-like pointers and statically profile the behavior of those gadget-
like codes. UnROP [22] scans ROP chains in a process memory dump and verify its
functionality. According to the scanned input data, Ropscan [23] speculatively drives the
execution of code that already exists in the address space of a targeted process and detects
the execution of ROP code at runtime. In literature [24], authors design and implement
deRop to automatically convert ROP-encoded shellcodes into original shellcodes and
verify its semantic validness. ROPMEMU [25] performs emulation over a memory dump
and recovers their precise control flow graphs to examine the existence of ROP chains.
deExploit [26] focuses on the identification of overwritten data structure in memory to
diagnose the memory corruption exploits

2.2.2. Static Methods

In contrast to dynamic methods, static methods detect code-reuse exploits by directly
analyzing streaming data without execution. From empirical views, the value range and
arrangement of code-reuse exploits obey some specific properties and implicit patterns.
Those patterns can be acquired or discovered from statistics or human knowledge. Since
researchers are free from the efforts to precisely reproduce targeted environment for ex-
ploits, static methods have received increasing attention both in academic and industrial
communities.

Based on the intuition that packets with code-reuse exploits contain the addresses
of instructions or library functions, there will be statistical byte-level anomalies in those
packets. In ref [27], Ho introduces a lightweight method based on the Kullback–Leibler
divergence between the probability distributions of the normal packets generated from IoT
devices and the abnormal packets containing gadget addresses. Furthermore, Ho proposes
an improved scheme [28,29] by incorporating the Sequential Probability Ratio Test (SPRT) or
Sequential Hypothesis Test (SHT) with the probabilistic inspection on the packets incoming
into industrial IoT devices. EavesROP [30] uses a sliding window to locate potentially
suspicious data segments and applies Fast Fourier Transform-based Pattern Matching to
compare the suspicious address values present in the network data stream with the actual
Gadget addresses in known library files. Moreover, we can determine the occurrence of
potential ROP attacks based on whether the output exceeds the threshold.

Machine learning methods are also applied to mastering the underlying numerical
patterns. Researchers train a convolutional neural network (CNN) or reccurent neural
network (RNN) respectively based on the customized dataset consists of benign samples
and crafted gadget chains [31–33]. ROPminer [34] statically detects ROP chains by learning
the orders of ROP components and the byte patterns of each component. The authors
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build a HMM (Hidden Markov Model) model based on exhaustively collecting feasible
ROP gadgets in the target libraries. STROP [35] proposes a series of rules to classify and
mark suspicious bytes with different granularity according to the regular characteristics of
the range of values taken by gadget addresses and further extracting seven-dimensional
statistical characteristics to achieve judgment. In the paper [36], the authors introduce the
definition of RCI (ROP chain integrity). Authors detect ROP-based malicious documents
by calculating the likelihood ratio to malicious or benign samples considering the RCI.

Prior knowledge provides a corpus of candidate payload bytes which are widely used
in code-reuse attacks. Those specified bytes can also work as identifiers to determine the
existence of code-reuse attacks. Signature-based detectors [37] such as Nebula leverage the
byte pattern composed of some specific bytes have been widely used for detecting known
vulnerability exploited. The literature [38] presents a prototype focusing on the detection
of sledge pattern used in HTTP requests. Tanaka et al. propose n-ROPdetector [39] to
achieve the matching of network streams by collecting gadget patterns from the Metasploit
framework.

Emulation on suspicious data is also a feasible approach for statistical detection of
code-reuse exploits. The literature [40] introduces Code-Stop to determine whether there is
a code reuse attack by simulating the execution of a potentially suspect gadget address and
comparing whether its semantics are similar to the assignment pattern of registers when
calling specific Windows functions (e.g., VirtualAlloc(),SetInfoProcess(), VirtualProtect()). The
literature [41] proposes Ropdissector to reduce the workload of subsequent analysis by
simulating the execution of suspicious gadgets and being able to further distinguish and
label the semantic functions of ROP fragments.

2.2.3. Comparative Analysis and Motivation

In summary, dynamic methods and static methods show their strengths and weak-
nesses, respectively.

Generally, dynamic methods focus on the deterministic properties of program be-
haviors when code-reuse exploits are being performed. Therefore, dynamic methods can
provide precise detection with low false alerts and auxiliary information for further diag-
nosis. Additionally, dynamic methods adapt to the detection on encoded or obfuscated
exploits, since the exploits will be recovered when executed. However, the assumption
or prerequisite of dynamics methods is that the exploits will be successfully injected into
memory and executed. Researchers should prepare the corresponding analysis environ-
ments in advance. As is known, it is difficult to accurately reveal an exploit’s targeted
environment and perfectly recover analysis environment with same configurations. That
means numerous exploits hunted from a network will not be activated due to the lack
of prior knowledge about targeted environments, incurring possible false negatives on
real-world deployment. Worse still, the trade-off between monitoring granularity and
resource consumption is another significant factor which hinders the practical application
of dynamic methods, and the heavy resource consumption will reduce the throughput of
whole system and hinder researchers in obtaining immediate results.

On the other hand, static methods provide a lightweight and generic solution on code-
reuse exploits. Compared to dynamic methods, static methods hold higher throughput and
easy-to-deploy characteristics for network-level application. We can capture and scrutinize
all suspicious data from network traffic without efforts to construct an analysis environment
and prior knowledge about influenced software. Current static methods mainly employ
stochastic analysis or learning-based algorithms from data-driven insight, which focus on
data characteristics of code-reuse exploits. That means static methods are largely influ-
enced by noises from background bytes and distribution drifts in unseen data, leading to
numerous false positives. Most of the static methods cannot provide deterministic evidence
or visual interpretation to support detection decisions and further investigations. Addition-
ally, limited publicly available samples also exacerbate performance degradation during
real-world applications. Although the shortcomings stated above restrict the reliability and
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interpretability of static methods, static methods remain competitive approaches owing to
the development of machine learning methodology. The versatility and practicability make
it a promising direction worthy of further study and exploration.

Considering the strengths of static methods in handling network data traffic, we
propose a novel framework on the basis of previous work. Our framework carries forward
the advantages of static methods and attempts to remedy shortcomings by providing a more
effective, reliable, and interpretable solution. We synthesize the complementary views from
time series and frequency domain to build our learning-based system in order to reduce
the influence from background noises and increase the reliability of decisions. Furthermore,
we leverage a function-preserving data augmentation to extend the diversity of existing
training data, help our model advance beyond local overfitting and raise the transferability
and generality of our method. Furthermore, we integrate the corpus-based translation
on the basis of lactation of suspicious bytes, to achieve extremely lightweight speculative
interpretation. The auxiliary information from interpreter provides deterministic evidence
to support further investigation. It means that, through the corpus-based interpreter, we
can enhance the readability and interpretability of output and overcome the black-box
problem to a certain extent.

3. Problem Statement and Theoretical Analysis

In this section, we present a problem formulation and theoretical analysis on static
code-reuse exploits detection, which provides support for the design of our framework.

From the perspective of static analysis, detecting code-reuse exploits in a data stream
can be formulated as identifying subsequences with certain value characteristics. The value
characteristics are derived from sequential layout of gadget addresses mixed with const
parameters. Considering that the const parameters do not show enough recognition in
numerical value, we regard the const parameters as noise and concentrate on characterizing
the gadget parts of a subsequence. We use chunk to represent a couple of consecutive bytes
with the same size as a gadget. In order to take advantage of the value characteristics from
gadget address, we divided the entire sequence into chunks with fixed length depend on
whether the architecture of targeted environment is 64-bit or 32-bit.

To avoid confusion, all elaborations in this paper are conducted under a 32-bit enviro-
ment by default, since in a 64-bit system environment we only need to double the sampling
channels.

Based on the above analysis, we scrutinize the value characteristics of a sequence in
two dimensions:

• The value characteristics of single chunk are determined by the gadget g ∈ {G}.
• Meanwhile, the value characteristics of consecutive chunks are determined by ar-

ranged gadgets as [g0g1g2...gp−1gp...gn].

In the view of a single chunk, the values of a single chunk are mainly restricted by the
address values of feasible gadgets gi ∈ {G}. Gadgets are strictly chosen from some library
regions of memory space and occupy specified functionalities such as arthritic operation,
register move, memory read or write, and instruction pointer jump.As a result, the amount
of gadgets which satisfy the requirements are usually enumerable in practice. Especially,
some gadgets from common libraries might be broadly used in various vulnerability
exploits which share similar runtime environments, such as the “universal gadgets” chosen
from the _libc_csu_init function and some gadgets from commonly-used DLLs. For example,
“0x77C34fCD, # POP EAX # RETN” from msvcrt.dll are broadly used in exploits of EDB-ID-
27012, EDB-ID-23785, EDB-ID-28187, and EDB-ID-37056, etc. It means that there might be
seen address values laying in different code-reuse exploits. This commonness can be used
as one of the theoretical fundamentals for stochastic detection.

On the other hand, even though attackers employ alternative gadgets from those
common libraries, the addresses of those gadgets take value in the range of source libraries.
For randomized processes, the gadget space is even smaller, attackers often pick gadgets
from a few common non-ASLR DLLs such as msvcrt.dll, hxds.dll, and msvcr71.dll to reduce
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the difficulty of exploiting. As the statistical data in the literature [35] stated, over 90% of
dynamic library files on Window or Linux platform are less than 1 MB or 128 KB in size,
respectively. For example, msvcr71.dll is always loaded in virtual memory region from
0x7C34000 to 0x7C396000. Therefore, the ROP gadget addresses from msvcr71.dll are in the
range of 0x7C34000-0x7C396000. It means that the address value of gadget varies within
a limited range, and the high byte value of address might not change, or worse, even if
attackers use gadgets from program-specific DLLs, there will still be an excessive difference
in address values since all the DLLs are loaded into almost the similar memory region. For
example, in term of Internet Explorer(IE) 9 of Windows 7, 124 DLLs are loaded, of which 30
DLL files are loaded in 0x6XXXXXXX while 94 DLL files are loaded in 0x7XXXXXXX.

In the view of chunk sequences, values are determined by the ingredients and orders
of gadgets [g0g1g2...gp−1gp...gn]. To accomplish some functionalities during vulnerability
exploits, attackers borrow some existing instructions and reorganize them in a certain order
to achieve the corresponding attack semantics. Owing to the address-to-gadget corpus in
the target program, the gadget chains are translated into the form of address sequences
written in exploits. Hence, the linkage and composition of the gadgets in turn further
determine the layout and arrangement of the corresponding address values. Moreover,
due to the semantic connotations from the intended gadget chains, the values of chunk
sequences naturally follow some resembled and transferable paradigms. We use the local
fluctuation of address values in chunk sequences to sketch those paradigms, which are
perceptible in many real-world exploits.

The numerical characteristics in two dimensions form the basis of our study. During
the detection phase, the code-reuse exploits are hidden in network traffic mixed with
protocol text bytes, application-specific bytes, plain text bytes, and encoded text bytes. The
core idea is to enhance the distinction and relief the influence from those noises by applying
feature extraction and enhancement algorithm. Concretely, we leverage the complementary
time-series and frequency-domain features to enhance the signal-to-noise ratio of code-
reuse exploits against background noises. Next, we adopt data augmentation to improve
the generalization of detectors and combat the local overfits from a limited volume of
available data. Additionally, we employ a corpus-based interpreter to provide possible
deterministic evidence and interpretability of detection.

4. Methodology

In this section, the implementation of the proposed framework are presented in detail.
First, we introduce the overall design of Horus, an interpretable joint time-frequency detec-
tion framework with data augmentation. Then we will demonstrate the implementation
details of each module in our framework.

4.1. Overall Framework

An overall architecture of the proposed Horus framework is shown in Figure 2. Horus
framework contains four core modules: preprocessing and sampling module, joint time-
frequency detection module, function-preserving data augmentation module, and corpus-
based interpreter module. For incoming data stream, we conduct basic preprocessing
and sampling to convert incoming data into the form of fixed-length sequences. Next,
we feed the sequences into the joint time-frequency detection module to obtain decision
results. Finally, we employ a corpus-based interpreter to tentatively translate the suspicious
bytes to instructions and acquire deterministic evidence that enhance the interpretability
and convincingness of detection results. In addition, in order to increase the diversity of
training data, we utilize data augmentation technology to generate polymorphic variants
from original samples.
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Figure 2. An overview of Horus framework.

4.2. Preprocessing and Sampling

The preprocessing and sampling module is responsible for transforming data stream
into fixed-length data segments. Then we adopt a sliding windows of fixed length to
sample from retrieved payload as illustrated in Figure 3.

    
Data Stream

Sampling Window

Slide

Window Size

Step Size

Figure 3. Sampling based on a sliding window.

Notice that we use bytes as the unit for checking data stream. We assume that the
maximum size of usual code-reuse exploits is L in bytes. To avoid possible overlap and
truncation during data sampling, we set the size of sliding-window as 2L and the step size
as L. Therefore, we can guarantee that there exists at least one window covering an entire
code-reuse payload during sampling. In our design, we set step size L as 256, so that the
window size is 512.

4.3. Joint Time-Frequency Detection Model

In the detection module, we incorporate discriminative features in both time series
and frequency domain to build an ensemble classification model. Our model inherits
the advantages of time-series and frequency-domain analysis, is promising to exhibit a
noise-tolerant performance on detection tasks.

4.3.1. Time-Series Feature Extraction

Considering the variations of byte values in different gadgets differ from high to
low positions. Next, we use a multi-channel filter recompose the sampled data into four
sequences to sketch the value fluctuation features, respectively. Notice that our approach is
assumed to conduct under 32-bit environment by default. In 32-bit architecture, a payload
consists of several four-byte aligned addresses, then a four-channel filter is suitable. The
offset of a code-reuse payload in the data buffer is unknown, but we know that each
address is four bytes and addresses are aligned inside a payload. Therefore, we create four
sequences, one for each offset, see Figure 4.
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Sampled Data

  
41 41 41 41 FF FD FF FF 0C 9E 25 7C F0 12 25 7C
BC E7 2F 7C 14 F0 26 7C 09 08 2C 7C 89 99 28 7C
E3 F9 71 61 0C 9E 25 7C 01 B0 32 7C 6B 8C 13 68
28 51 58 67 10 E8 2D 7C 11 E8 2D 7C 62 48 28 7C
C0 FF FF FF A0 2E 25 7C 89 6B 31 7C 52 8C 28 7C

 

       
41 FF 7C 7C 
7C 7C 7C 7C
61 7C 7C 68 
67 7C 7C 7C
FF 7C 7C 7C   
      

       
41 FF 25 25 
2F 26 2C 28 
71 25 32 13 
58 2D 2D 28
FF 25 31 28  
      

       
41 FD 9E 12 
E8 F0 08 28 
F9 9E B0 13 
51 E8 E8 28
FF 2E 6B 28  
      

       
41 FF 0C F0 
BC 14 09 89 
E3 0C 01 6B 
28 10 11 62
C0 A0 89 52  
      

Four-Channel Filter

Offset 0 Offset 1 Offset  2 Offset 3

Figure 4. Channel decomposition before time-series feature extraction.

From the time-series perspective, we focus on local fluctuation of address values in
code-reuse payloads. Derived from the similar instruction semantics and source libraries,
there exist some common features in value fluctuation which reflect the paradigms of
gadgets arrangement. The regular fluctuation of byte values embodies the overall ordering
characteristics of code-reuse gadget chains. Furthermore the dispersed segments in code-
reuse payloads that comply with the fluctuation features can support the decision. As
elaborated in Section 3, local fluctuation of values can be used as a distinct identifier of
the gadget chain against noises. This idea can be thought as an ameliorative version of
previous work [28].

In implementation, we leverage the Shapelet Transform algorithm to extract the time-
series fluctuation features of address values to sketch those paradigms. The workflow
of Shapelet Transform is shown in Figure 5. The subsequence S with varying length L is
defined as a subset of continuous values from the entire time-series sequence. A shapelet is
defined as one of the most discriminating time-series subsequences used to describe local
value fluctuation of a sequence. We select the subsequence with a distinct shape feature
which is common in sequences from training set and then list it as a candidate shapelet.
Then we use the shapelets as a set of basis vectors that represent the most discriminative
fluctuation patterns for vectorization of incoming time-series data. For each channel, we
collect 32 distinct shapelets to work as basis vectors. During Shapelet Transform, a sequence
is described by its similarity(minimum distance) to each of a collection of shapelets as
[D1, D2, D3, ..., DL]. In general, after Shapelet Transform, each sequence is represented by a
vector of 32 dimensions describing how similar it is to each of the 32 selected shapelets,
and the sampled data can be represented by a 128-dimension vector.
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Minimum Distance 

Shapelet 3

Shapelet 2

Shapelet 1

One Channel of Sampled Data

  

Shapelets 

Minimum Distance

Minimum Distance

  

Time-series Feature Vector

Figure 5. Time-series features extraction from Shapelet Transform.

4.3.2. Frequency-Domain Feature Extraction

From the frequency-domain perspective, we aim to mine the implicit cyclical patterns
of byte values in the global sight. Through frequency-domain analysis, the cyclical patterns
can be decomposed into different frequency components. The aggregation paradigms of
frequency components depict common features of entire code-reuse payloads.

In this work, we utilize Discrete Wavelet Transform (DWT) to implement frequency-
domain decomposition and extract the structure features on windowed non-stationary
data. Discrete Wavelet Transform works on discrete non-differentiable spaces, and is ca-
pable of handling signals with sudden transitions. In practice, we choose Discrete Haar
Wavelet Transform (DHWT) in our design. As the simplest form of wavelet transforms,
Discrete Haar Wavelet Transform outperforms traditional Fourier transform on sketching
frequency-domain characteristic of a local data segment, and is easier to be implemented
and integrated into existing systems. By using Discrete Haar Wavelet Transform, it is possible
to detect code-reuse payloads even in the presence of noise and assuming that the target
system employs ASLR. In mathematics, the Haar wavelet is a sequence of rescaled “square-
shaped” functions that together form a family or basis of wavelets. During the process of
decomposition, two types of functions play an important role. The wavelet function ψ(t)
and the scaling function φ(t) is defined as follows:

ψ(t) =


1, 0 ≤ t < 1

2

−1, 1
2 ≤ t < 1

0, t < 0, t > 1

(1)

φ(t) =

{
1, 0 ≤ t < 1
0, otherwise

(2)

Before decomposition, we must craft a series of basis functions {ϕj,k(n)} and {ψj,k(n)}
based on the wavelet function and the scaling function, as described in following equations:

ϕj,k(t) = 2j/2 ϕ
(

2jt− k
)

(3)

ψj,k(t) = 2j/2ψ
(

2jt− k
)

(4)
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where j indicates the number of transform levels, and k is the position parameter.
In this study, we conduct Discrete Haar Wavelet Transform at the first level to obtain

approximation and detail coefficients. We focus on approximation coefficients produced
by the transformer, which represents the coarse-scale, low-frequency components of a
signal. For an input sequence s(t) which consists of T positions, approximation coefficient
is defined as:

aj,k(t) =
〈

s, φj,k

〉
=

T

∑
t=1

s(t)φj,k(t) (5)

To obtain appropriate feature representation, we split the frequency band into 128 sub-
bands. We further calculate the energy indensity according to the following equation and
build the corresponding histogram of energy spectrum.

ρ(t) =
∆t

∑ |aj,k(t)|2 (6)

The process of frequency-domain features extraction is illustrated in Figure 6.

En
er

gy
 In

de
ns

ity

Subband

Sampled Data

Frequency-domain Feature Vector

DHWT

Vectorization

Figure 6. Frequency-domain features extraction from Discrete Haar Wavelet Transform.

The y-axis of the histogram represents the cumulative intensity of a given frequency
component on the x-axis. We utilize relative values instead of the exact values in the
diagram. Then we convert the energy spectrum into tabular data and acquire a 128-
dimension vector which represents the frequency-domain characteristic. Moreover, through
frequency-domain analysis, the inference from noise bytes can be largely reduced, and the
signal-to-noise ratio is promisingly raised.
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4.3.3. Architecture of Detection Model

Generally, time-series and frequency-domain features work as complementary features
for accurate code-reuse exploit detection on windowed data. Shapelet features illustrate
the local similarity of sequencing features and eliminate the noises from unrelated bytes
lying in data streams. However, the shapelet features are sensitive to data with very small
variations. It means that small noises located on the internals might cause mismatchs
between incoming sequences with shapelets, leading to false negatives in practical ap-
plication. Meanwhile, Haar Wavelet Transform is insensitive local value variations, which
plagues shapelet-based methods. The overall frequency-domain component characteris-
tics can be well represented, unaffected by local noises. Mixed noise can be effectively
eliminated by frequency-domain filtering. On the other hand, that means the subtle com-
mon fluctuations in which shapelet-based methods specialize might also be discarded
by those frequency-domain methods. Totally, the complementarity of time-series and
frequency-domain methods make it promisingly effective by integrating both time-series
and frequency-domain features. Therefore, a joint time-frequency models are logical to
be proposed.

The architecture of the joint time-frequency model is illustrated in Figure 7. After
feature extraction, the sequences are transformed into a 256-dimension tabular vector
composed of 128-dimension time-series features and 128-dimension frequency-domain
features. Empirically, tree-like models work better than other machine-learning models
on highly structured datasets, such as tabular data. Therefore, we employ a tree-based
ensemble model named Gradient Boosting Decision Tree (GBDT) to construct the classifier
model. GBDT uses decision trees which work on different parts of features as base classifiers.
Then, as an ensemble model, GBDT adopt boosting algorithm to integrate multiple “weak”
base classifiers into a “strong” one. When training, the optimization is to decrease the sum
errors of base classifiers.

 

Detection Result

Joint Time-Frequency Feature Vector

GBDT Model(LightGBM)

  

Time-series Features Frequency-domain Features

Ensemble

Figure 7. Architecture of GBDT-based detection model.
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In implementation, we employ a highly efficient framework named LightGBM to
build the ensemble classifier. As an improved variant of GBDT algorithm, LightGBM
combines the predictions of multiple decision trees to make the final prediction generalize
well. In LightGBM, two exclusive strategies are integrated, namely Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), which bring prevalent
performance on accuracy and computational efficiency. On selection of hyperparameters,
we leverage the Grid-search Algorithm 1 to sort out the best hyperparameters. Under
our experimental configuration, we find the optimal hyperparameters are {′num_leaves′ :
31,′ subsample′ : 0.8,′ f eature_ f raction′ : 0.9,′ learning_rate′ : 0.02}.

Algorithm 1: Grid-search Algorithm.

Input: hyperparameter set P = {p1, p2, p3, ..., pm}, each hyperparameter values in
a series of candidate values as pk ∈ [p(i)k ]

1 for p1 in [p(i)]1 ] do
2 for p2 in [p(i)]2 ] do
3 for p3 in [p(i)]3 ] do
4 ...

5 for pm in [p(i)]m ] do
6 model = ligtgbm.train(training_set, params = {p1, p2, p3, ..., pm})
7 score = model.predict(valid_set)
8 cv_list.insert({p1, p2, p3, ..., pm})
9 score_list.insert(score)

10 end
11 end
12 end
13 end

Output: best values of hyperparameters cv_list[score_list.index(max(score_list))]

4.4. Function-Preserving Data Augmentation

One critical challenge of code-reuse exploit detection is sample diversity. One feasible
solution to tackle this challenge involves the adoption of data augmentation. In the data
augmentation module, we endeavor to generate more samples to artificially increase
the variety of input instances for training phase to enhance the generalization of our
detection model.

As is known, the performance of the learning-based model is determined by the
training data. However, under realistic conditions, researchers are plagued by the limited
available data. For example, we can only collect 68 distinct public-available code-reuse
exploits with completely disclosed PoC (Proof-of-Concept) in open-source community
ExploitDB [42] (accessed on 1 September 2022). The limited publicly available samples
constrain the transferability and generalization of trained model on practical application.
That means the feature distribution of code-reuse exploits in a real-world environment
probably differs from the feature distribution in scarce local training set.

Therefore, to generate more exploits expectantly on the adversarial side can promis-
ingly raise the effectiveness of trained model. Data augmentation can produce more
samples to increase the diversity and quantity of training data. It means that the newly
generated samples might cover possible polymorphic patterns or new paradigms, which
can improve the cognitive ability of trained model.

During data augmentation, we are supposed to guarantee the integrity of functionali-
ties and semantics to avoid infeasible generations. Assuming that we have full knowledge
of code-reuse samples in the original dataset, we can generate more samples by subtle
manipulations in gadget level while keeping generated samples “real” threats. For a gadget
in the original sample, we might find alternative gadgets with the same instructions from
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optional libraries loaded in memory. For example, we can find 358 alternative gadgets in
the common library msvcrt.dll to complete POP EAX; RET instructions, and 58 alternative
gadgets in the common library msvcr71.dll to complete PUSH ESP; RET instructions. We
might use those gadgets with the same instructions to replace the original ones. Further-
more, we can inject redundant gadgets at proper positions of a payload while not altering
the functionality of the original gadget chain. As an example, we can inject gadgets which
involve operations on registers not later mentioned in the gadget chain. Additionally, we
can rephrase the gadgets by using some semantically equivalent gadgets. For instance, we
can rephrase the gadget “0x7C37653D, # POP EAX # POP EDI # POP ESI # POP EBX # POP
EBP # RETN” into several decomposed pieces of short gadgets.

Concretely, for malicious samples, we adopt three main manipulation schemes as
follows:

• Synonym Replacement (SR) - Randomly choose the address value of a gadget and
replace it with the address value of alternative synonymous gadget.

• Redundant Insertion (RI) - Randomly insert the address values of redundant gadgets
at proper positions of the payload.

• Rephrasing Transform (RT) - Rephrase a gadget while retaining instruction semantics,
and then replace the original address value with the address value of rephrased
gadget.

For benign samples, we just adopt random mutations to mimic the noise data to
increase the randomness. The process can be shown schematically in Figure. 8.

Data Augmentation

   3D65377C  FFFDFFFF  A215347C  051E357C  5552347C  7421357C  874F347C  C0FFFFFF  B11E357C  01D2347C  977F347C  

# POP EAX 

# POP EDI 

# POP ESI 

# POP EBX 

# POP EBP 

# RETN # JMP [EAX]

0x7C37653D 0x7C3415A2

# NEG EAX 

# RETN

0x7C351E05

# INC EBX 

# FPATAN 

# RETN

0x7C345255

# ADD     

   EBX,EAX 

# XOR 

   EAX,EAX 

# INC EAX 

# RETN

0x7C352174

# POP EDX 

# RETN

0x7C344F87

# NEG EDX 

# RETN

0x7C351EB1

# POP ECX  

# RETN

0x7C34D201

# POP EAX  

# RETN

0x7C347F97

0A6C347C  FFFDFFFF  EBAC347C  0149357C  0264377C  

# POP EAX 

# RETN

# POP EDI 

# RETN

# POP EBX 

# RETN

# POP ESI 

# RETN

# POP EBP 

# RETN

0x7C3764020x7C3549010x7C34ACEB0x7C34B8D70x7C346C0A

Rephrasing Transform (RT)

Original Payload

F2D2C477  

0x77C4D2F2

# POP EDX 

# RETN

Synonym Replacement (SR)

987F347C

0x7C347F98

# RETN

OR
0x756C9A5C

# NEG EAX

# RETN

5C9A6C75

Redundant Insertion (RI)

Replacement Replacement Insertion

Figure 8. Schematic diagram of proposed function-preserving data augmentation on a malicious
sample.

We can conclude the procedure of data augmentation in the form of pseudocode
shown in Algorithm 2:

Algorithm 2: Data augmentation.

Input: X = {{(xi, yi) | i = 1, . . . , n}, xi ∈ Rp, yi ∈ {−1,+1}}m
i=1, Augmentation

function set Faug

1 Initialize X
(i)
aug = X

2 for each f (i)aug ∈ Faug do
3 X

(i)
aug ← f (i)aug(X)

4 X ←X
⋃
X

(i)
aug

5 end
Output: Enhanced dataset X

′
= X
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In practical implementation, we build a corpus composed of candidate gadgets chosen
from common libraries beforehand, which provides raw materials for our data augmentation.

4.5. Corpus-Based Interpreter Module

In the interpreter module, we implement a lightweight interpreter to provide tentative
and preliminary dissections for further forensic on suspicious data.

The goal of interpreter is not to conduct further deterministic detection, but to en-
deavor to present auxiliary information to the analyst for further investigation and to
shorten the analytical duration. Considering that current interpreter cannot achieve enough
high detection performance as expected, using interpreter as a double checker might ac-
tually encumber the overall performance of whole framework. Hence, in our design, we
regard the interpreter module as an auxiliary component to support detection decisions.

Unlike previous approaches, we do not require the memory snapshots or activation
context to be reproduced to achieve a comprehensive result. We take full advantage of
the fact that our interpretation is performed on the fundamental of detection to make our
interpreter as lightweight as possible. We leverage corpus-based mechanism to annotate
and highlight underlying “exploit clues” to enhance the persuasiveness of the antecedent
detector, and provide speculative interpretation on those suspicious bytes. Those crit-
ical “exploit clues” on exploit techniques can provide auxiliary evidence for reliability
and interpretability.

We consider those clues in two aspects: invariant gadgets and guessed gadgets.
Under practical circumstances, massive code-reuse payloads contain gadgets that

exist in the non-ASLR code segments to reduce exploit difficulty, which remain invariant
across different environment configurations. We collect such universal invariant gadgets
from frequently-used non-randomized libraries from Windows and Linux platforms, and
construct a corpus covering the gathered gadgets. The gadgets inserted into the corpus can
be classified into two cases. In the first case, the gadgets are some critical function API such
as VirtualAlloc(), VirtualProtect(), mmap(), HeapAlloc(), and SetInfoProcess(), which plays a sig-
nificant role in practical application. In the other case, the gadgets are instruction sequences
taken from some unrebased DLLs such as icucnv36.dll, mfc71u.dll and msvcr71.dll, which
perform some basic operations such as move register, stack pivot, and jump operations.
In practice, we examine the data stream by byte and attempt to sort out such fixed and
hard-coded address values of gadgets with preferred base address from corpus.

Next, we adopt a guess mechanism to acquire possible gadgets. Modern operating
systems randomize only the base address of a code module, leaving the relative distances
between the gadgets in a component unchanged. We adopt a guess mechanism stated
in Algorithm 3 similar to literature [41] which leverages ASLR implementation details to
guess the base address. In fact, Windows only attempts to randomize 8 bits of a 32-bit
address, from bits 16 to 23. As a result, in a brute-force situation, we can guess the base
address of a binary in 256 trials. We collect common DLLs and use them as corpus for
translation. For every guess, we perform tentative corpus-based translation and verify the
validity of each guess based on some criteria.

Since the tentative translation is performed based on detected suspicious data, we can
relax the criteria of judgment unlike in the literature [41]. We borrowed the ideas from
previous work [9,23] to propose the criteria. The criteria regulates the determination on
a single gadget and a gadget chain. For the determination on a single gadget, we set the
maximum instruction length G_size as 5 [9]. Once we locate a possible gadget, we continue
to conduct corpus-based translation on subsequent bytes with same base address to find
more gadgets. As the literature [23] declared, there do not exist any benign input with
more than three unique gadgets. Hence, for the determination on a gadget chain, we set a
minimum length C_size as 4. Concisely, when we find four consecutive possible gadgets,
we can deduce the base address.
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Algorithm 3: Guess Algorithm.

Input: suspicious data DS = [Byte1, Byte2, Byte3, ...ByteL], candidate base address
set Basej|mj=0

1 for base idx ∈ L do
2 Addr = DS[idx, idx + 3]
3 for base Basei ∈ {Basej}|mj=0 do
4 InstSeq = CorpusTrans(Addr + Basei)
5 if InstSeq satisfy Criteria then
6 Base = Basei
7 Return Base
8 end
9 end

10 end
Output: Guessed base address Base

Accordingly, we can conduct tentative corpus-based translations on the rest of suspi-
cious data to recover more gadgets, provided that these gadgets come from the DLLs within
our corpus. Hence, the effectiveness of our interpreter largely depends on the magnitude
of corpus to input samples.

After preliminary translations on those suspicious data, we can acquire some “exploit
clues”. Identifications of such “exploit clues” can provide auxiliary information to help
researchers better understand and analyze code-reuse exploits. Furthermore the detec-
tion results with such supporting evidence can bridge the gap between suspicion and
determinism and enhance the reliability of decisions.

Because a sliding-window decision is made in the detection module, the search space
is extensively reduced. Intuitively, our approach does not incur a perceptible performance
overhead or cause a substantial impact on the whole system’s throughput. Experiments
show that our interpreter module only leads to about 1.5% extra time consumption.

5. Evaluation

In this section, we demonstrate a concise and precise description of the experimental
configurations and results, their explanations as well as the experimental conclusions that
can be drawn. First, we introduce the construction of dataset and experimental settings.
Then we illustrate the comparative experiments with some state-of-the-art approaches to
validate the effectiveness of our proposed methods. At last, we present some ablation
studies for further investigation on the effectiveness and optimization of each component.

5.1. Dataset and Experimental Settings

This subsection describes the construction and composition of dataset, and the detailed
configurations of experiments.

5.1.1. Dataset Construction

Our experiments were conducted on a dataset which consists of piratical code-reuse
samples and part of the USTC-TFC2016 dataset [43]. To simplify and facilitate comparative
experiments, we only consider exploit attacks towards programs of x86 architecture when
building datasets. The samples are stored in the form of PCAP files.

Unlike previous work, we employ code-reuse exploits towards real-world vulnerable
Windows and Linux programs instead of hand-crafted or simulated code-reuse payloads.
This makes our experiment more convincing. In detail, we collected code-reuse exploits
and PoC(Proof of Concept) scripts from Exploit-DB [42], GitHub, PacketStrom [44], Virrus-
Total [45], VirusShare [46], and Corelan ROPdb [47]. All the involved samples and PoC can
be publicly available or acquired by request from mentioned websites. Then we generated
code-reuse samples based on PoC scripts, and gathered those generated samples with
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existing exploits to build malicious part of the dataset in our study. The malicious samples
are transmitted over different application-layer protocols, such as HTTP, and FTP, etc.

Benign samples in our study are randomly chosen from USTC-TFC2016 dataset. USTC-
TFC2016 is a prominent open-source dataset of unencrypted traffic, collected from a real
network environment and IXIA BPS simulation equipment. The benign part of USTC-
TFC2016 contains packets from ten different applications, listed as: Facetime, Skype,
BitTorrent, Gmail, Outlook, WOW(entertainment application WorldOfWarcraft), MySQL,
Weibo, FTP(File Transport Protocol message), and SMB(windows Server Massage Block).
We randomly sample the packets of each type in the same amount to form the benign part
of our dataset.

The details of our dataset are shown in Table 1. Because the number of disclosed
code-reuse samples is indeed limited in diversity, the collected and generated samples
are still few, even with the best efforts. However, there is no redundancy and repetitive
code-reuse exploits in the dataset, thus the quality of data can be fully guaranteed. The
number of benign and malicious samples is the same, both 10,000. During experiments, the
dataset is divided into training and test sets according to the 5:5 ratio.

Table 1. Details of dataset used in this paper.

Label Type Amount

Benign

Factime 1,000
Skype 1,000

Bittorent 1,000
Gmail 1,000

Outlook 1,000
WOW 1,000

MySQL 1,000
Weibo 1,000

FTP packets 1,000
SMB packets 1,000

Malicious
HTTP packets 4,400
FTP packets 4,000

Other network packets 1,600

5.1.2. Environment Configuration

All experiments were performed under the same experiment configuration, and the
details are listed in Table 2.

Table 2. Hardware and software settings in our experiments.

Category Component Description

Hardware
Central processing unit Intel Xeon E5-2678 v3
Random access memory DDR4 128 GB
Graphics processing unit RTX 3090

Software

Operating system Ubuntu 18.04 LTS
Programming language Python 3.8.11

Algorithm libary Sklearn 0.24.2
Neural network engine Tensorflow 2.4.0

5.2. Performance Evaluation

In this part, we describe the experiments to verify the effectiveness of our method and
discuss the conclusions revealed behind the results.
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5.2.1. Performance Metrics

We adopted five popular metrics in our experiments to weigh the classification perfor-
mance. The accuracy(ACC) is defined as the number of correctly predicted samples out of
all the samples.

ACC =
TP + TN

TP + TN+ FP + FN
(7)

Precision (PRE) refers to proportion of malicious identifications is actually correct.

PRE =
TP

TP + FP
(8)

Recall (REC) is calculated as the number of malicious samples correctly classified out
of all the malicious samples.

REC =
TP

TP + FN
(9)

False alarms rate (FAR) is the proportion of false alarms compared to all malicious
predictions

FAR =
FP

FP + TN
(10)

F1-score (F1) is the harmonic mean of precision and recall.

F1 = 2× Precision ∗ Recall
Precision + Recall

(11)

where:

• True Positive (TP)—Malicious sample that is correctly classified as an attack.
• False Positive (FP)—Benign sample that is incorrectly classified as an attack.
• True Negative (TN)—Benign sample that is correctly classified as normal.
• False Negative (FN)—Malicious sample that is incorrectly classified as normal.

5.2.2. Baseline Methods

We evaluate the performance of our approach by comparing it with several state-of-
the-art baseline methods proposed in previous studies. We reproduced those methods to
weigh the performance of our method under the same environment. The methods to be
compared include:

• Literature [28]: sequential probability ratio test (SPRT) with probabilistic inspection
on packets for the code-reuse exploits detection.

• eavesROP [30]: matching filter algorithm with fast Fourier transform preprocessing
for code-reuse exploits detection.

• ROPNN [32]: lightweight deep neural network methods for the code-reuse exploits
detection.

• STROP [35]: static inspection based on seven statistical characteristics of code-reuse
payloads to recognize the specialized exploits.

• n-ROPdetector [39]: pattern matching with predefined rule for the code-reuse exploits
detection.

5.2.3. Experiment Results

To verify the effectiveness of our method, we conducted comparative experiments
based on the aforementioned dataset to compare the performance between the baselines
with proposed method. The experimental results for each detection performance are re-
ported in Table 3. From the results obtained, the proposed method significantly outperform
the baseline methods in all four metrics. Due to the obvious gaps in performance indicators,
we can deduce the prominent effectiveness of our method and exclude contingent effects
of experiments.
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Table 3. Effectiveness comparison with baselines.

Method ACC PRE REC F1 FAR

Literature [28] 0.8702 0.9012 0.8316 0.8650 0.0912
eavesROP 0.9320 0.9553 0.9064 0.9302 0.0424
ROPNN 0.9410 0.9022 0.9892 0.9437 0.1072
STROP 0.8354 0.9584 0.7012 0.8099 0.0304

n-ROPdetector 0.8108 0.9346 0.6684 0.7794 0.0468
Our method 0.9838 0.9779 0.9900 0.9839 0.0224

Subsequently, we compare the efficiency of our method with the baselines. We utilized
professional test equipment named SpirentTestCenter to generate different types of traffic
for measuring the throughput of each approach. During the test, we set the ratio of random
generated normal traffic to code-reuse exploit traffic as 100:1 to simulate network traffic
like in a real-world deployment environment. The test was lasting for 10 hours, and
all the approaches are executed under same configuration. We calculate the total size
of packets passing through those systems, and list the throughout in Table 4. It can be
observed from this table that the throughput of our method is competitive, which can satisfy
the requirements of practical applications. The rule-based engine makes n-ROPdetector
work more efficiently than other methods. The efficiencies of eavesROP, STROP, and
literature [28] are restricted by cumbersome calculations. Due to the usage of lightweight
model architecture, the efficiency of ROPNN is unexpectedly high, especially under GPU
computation. Although the throughput of our method is slightly lower than n-ROPdetector
and ROPNN(working on GPU mode), the efficiency is acceptable considering the detection
performance.

Table 4. Efficiency comparison with baselines.

Method Throughput (Mbit\s)

Literature [28] 380.50
eavesROP 93.20
ROPNN 552.12 (with GPU), 497.05 (without GPU)
STROP 82.04

n-ROPdetector 570.01
Our method 524.32

5.2.4. Effectiveness of Interpreter

To further demonstrate the necessity and effectiveness of interpreter module in Horus
framework, we perform statistical analysis and the details are shown in Table 5.

Table 5. Performance of interpreter.

Type Samples
Interpreted

Gadgets
Interpreted

Gadgets
Correctly

Interpreted

Samples with
Helpful

Interpreted

Portion 0.8917 0.6728 0.9630 0.8113

In our experiment, the detection module presented 2531 suspicious samples with
precisely windowed bytes, including 2475 true positives and 56 false positives. The inter-
preter module works on the suspicious bytes to produce interpretations. Of true positive
samples, our interpreter module successfully generated interpretations on 2207 samples,
namely a portion of 89.17%. Since the interpretation is preliminary and partial, over all
the gadgets, only 67.28% were tentatively interpreted, and 96.30% of them were correctly
interpreted. One important reason of misinterpretation is that those code-reuse exploits
extensively rely on some private binaries or third-party libraries, which are out of the scope



Electronics 2022, 11, 3363 21 of 27

of our corpus. In general, the exploits are promising to be interpreted correctly if they are
crafted based on common libraries. Overall, our interpreter module provided corrected
interpretation on 2008 samples out of all true positives, which proves the validity. The
average overhead of the interpreter module is 1.5% based on massive experiments, which
indicated the efficiency of our interpreter module.

5.3. Ablation Studies

We conducted ablation studies to understand the effectiveness of several core tech-
niques in our approach and the influence from properties of code-reuse exploits. In
particular, our experiments mainly focus on answering the five research questions:

• RQ1: Impact of applying time-series or frequency-domain features alone on detection
performance and whether the fusion of time-series and frequency-domain features
can achieve better performance.

• RQ2: Impact of applying different backend classification algorithms and why we
choose LightGBM as core classification algorithm.

• RQ3: Impact of applying data augmentation on detection performance and the sepa-
rate effectiveness of different augmentation strategies.

• RQ4: Impact of different sampling window size, and the optimal selection in our
experiment.

• RQ5: Detection capability of our method, and the impact of payload length on detec-
tion performance.

5.3.1. RQ1: Time-Series Features versus Frequency-Domain Features

To evaluate the effect of time-series and frequency-domain features on detection
performance, we trained our model in different feature fields. Then we repeated the test
phase and list the performance identifiers in Table 6.

It is demonstrated that the model on collaborative time-frequency features can bring
better performance, and our results can provide sufficient proofs to confirm the comple-
mentarity of time-series and frequency-domain features.

Table 6. Comparisons of different feature selection strategies.

Feature ACC PRE REC F1 FAR

Time-series 0.9522 0.9333 0.9740 0.9532 0.0696
Frequency-domain 0.9628 0.9699 0.9552 0.9625 0.0296

Both 0.9838 0.9779 0.9900 0.9839 0.0224

5.3.2. RQ2: Impact of Classifier Selection

In order to gain more insight into the impacts of classifier model, we performed the
experiments with different backend model, and the results are shown in Table 7. Compared
to Naive Bayes, SVM, and Decision Tree, ensemble models such as lightGBM integrate
the output of multiple weak classifiers, which can significantly increase the performance.
Compared to Random Forest and XGBoost, lightGBM produces much more complex trees
to achieve higher accuracy. Due to the usage of dropout, the performance of DART is
slightly weaker than GBDT. Above all, the results indicate that lightGBM (GBDT) is the
best model for our needs.



Electronics 2022, 11, 3363 22 of 27

Table 7. Comparisons of different backend classifier algorithms.

Method ACC PRE REC F1 FAR

Naive Bayes 0.9414 0.9434 0.9392 0.9413 0.0564
SVM 0.9602 0.9611 0.9592 0.9602 0.0388

Decision Tree 0.9580 0.9558 0.9604 0.9581 0.0444
Random Forest 0.9796 0.9720 0.9876 0.9798 0.0284

XGBoost 0.9816 0.9770 0.9864 0.9817 0.0232
lightgbm(DART) 0.9822 0.9759 0.9888 0.9823 0.0244
lightgbm(GBDT) 0.9838 0.9779 0.9900 0.9839 0.0224

5.3.3. RQ3: Impact of Data Augmentation

To enable a performance comparison between different data augmentation operations
and verify the effectiveness of data augmentation, we conducted extensive experiments
and recorded the respective results as in Table 8.

Table 8. Comparisons of different data augmentation(DA) operations.

Augmentation Strategies ACC PRE REC F1 FAR

Without DA 0.9408 0.9498 0.9308 0.9402 0.0492
SR only 0.9552 0.9611 0.9488 0.9549 0.0384
RI only 0.9468 0.9555 0.9372 0.9463 0.0436
RT only 0.9668 0.9683 0.9652 0.9667 0.0316
SR + RI 0.9624 0.9650 0.9596 0.9623 0.0348
SR + RT 0.9778 0.9731 0.9828 0.9779 0.0272
RI + RT 0.9718 0.9712 0.9724 0.9718 0.0288

SR + RI + RT 0.9838 0.9779 0.9900 0.9839 0.0224

As can be seen in Table 8, out of the three operations, Rephrasing Transform(RT) can
provide the largest improvement. It means that Rephrasing Transform(RT) can provide
bigger discrepancies from original samples to enlarge the diversity, and if we combine
multiple operations, the performance will rise due to the production of more complex
variants. When combining all three operations, we obtain the best performance as expected.
Therefore, in our framework, we combine all the three operations during training.

5.3.4. RQ4: Window Size Selection

One of the primary influence factor on the detection performance is the size of sam-
pling window. In this part, we explore the influence of different sizes to obtain the optimal
window size. We focus on the varying curve of two identical indicators: ACC and FAR. We
recorded the ACC and FAR under different window sizes and plot two curves to depict the
trends in Figure 9.

Considering the memory organization of modern computer system, we set the window
sizes in power of 2. It can be observed from Figure 9 that DR increases gradually from 32 to
512, meanwhile FAR decreases monotonically. When the window size exceeds 512, DR
and FAR deteriorate along with the continual increase of window size. The results show
that the best window size is 512 to reach the best DR and FAR under our experimental
configuration. The curves indicate that when the window size is under a certain threshold,
smaller windows are prone to be influenced by local noises or truncations. When the
window size surpasses a certain threshold, the ACC and FAR also decrease because of the
degradation of signal-to -noise ratio along with the increase of window size.
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Figure 9. Performance on different window sizes.

5.3.5. RQ5: Detection Capability

To better understand the detection capability of Horus, we take a closer inspection on
the performance of Horus on different samples. Although there are many factors that affect
detection performance, a more general measurement is payload length. Concretely, we
take an exploration on the influence of payload length on detection performance of Horus.
We focus on the Recall(or namely detection rate) of different length ranges of code-reuse
payloads. Within the experiments, all other configurations are set by default. Recalls on
different payload length are depicted in Figure 10.
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Figure 10. Detection capability on payloads of different lengths.

In the experiments, we utilize the relative length (ratio to window) to express the
payload length. According to the relative length, we split the lengths into ten groups
with respective bars. The results in Figure 10 reveal that when handling samples with a
payload of 40–50% window size, we can obtain the best detection performance. When
we deal with samples with short payloads, the background noise will bring a significant
negative influence. On the other hand, once the relative length increases by over 50%, it
means that truncation occurs. Although the noise bytes are largely eliminated, truncation
also damages the integrity of the structure of a code-reuse payload and causes loss of
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some critical features. Under actual conditions, the relative lengths of the payload are an
important factor that affects the detection capability of our Horus framework.

6. Discussion

In this section, we first summarize the experimental results. Then we clarify the
strengths and limitations in our proposed Horus which indicate possible future research
directions.

The presented study confirmed the findings about how to enhance the effectiveness
and reliability of code-reuse exploits detection. Due to the lack of publicly available data,
we make efforts to collect real-world samples to build a comprehensive dataset shown
in Table 1. Then we conduct comparative experiments with some baseline approaches
under constructed dataset and the same experiment(see Table 2). The prominent detection
performance is elaborately clarified in Table 3 to support the effectiveness of our design.
Meanwhile, through stimulated experiments, we demonstrate the competitive throughput
of our framework in Table 4. Next, we calculate the accuracy of proposed corpus-based in-
terpreter. As shown in Table 5, of the gadgets can be correctly translated, and of samples can
be generated interpretation. Ablation studies are further presented to provide exploration
on influencing factors of performance and emphasize the effectiveness of model design
and data augmentation strategies. Based on the experiments and analysis, the effectiveness
and reliability can be proved. Moreover, we can clarify it a promisingly realistic solution
can be integrated into real-world defense systems.

Compared to previous solutions, we have a deeper investigation on the value charac-
teristics of code-reuse exploits. Horus works on the data stream irrespective of the target
program. In our framework, not only the detection results will be output, but also the
corresponding explanations used as supporting information. The feature of “decision with
interpretation” helps to mitigate the influence of a black-box problem widely existed in
learning-based systems, work as a trail to bridge the gap between statistical and determin-
istic strategies. Moreover, the application of data augmentation help to solve the diversity
problem in current methods, and further raise the effectiveness of Horus, especially on
unseen patterns. In addition, Horus can be easily deployed on the network edge or applied
as NIDS without the requirement of dynamic execution.

However, Horus still has some limitations, which designates the direction of future
improvement. One basic assumption of our framework is that the code-reuse payloads
remain visible when transmitted over steaming data. That means the dynamically gener-
ated code-reuse payloads and obfuscated or encrypted payloads cannot be recognized by
Horus. Especially, the encryption problem has been a main handicap for nowadays deep
packet inspection systems. To tackle this challenge, an extra module such as BlindBox [48]
or BlindIDS [49] might be employed for frontend process to recover encrypted traffic to
plain text. Notice that our framework uses value characteristic of consecutive bytes as
the theoretic basis. When encountered with exploits using extremely short gadget chains,
Horus might be invalidated. Furthermore, the size of sampling window is still an inevitable
influencing factor. As discussed in RQ4 and RQ5, the selection of window sizes is a trade-off
problem under different conditions.

7. Conclusions

In this paper, we develop Horus, a real-time framework that enables effective and
reliable detection on code-reuse exploits hidden in the data stream. We take a deep inves-
tigation on the value characteristics of code-reuse exploits to carry out the basic idea of
the Horus framework. Unlike traditional defense systems, Horus focuses on end-to-end
detection (as a service) rather than built-in prevention on end-user systems. Horus stati-
cally examines every packet transmitted over network traffic without any prior knowledge,
output suspicious packets with tentative interpretations based on corpus-based interpreter.
Concretely, Horus utilizes collaborative analysis with data augmentation on both time
series and frequency domain to enhance the detection performance. Experiments show
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that Horus can achieve an outstanding performance with a competitive throughput for
real-world application. Horus not only reveals the presence of a code-reuse payload, but
also recovers the possible attack semantics as auxiliary for further forensics. Our research
provides a promising design to shed light on the interpretability and verifiability dilemma
of a data-driven method. Due to the portability of Horus, it can work on the network edge
alone or be integrated into an existing defense system.

Promising extensions of the present study are divided into three major aspects. We first
plan to employ an adaptive window in order to accelerate the sampling process. By using
an adaptive window to substitute for the fixed-length window, we can reduce the sampling
times and help to better focus on suspicious data segments. Secondly, we intend to enrich
the data augmentation strategies for further extend the diversity of training data. In Horus,
we adopt some mutation-based operations and explore the performance, respectively. We
will incorporate generation-based methods to produce more candidate data. Moreover, we
will continually explore feasible strategies to extend the capacity of Horus to adapt to the
obfuscated or encrypted payloads.
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