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Abstract: Many-to-many data aggregation has become an indispensable technique to realize the
simultaneous executions of multiple applications with less data traffic load and less energy con-
sumption in a multi-channel WSN (wireless sensor network). The problem of how to efficiently
allocate time slot and channel for each node is one of the most critical problems for many-to-many
data aggregation in multi-channel WSNs, and this problem can be solved with the new distributed
scheduling method without communication conflict outlined in this paper. The many-to-many data
aggregation scheduling process is abstracted as a decentralized partially observable Markov decision
model in a multi-agent system. In the case of embedding cooperative multi-agent learning technology,
sensor nodes with group observability work in a distributed manner. These nodes cooperated and
exploit local feedback information to automatically learn the optimal scheduling strategy, then select
the best time slot and channel for wireless communication. Simulation results show that the new
scheduling method has advantages in performance when comparing with the existing methods.

Keywords: many-to-many data aggregation scheduling; multi-channel WSN; decentralized partially
observable Markov decision; multi-agent learning

1. Introduction

A WSN (wireless sensor network) is one of the most important technical means to
realize IOT (Internet of Things) systems, and now it is widely applied in agriculture,
industry, medical, military and other fields [1,2]. With the rapid development of technology,
the capability of WSN hardware and software are apparently enhanced, making it possible
to run machine-learning-based programs on sensor nodes [3]. Meanwhile, the demand
and feasibility of deploying multiple different application tasks inside a single WSN are
increased as well. In such application scenarios, multiple sinks are usually deployed in
a network, and sensor data of interest are concurrently collected from multiple sources.
For example, a HVAC (heating, ventilation, and air conditioning) system is a potential
application of multi-source multi-sink WSN [4]. The data collected by a certain temperature
sensor may be simultaneously delivered to multiple sink nodes (heaters, air conditioning
controllers), and a single sink node will possibly be interested in data from multiple source
nodes. The rise in edge computing has also created the demand for multiple sink nodes [5].
Many tasks, such as control, calculation, and storage, are migrated to the edge nodes closer
to local devices in network, and this behaviour helps to lighten the burden on the cloud [6].

The most common performance expectation of wireless communication in WSNs can
be summarized as conflict-free, low latency and energy consumption [7,8]. Inspired by
the fact that the energy consumption of sensor calculation is lower than the energy con-
sumption of wireless communication, researchers have utilized data aggregation to reduce
the amount of data and the number of transmissions; this technique is helpful for achiev-
ing the performance expectations [9]. In order to support multiple sinks simultaneously
collecting data with less data traffic load and less energy consumption, many-to-many

Electronics 2022, 11, 3356. https://doi.org/10.3390/electronics11203356 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203356
https://doi.org/10.3390/electronics11203356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6241-8718
https://doi.org/10.3390/electronics11203356
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203356?type=check_update&version=1


Electronics 2022, 11, 3356 2 of 23

data aggregation (or multi-sink data aggregation) has been developed and adopted in
WSNs [10,11]. In addition, the emergence of multi-channel technology can help sensor
nodes switch between different wireless channels to avoid wireless communication interfer-
ence, and further improve network performance [12]. As one of the most critical problems
for many-to-many data aggregation, the problem of how to efficiently allocate a time slot
and channel for each node should be solved.

TDMA (time division multiple access), as a common non-competition technology,
is widely applied to implement medium-access control in WSN data-collection appli-
cations [13,14]. TDMA enables conflict-free wireless communication, and it has good
performance for prolonging the network lifetime [15,16]. By inheriting the core concept of
TDMA, both time and channel can be viewed as communication scheduling resources to be
allocated for sensor nodes. Communication period or data collection period is divided into
a certain number of time slots with the exact same time length, where the specified nodes
can perform wireless communication. The number of available wireless channels is deter-
mined by the adopted sensor device and application requirement. The research problem
of this paper is how to allocate a respective time slot and wireless channel for each node
and construct conflict-free many-to-many data aggregation scheduling for a multi-channel
WSN. A cooperative multi-agent learning-based scheduling method is proposed in this
paper; the main contributions can be summarized as follows:

• Multi-channel WSN environment has been, firstly, introduced into the research of
many-to-many data aggregation scheduling up to now. The characteristics of this new
type of scenario are sufficiently considered in this paper, such as that an intermediate
node is probably assigned to multiple transmission times, and some communication
conflicts can be avoided by switching channel.

• The scheduling process of many-to-many data aggregation in a multi-channel WSN is
formulated to decentralized, partially observable Markov decision process, as a result
of summarizing its distinguishing features of wireless communication. A multi-agent
is viewed as the nodes participating in wireless communication, and the system state
cannot be accurately obtained by agents.

• Cooperative multi-agent learning is introduced to implement a new distributed
scheduling method. Thanks to the property of group observability, a group of sensor
nodes within one hop can attempt different behaviours and receive corresponding
feedback. After accumulating adequate experience, sensor nodes learn the best action
strategy and select the most efficient time slot and channel for wireless communication.

For understanding the proposed new method further, it is necessary to clarify the mu-
tual relationships among these mentioned technical terms. The function of data aggregation
scheduling is to allocate the time slot and channel resources to sensor nodes, where data
aggregation as the data-processing operation is applied on the sensor nodes to reduce data
traffic during data transmission. Multi-agent learning is an intelligent algorithm running
on sensors to help sensors learn the best scheduling policy and exploit the most efficient
time slot and channel.

The rest of the paper is organized as follows: Section 2 compares and analyses the
shortcomings of the existing research. Section 3 introduces the concerned system model
and illustrates the problems which are aimed to be solved in this paper. Section 4 explains
the principle and components of the proposed many-to-many data aggregation scheduling
method for a multi-channel WSN. Section 5 displays the simulation platform and analyses
the simulation result in order to prove the high performance of the proposed policy. Finally,
Section 6 concludes the current work. The abbreviations of the utilized technical terms are
listed in the Appendix A.

2. Related Works

Existing data aggregation scheduling methods mainly focus on traditional WSN with
exclusive wireless channel and many-to-one communication modes [12,17]. Generally
speaking, there are two types of existing scheduling methods in WSN. The centralized-
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computing-based methods are normally operated on a sink node or a base station, which
collects the global network information and computes the scheduling result with good
performance [18]. The distributed-based methods are lightweight and deployed on sensor
nodes [19]; the scheduling result is computed by the cooperation of many nodes with
local information.

S. Kumar et al. propose the multi-channel TDMA scheduling algorithm with the
objective of minimizing the total energy consumption in the network [20]. In order to alle-
viate collisions and support concurrent communications, multiple RF channels are utilized.
The proposed heuristic algorithms offer computationally efficient scheduling operation,
although they provide sub-optimum schedules for data gathering. J. Ma et al. study the
continuous link scheduling problem in WSN [21], in which each node is assigned continu-
ous time slots, so that the node can only wake up once in a scheduling cycle to complete its
data-collection task. Many-to-many communication scheduling problems for battery-free
WSN were firstly concerned by B. Yao et al., where energy bottlenecks were analysed, and
an energy-adaptive and bottleneck-aware scheduling algorithm was proposed as well [22].
Bagaa et al. proposed a cross-layer trusted data aggregation scheduling method for a multi-
channel WSN [23]. This method constructs k disjoint paths for each source node to the sink
node based on the aggregation tree at first, and then finds a conflict-free communication
schedule according to a routing structure. Jiao et al. firstly proved that the data aggregation
scheduling problem for multi-channel duty cycle wireless sensor networks is NP-hard [24];
this research adopts the candidate-activity conflict and feasible-activity conflict graph to
describe the node scheduling relationship, and, finally, used the coloring method to achieve
efficient scheduling. Nevertheless, there are several common premises to achieve data
aggregation scheduling using these centralized computing methods. First of all, a certain
powerful base station has to take responsibility to collect global network information and
compute a good scheduling plan. Once a network structure has undergone any change,
global network information must be collected again, and a scheduling algorithm has to
be re-executed. Moreover, the time of all the network nodes must be synchronized with
high precision in advance. It is difficult to meet such requirements in large-scale wireless
sensor networks.

A few researchers have designed distributed data aggregation scheduling method for
multi-channel WSNs. B. Kang et al. [19] developed a distributed delay effective schedul-
ing method to solve the problem of time slot scheduling in duty cycle wireless sensor
networks. This method makes full use of duty cycle technology to appropriately turn off
node communication and sensing capabilities. The active time of nodes is significantly
reduced, and the lifetime of the network is apparently extended. Y. Lu et al. integrates
an independent Q learning technique into the exploring process of an adaptive time slot
scheduling for many-to-one application; the scheduling gradually approaches the optimal
result along with the execution of frames [25]. A cluster-based distributed data aggregation
scheduling algorithm with multi-power and multi-channel is proposed by Ren M. et al.
in [26], which puts network nodes into multiple clusters, and uses different power levels
for inner cluster communications and the communications among cluster heads separately.
Moreover, communication latency caused by conflicts is reduced a lot due to the alloca-
tions of multiple channels. In order to minimize the time slot length of multi-channel
wireless multi-hop wireless sensor networks, Lee et al. propose a conflict-free TDMA link
scheduling method [27], using min–max to optimize the time-slot length, and minimize
the end-to-end delay using a sorting algorithm. Nevertheless, these scheduling methods
are designed for the communication pattern with a single sink, and they cannot be directly
applied for many-to-many communication. Yu B. et al. consider the minimum-time aggre-
gation scheduling problem in multi-sink sensor networks to support many-to-many data
aggregation for the first time [28], where the bounds of the aggregation time are analyzed
by a theoretical model, and they propose a nearly constant approximation algorithm to
solve the aforementioned problem. Saginbekov S. et al. [10] designs a time-slot scheduling
method with data aggregation for two sink nodes, but they do not discuss the feasibil-
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ity and performance of their method for the scenarios with more sinks. Meanwhile, the
multi-channel environment is not taken into account in this research.

In conclusion, there has been no existing work that directly researches many-to-many
data aggregation scheduling methods for multi-channel WSN until now; in particular,
the scheduling method needs to be implemented in a distributed manner to support a
dynamic and extensible network environment.

3. System Model And Problem Statement
3.1. System Model

A WSN can be abstracted as a graph G
(

V,~L
)

where V and~L denote the set of sensor
nodes and the set of communication links (edges), respectively. Sensor nodes use a half-
duplex transmission mode, where one node cannot perform data transmission and data
reception at the same time. If any pair of nodes vi ∈ V and vj ∈ V are located within the
wireless communication range of each other, both links~li,j ∈ ~L and~lj,i ∈ ~L exist in network.
The nodes located in the wireless communication range of vi are called called neighbors
ngh(vi). There are |CH| available wireless channels, and chk denotes the kth channel. For
simplicity, the protocol interference model is adopted in this system, the communication
radius rcm and the interference radius rit of each sensor node are set to the same value.
Some sensors cannot transmit data simultaneously within the same wireless channel on
account of communication conflicts. The utilized notations and variables are listed in
Appendix B.

Sensing data produced on each source node is delivered to a set of sink or destina-
tion nodes; meanwhile, a sink node di expects to collect the data from a set of source
nodes. For example, sink node d1 expects to collect sensing data from a set of source nodes
d1 = {v1, v2, v3} in Figure 1. Intermediate nodes between source and sink nodes are going
to perform data aggregation and forward the processed result. The communication period
is defined as a frame TSc, which consists of a fixed number of time slots ts. The funda-
mental task of the scheduling method is to allocate a time slot and wireless channel for
each node without a communication conflict in order to maximize network performance.
In this scenario, two kinds of potential conflict may appear in a network. The first one is
direct conflict, where two or more links which possess at least one exact same terminal are
allocated for the same time slot, and this overlapping terminal cannot concurrently handle
two or more communication tasks at the same time slot, so the communication conflict
appears. An example is depicted in Figure 2a,~li,k and~lj,k have the same receiving terminal
vk, the same allocated time slot ts1 will lead to the generation of communication conflict
on vk. Second one is indirect conflict: the receiving terminal of one link is located in the
interfering range of the transmitting terminal of another link, and both links are allocated
the same time slot and channel; then, the indirect communication conflict appears. An ex-
ample is depicted in Figure 2b, vk is located in the interference range of vi; once the same
timeslot ts1 and channel ch1 are allocated to both~li,h and~lj,k, an indirect communication
conflict happens on vk.

In each time slot, the links without any conflict could perform wireless communication
together. The links with the same time slot but also with the indirect conflicts could be
allocated for different wireless channels. Once a data packet is successfully transmitted to a
receiver, the corresponding transmitter is supposed to obtain an acknowledgement (ACK)
packet from this receiver inside the same time slot and channel. An example is shown in
Figure 1: Solid lines represent the links with data transmission. Dashed lines indicate the
links without data transmission, which is not the path of data routing. Links~l1,6 and~l4,8
without any conflict are allowed to be concurrently performed in the time slot ts1 and the
channel ch1.~l2,7 has to use the channel ch2 because it has indirect conflict with~l1,6, where
v7 is located in the interfering range of v1.
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Figure 1. Example of many-to-many data aggregation scheduling in WSN.

Figure 2. Example of communication conflicts.

3.2. Optimization Objective

Even though a WSN routing protocol is not the main research contents of this paper,
our system model requires that each node possesses local routing information before many-
to-many data aggregation scheduling. In order to maintain consistency with the scheduling
optimization objective, MUSTER as a classical distributed routing protocol for many-to-
many data aggregation is adopted in our model [29], so that a routing structure with less
transmission delay and less energy consumption can be constructed before allocating a
time slot and channel.

In this case, a node vi has the knowledge of its upstream US(vi) and downstream nodes
DS(vi) in the routing structure. Thanks to the property of the data aggregation function,
the data from multiple receiving packets towards the same sink could be combined into a
single data copy, such as v8 in Figure 1 which is able to combine the packets from v4 and
v5. In addition, the existence of multiple sinks probably makes one node take multiple
transmission operations, such as v9 having to transmit two packets to different next-hop
nodes. Figure 3 focuses on this data aggregation operation, where f (v2v3) represents the
aggregation results of source nodes v2 and v3. This node receives three input packets, then
performs a data aggregation function, and, finally, generates two aggregation results as
output packets f (v1v2v3) and f (v2v3v4v5) towards d1 and d2, respectively.

From the viewpoint of a global network, many-to-many data aggregation scheduling
for an entire network in a frame is set to allocate a time slot and channel for each link
with a data transmission task, and then the link-based scheduling set can be expressed as
LS = {~lsi,j, · · · } , which consists of the resource allocation sets ~lsi,j for each link, where |LS|
is equal to the number of links |L|. ~lsi,j = (~li,j, tsi,j, chi,j) denotes the resource allocation
set for the link ~li,j including the allocated time slot tsi,j and the allocated channel chi,j;
an example can be found in Figure 1, where ls1,6 = (~l1,6, ts1, ch1), ts1,6 = ts1 and ch1,6 = ch1.
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Figure 3. Example of many-to-many data aggregation scheduling on a node.

There is a specified time period in one frame which is called working window wd.
During wd, a sensor node maintains an active state to conduct wireless communication,
computation and other operations. wd is further divided into reception slice wdr and
transmission slice wdt. According to the feature of data aggregation, the current node switch
on the radio receiver during wdr, the data packets from upstream nodes are supposed to
be received from any wireless channel, and the aggregated result is obtained at the end of
wdr. After that, the current node starts to deliver the results to downstream nodes during
wdt. For a node vi, the length of wd is equal to |wdr|+ |wdt|, which is directly related to
the number of upstream and downstream nodes. |wdr| is set as |US(vi)|+ b|US(vi)|/2c,
where b|US(vi)|/2c is an additional amount to enhance the success rate of packet reception.
|wdt| is strictly equal to the number of downstream nodes DS(vi), and each time slot is
allowed to conduct one time of transmission. Besides working windows, the current node
remains in an inactive or sleep state and temporarily switches off power supply for primary
electronic units, this behavior helps to effectively save energy.

The allocation of many-to-many data aggregation for one node can be expressed
as a scheduling tuple with two parameters (wdt.end, CHu), where wdt.end denotes the
end of transmission slice and CHu denotes the channel usage set. Since the size of wd
is fixed, wdt.end as the last timeslot directly decides the location of wd in a frame, it is
also indicates which timeslots are used for reception or transmission. CHu is a channel
sequence {chi,j, · · · } to specify the channel for each transmission timeslot. Figure 3 depicts
an example of the scheduling operation on v9 of Figure 2, where the scheduling tuple is
(ts5, {ch1, ch1}).

Multiple optimization objectives of scheduling are considered in this paper, and these
objectives can be alternated according to the real-life application demand. For example,
if communication delay is decreased, residual energy of nodes should be increased. Let
ηk represent kth or the last objective function; then, the scheduling problem is expressed
as argmin

LS
{ϕ(η1(LS), · · · , ηk(LS))}, where ϕ denotes the overall objective function, RS

denotes the routing structure (set), and the solution should be subject to the following
constraints:

1. (LS− lsi,j) ∩ lsi,j = ∅, ∀~li,j ∈ RS
2. If ~li,j ∈ RS, ∀~li,m ∈ RS or~ln,j ∈ RS, then lsi,m.tsi,m 6= lsi,j.tsi,j or lsn,j.tsn,j 6= lsi,j.tsi,j

3. If ~li,j ∈ RS, ∀~li,m ∈ ~L and /∈ RS,~ln,m ∈ ~L, then lsi,j.tsi,j 6= lsn,m.tsn,m or lsi,j.chi,j 6=
lsn,m.chn,m

4. wdr.end(vi) < wdt. f irst(vi), ∀vi ∈ V
5. wdt.end(US(vi)) < wdt.end(vi) < wdt.end(DS(vi)), ∀vi ∈ V

The first constraint requires that communication on each link can only be performed
once, so the allocation of the slot and channel for one link lsi,j is unique. The second
constraint indicates the avoidance of direct interference; when a certain link~li,j activates
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communication, then any link with the same terminals cannot perform communication in
the same time slot. The third constraint indicates the avoidance of indirect interference:
the links with interference cannot share the same time slot or the same channel. The fourth
constraint is generated from the principle of data aggregation, where an aggregated result
is supposed to be transmitted after receiving all expected data. The last constraint explains
that the transmission operation of the current node should be located between its down-
stream node and its upstream node. It is evident that the essence of the scheduling problem
is to find the best set of links that satisfies the optimization goals and constraints. This is a
typical combinatorial optimization problem that can be solved by reinforcement learning
methods [30]. Besides these constraints, transmission delay and energy consumption as
the optimization objectives of many-to-many data aggregation scheduling are selected in
this paper.

3.3. Decentralized Partially Observable Markov Decision Process

By summarizing the characteristics of many-to-many data aggregation scheduling for
a multi-channel WSN, it is not difficult to find a match between this scheduling process and
the decentralized partially observable Markov decision process (Dec-POMDP) [31]. Dec-
POMDP can be formulated as 〈I, S, A, P, R, Ω, O, b, T〉, which is a tuple and its components
are described as follows:

• I = {1, 2, ..., |V|} is the set of agents; one sensor node participating in communication
is viewed as one agent.

• S = S1 × S2 × ...S|V| is a finite set of system or joint states where~s = {s1, s2, ..s|V|},~s ∈
S, Si is the state set of the ith agent, which reflects whether the reception and transmis-
sion of packets on this node is successful, and this information cannot be accurately
acquired due to the environment of wireless communication.

• A = A1× A2× ...A|V| is a finite set of joint actions where~a =
{

a1, a2, ..a|V|
}

, a ∈ A, Ai

is the action set of the ith agent. The change in scheduling for time slot and channel is
realized by modifying the tuple mentioned before (wdt.end, CHu).

• P(~s′|~s,~a) is the transition function which denotes the probability of transitioning from
the state~s to the new state~s′ when taking the joint action~a.

• R(~s,~a) is the reward function which denotes the immediate reward when taking the
joint action~a at the state~s.

• Ω = Ω1 ×Ω2 × ..Ω|V| is a finite set of joint observations, Ωi is the individual observa-
tion set of the ith agent, where a joint observation is ~ω = {ω1, ω2, ..., ω|V|}, ~ω ∈ Ω. One
observation ωi contains the size and number information of the successfully received
and transmitted packets, and this information is part of the acknowledgement packet.

• O(~ω′|~s′,~a) is the observation function which denotes the probability of observing ~ω′

when the system state transfers to~s by taking the joint action~a. Due to the wireless
communication environment, the observation result may not truly reflect the system
state, because the reception of ACK cannot ensure no error is contained in transmission
data; meanwhile, not receiving ACK also cannot determine whether the receiving
node did not obtain data.

• b = b1× b2× · · · b|V| is the initial system state distribution (also called the initial belief),
for the system state~s, b(~s) = ∏i∈I) bi(si), where bi is the initial state distribution over
Si.

• T is the finite horizon or the number of time steps in which an agent can interact with
Dec-POMDP model.

In a specific system state~st at time step t, a joint observation ~ωt can be generated.
Each agent obtains its individual observation ωt

i , and selects its individual action at
i which

is a component of a joint action ~at. After taking action, the system transitions to the
next state~st+1, and each agent obtains its immediate reward r. The action-observation
history of the ith agent is denoted as Φt

i = (ω0
i , a0

i , ω1
i , a1

i , ..., at−1
i , ωt

i ), so the joint action-

observation history is denoted as ~Φt =
〈

Φt
1, Φt

2, ..., Φt
|V|

〉
. Agent policy uses history to
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decide actions, which is denoted as πi : Φi → Ai, and a joint policy π =
〈

π1, π2, ..., π|V|

〉
is the combination of all individual policies. The final goal of solving Dec-POMDP is to
discover an optimal joint policy in order to maximize the expected accumulated discounted
reward; the state value function Vπ(~s) of a joint policy π from state~s is defined as follows:

Vπ(~s) = E

[
h−1

∑
t=0

γtR(~st,~at)|~s, π

]
(1)

where γ is the discounted factor to decide the importance or weight of the future rewards,
and if γ = 0, then only the current reward is considered in the value function. To obtain
such a policy, the reinforcement-learning algorithm normally evaluates an action quality by
Q-function or Q-value function Q(~st,~at), which is denoted as follows:

Q(~st,~at) =R(~st,~at)+

max
π

∑
~st+1

P(~st+1|~st,~at)Vπ(~st+1) (2)

However, it is impossible to let agents obtain accurate system state ~s, so the basic
edition of Q-learning cannot be directly applied for Dec-POMDP. In this case, the action-
observation history is applied to replace the system state, and the updated rule of Q-value
can be denoted as follows:

Q(~Φt,~at) =(1− α)Q(~Φt,~at)+

α[R(~Φt,~at) + γmax
~a∈A

Q(~Φt+1,~a)]
(3)

where α is the learning rate to control the updating speed of the Q-value. The optimal
policy can be found to make the action decision on agents, which can be expressed as
follows:

π∗(~Φ) = argmax
~a∈A

Q(~Φ,~a) (4)

4. Many-to-Many Data Aggregation Scheduling Based on Multi-Agent Learning
4.1. Group Cooperation

Regardless of the discovery of the optimal scheduling set or the optimal action policy
for slot and channel allocation, the global information of the entire WSN is a common
prerequisite. However, to acquire global information is almost impossible in such a dy-
namic network environment; meanwhile, the spaces of action, observation, and policy
are exponential in the number of agents. One feasible method is distributed independent
learning, in which agents only utilize their own observations and rewards, and ignore other
agents’ information. However, without considering the cooperation of agents, this type of
method cannot ensure the quality of the solution; thus, probably performing the scheduling
with inferior performance.

To address the mentioned issues further, the core idea of a multi-agent learning with
group observability for Dec-POMDP in [32] can be exploited for designing an efficient
many-to-many data aggregation scheduling method. By building a number of agent groups,
it is possible to split the global function into the group functions. Due to the existence
of a WSN routing structure, a group can be naturally constructed by the nodes within
one hop. The downstream node for data transmission is automatically selected as group
head, when there are multiple downstream nodes; only the node with the largest identity
number is recognized as group head for a current node. Meanwhile, the upstream nodes
are group members, which are supposed to transmit their own observations to the group
head. An example can be found in Figure 4. This method distributes the learning tasks
by utilizing the interactions inside the routing structure RS, and it makes the learning
agents cooperate in order to ensure the global performance, and its feasibility is proved by
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Theorem 1 in Section 4.5. A decomposable Q-function Q̄(~Φt,~at) is designed to represent
the global Q-function Q(~Φt,~at), and the former can be defined as the sum of the group
Q-function:

Q̄(~Φt,~at) = ∑
g∈RS

Qg(~Φt
g,~at

g) (5)

where Qg(~Φt
g,~at

g) is the expected rewards for a group of agents after performing a joint
group action~at

g with a group history ~Φt
g. The relationship between Q̄(~Φt,~at) and Q(~Φt,~at)

is proved by Lemma 2 in Section 4.5. The update rule of the Q-function in Equation (3) can
be rewritten as follows:

∑
g∈RS

Qg(~Φt
g,~at

g) = (1− α) ∑
g∈RS

Qg(~Φt
g,~at

g)+

α[ ∑
g∈RS

R(~Φt
g,~at

g) + γmax
~a∈A

Q̄(~Φt+1,~a)]
(6)

Figure 4. Example of group cooperation.

As the discounted future reward, even though global information cannot be directly
obtained to compute max

~a∈A
Q̄(~Φt+1,~a), the latter can be expressed by decomposing the

optimal joint action~a∗ = argmax
~a∈A

Q̄(~Φ,~a), where~a∗ =
⋃

g∈RS~a∗g; finally, max
~a∈A

Q̄(~Φt+1,~a) can

be rewritten as follows:

max
~a∈A

Q̄(~Φt+1,~a) = Q̄(~Φt+1,~a∗) = ∑
g∈RS

Qg(~Φt+1
g ,~a∗g) (7)

Benefiting from the decomposition, the update rule of group Q-function can be formu-
lated as follows:

Qg(~Φt
g,~at

g) =(1− α)Qg(~Φt
g,~at

g)+

α[R(~Φt
g,~at

g) + γQg(~Φt+1
g ,~a∗g)]

(8)

During the learning process of an agent group g at time step t, after taking the joint
action~at

g, group members transmit their own observations to the group head, and then
the group head receives its group reward signal R(~Φt

g,~at
g). After updating the action-

observation history ~Φt+1
g , the group head computes the next optimal action~a∗g for ~Φt+1

g
using the distributed constraint optimization (DCOP) technology in [33], and then it
distributes the next action to group members, which may execute~a∗g or explore actions.
In this way, the global Q-function is decomposed into multiple local Q-functions on group
heads. The selection of a group action is computed in a distributed manner with local
group information.
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4.2. Reward Function

The scheduling optimization for the objectives and constraints in Section 3.2 can be
embodied in the reward function. The total reward of a group can be considered as the
product of the rewards from group history and action, where R(~Φt

g,~at
g) = Rhs(~Φt

g)Rat(~at
g).

The reward from group history Rhs(~Φt
g) is affected by the numbers nr, nt and the size

mt of the successfully received and transmitted packets; this information is attached to
the ACK packet. In general, the more numbers with a larger size of successfully received
and transmitted packets are definitely helpful for reducing the energy consumption of
nodes; as the probability of packet re-transmission will be significantly decreased, fewer
conflicts will appear. sgn1(nr, nt) as an signum function is adopted to control the value of
Rhs(~Φt

g). If nr = US(vi) and nt = DS(vi), then sgn1(n) = 1; this means that the current
node receives all the expected packets from upstream nodes and all outgoing packets are
successfully transmitted to downstream nodes. Otherwise, not all the expected packets are
successfully received or transmitted; then, sgn1(nr, nt) = 0. Let us assume the maximum
packet capacity is mt

max, then Rhs(~Φt
g) can be defined as in the following equation.

Rhs(~Φ
t
g) = sgn1(nr, nt)

nr+nt

∏
i=1

(1 + ((mt
i)/(m

t
max))) (9)

The reward from group action Rat(~at
g) has impacting factors containing the number

of overlapped transmission time slots, and the position of the last transmission time slot.
The first factor is a strict constraint to avoid communication conflicts in a group, and it
directly decides whether a reward value is positive or not. The second factor is a typical
index for communication delay; if this value is smaller, then a group has a higher chance of
achieving a smaller communication delay. Finally, according to the previous definition of
transmission window wdt, the reward from a group action can be defined as follows:

Rat(~at
g) = sgn2(

∣∣∣∣∣ ⋂vi∈g
wdt(vi)

∣∣∣∣∣) ∑
vi∈g

e(1/((wdt .end(vi)) (10)

where
⋂

vi∈g wdt(vi) denotes the intersection of the time slot set of a transmission
window on each group member, and sgn2 is another signum function. If

⋂
vi∈g wdt(vi) is

empty, it means that the transmitting nodes has no overlapping time slot; then, the reward
value is positive where sng2 = 1. Otherwise, a communication conflict appears, the reward
becomes a punishment and its value should be negative where sng2 = −1. wdt.end(vi)
indicates the final transmission delay on the current node, and its value is expected to
decrease.

4.3. Action Policy

The capability of random exploration of reinforcement learning should be maintained;
then, the scheduling method has some probability to choose a random action instead of
the optimal action. To match the convergent characteristic of learning, even though the
random exploring range is normally required to be large at the earlier stages of learning,
the random action probability should be decreased along with an increase in time steps.
By making the parameter of the classic ε− greedy policy alterable, the mentioned goal can
be achieved. The adopted alterable parameter of selection probability ε̂t is correlated to the
time steps t, which can be denoted as follows:

ε̂t =
1

σ(1 + et)
(11)

where σ is a shrinking factor, and, along with the increase in time steps, the probability of
random action become very little.
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4.4. Many-to-Many Data Aggregation Scheduling Procedure

Algorithm 1 illustrates the execution process of the many-to-many data aggregation
method. Horizon T, which controls the end of time steps, is a limited number. At the
beginning of one frame, the current node executes at

i or a random action to set the many-to-
many data aggregation scheduling set on line 2. During the working window, if the current
time slot is a reception time slot, then a packet is going to be received. On line 5-6, a group
action ~a∗g to group members is received; then, the individual action at

i can be extracted
from~a∗g. On line 9-18, if an individual observation ωt

i to a group head is received, then the
information is stored. Once a group head has received all observations from its members,
group observations ~ωt

g are subsequently constructed from memory; then, the group reward
R(~Φt

g,~at
g) can be obtained from the local environment, and the group history ~Φt+1

g can be
updated. The next optimal group action~a∗g can be computed by using DCOP, and the group
Q-value is also updated. After that, ~a∗g is attached to ACK and transmitted to all group
members. On line 19–25, if the current time slot is a transmission time slot, data packets are
supposed to be transmitted to all downstream nodes. When vj is the last downstream node
in DS(vi), individual observation ωt

i is obtained and attached to the data packet. Finally,
the data packet is delivered to vj.

Algorithm 1 Many-to-many data aggregation scheduling procedure.

1: for step t = 1 to T on agent vi do
2: executes at

i or random action based on Equation (11);
3: for timeslot ts = 1 to TSc do
4: if ts ∈ wdr then
5: if vi receives~a∗g then
6: decompose~a∗g to individual action at

i ;
7: else if vi receives ωt

j then
8: store ωt

j into memory;
9: if all observations are received from group members then

10: construct group observations ωt
g;

11: obtain group reward R(~Φt
g,~at

g) based on Equation (9) and (10);
12: update group history ~Φt+1

g ;
13: compute optimal action~a∗g based on DCOP;
14: update group Q-value Qg(~Φt

g,~at
g) based on Equation (8);

15: attach~at
g on ACK and transmit ACK to group members;

16: end if
17: end if
18: end if
19: if ts ∈ wdt then
20: for vj ∈ DS(vi) do
21: DS(vi)← DS(vi)− vj;
22: if DS(vi) == ∅ then
23: obtain individual observation ωt

i and attach on data packet;
24: end if
25: transmit data packet to vj;
26: end for
27: end if
28: end for
29: end for

4.5. Theoretical Analysis

The time and space complexity of reinforcement-learning-based algorithms has already
been discussed in [34]. The difference in our method is the group cooperation among agents,
such as the selection of optimal group actions based on DCOP. In this case, the number of
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group members is an indispensable impact factor for the complexity. The upper bound
of time complexity on each agent can be expressed as O(t|g|), where t denotes the total
number of time steps, and |g| denotes the number of group members, as mentioned before.
Correspondingly, the upper bound of the space complexity on each agent is expressed as
O(h|ω||a||g|), where h denotes the number of recent observation histories for selecting an
action, |ω| and |a| represent the size of observation and action, respectively, and both values
are fixed. According to the formulation of Dec-POMDP in Section 3.3, |ω| depends on the
number of transmitted packets, and |a| is decided by the fixed number of the involved
parameters. Thanks to the distributed nature, the overhead of computation and memory
are scattered; either the time complexity or the space complexity declines.

The theoretical feasibility of the proposed scheduling method is established only
in the case that the global Q-function Q(~Φt,~at) for a network system is the same as the
decomposable Q-function Q̄(~Φt,~at), and this condition has to be verified by theoretical
analysis. A global Q-function with system state variables Q(~st, ~Φt,~at) is considered, then
it is proved to be decomposable; after that, the result helps to prove the above condition.
For the convenience of expression, the probability of state and observation transition are
abbreviated as follows:

Pt
i = Pi(~st+1

i |~s
t
i ,~a

t
i)Oi(~ω

t+1
i |~st+1

i ,~at
i) (12)

According to the definition of the Bellman equation, Q(~st, ~Φt,~at) can be expressed
as follows:

Q(~st, ~Φt,~at) = R(~st,~at)+

γ ∑
~st+1,~Φt+1

Pt
1Pt

2 · · · Pt
|V|max

~a∈A
Q(~st+1, ~Φt+1,~a) (13)

where ~Φt+1 is the ~Φt appended by action ~at and observation ~ωt, max
~a∈A

Q(~st+1, ~Φt+1,~a))

actually denotes Q(~st+1, ~Φt+1,~a∗), and~a∗ is the global optimal joint action. For the time
step t, bt is the belief or distribution, which completely depends on the initial belief b and
history ~Φt; then, Q(~st, ~Φt,~at) transforms into the global Q-function without system state
Q(~Φt,~at):

Q(~Φt,~at) = ∑
~st∈S

bt(~st)Q(~st, ~Φt,~at) (14)

By utilizing the above principle, the group Q-function with group state is defined as
follows:

Qg(~st
g, ~Φt

g,~at
g) = R(~st

g,~at
g)+

γ ∑
~st+1

g ,~Φt+1
g

Pt
g1

Pt
g2
· · · Pt

|g| max
~ag∈Ag

Q(~st+1
g , ~Φt+1

g ,~ag) (15)

In this way, the group Q-function without group state is, subsequently, defined as
follows:

Qg(~Φt
g,~at

g) = ∑
~st

g∈Sg

bt
g(~s

t
g)Qg(~st

g, ~Φt
g,~at

g) (16)

Lemma 1. For any finite time step t in the Dec-POMDP model, the global Q-function with system
state Q(~st, ~Φt,~at) is decomposable and equal to ∑g∈RS Qg(~st

g, ~Φt
g,~at

g).

Proof. Mathematical induction is adopted to prove this lemma. Firstly, let us assume that
the following decomposition equation holds for the time step t + 1,

Q(~st+1, ~Φt+1,~at+1) = ∑
g∈RS

Qg(~st+1
g , ~Φt+1

g ,~at+1
g ) (17)
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After that, let us analyse whether the decomposition equation for the time step t still
holds; the derivation process is as follows:

Q(~st, ~Φt,~at)

= R(~st,~at)+

γ ∑
~st+1,~Φt+1

Pt
1Pt

2 · · · Pt
|V|max

~a
Q(~st+1, ~Φt+1,~a)

= ∑
g∈RS

R(~st
g,~at

g)+

γ ∑
~st+1,~Φt+1

Pt
1Pt

2 · · · Pt
|V|Q(~st+1, ~Φt+1,~a∗)

= ∑
g∈RS

R(~st
g,~at

g)+

γ ∑
~st+1,~Φt+1

Pt
1Pt

2 · · · Pt
|V| ∑

g∈RS
Qg(~st+1

g , ~Φt+1
g ,~a∗g)

= ∑
g∈RS
{R(~st

g,~at
g)+

γ ∑
~st+1,~Φt+1

Pt
g1

Pt
g2
· · · Pt

|g|Qg(~st+1
g , ~Φt+1

g ,~a∗g)}

= ∑
g∈RS

Qg(~st
g, ~Φt

g,~at
g)

(18)

Lemma 2. For any finite time step t in the Dec-POMDP model, the global Q-function without
system state Q(~Φt,~at) is decomposable and equal to ∑g∈RS Qg(~Φt

g,~at
g).

Proof. According to Lemma 1 and Equation (15) and (18), the derivation process is as
follows:

Q(~Φt,~at)

= ∑
~s∈S

bt(~s)Q(~st, ~Φt,~at)

= ∑
~s∈S

bt
1(s1)bt

2(s2) · · · bt
|V|(s|V|)Q(~st, ~Φt,~at)

= ∑
~s∈S

bt
1(~s1)bt

2(~s2) · · · bt
|V|(~s|V|) ∑

g∈RS
Qg(~st

g, ~Φt
g,~at

g)

= ∑
g∈RS

∑
~st

g∈Sg

bt
g(~s

t
g)Qg(~st

g, ~Φt
g,~at

g)

= ∑
g∈RS

Qg(~Φt
g,~at

g)

(19)

Theorem 1. In Dec-POMDP model, the optimal policy π∗(~Φ) will be found by the proposed
cooperative multi-agent learning method.

Proof. Based on the basic property of Q-learning and Equation (8), the group Q-function
without group state Qg(~Φg,~ag) will converge to the group optimal value Q∗g(~Φg,~ag). Ac-
cording to Lemma 2, the proposed cooperative multi-agent learning method will discover
the optimal value of global Q-function Q∗(~Φ,~a), which is decomposable and equal to
∑g∈RS Q∗g(~Φg,~ag). After that, the optimal policy π∗(~Φ) will be found according to the
following equation,



Electronics 2022, 11, 3356 14 of 23

π∗(~Φ) = argmax
~a∈A

Q(~Φ,~a) = argmax
~a∈A

∑
g∈RS

Q∗g(~Φg,~ag) (20)

5. Simulation Results and Performance Evaluation
5.1. Simulation Setting

To simulate the realistic wireless network environment and reserve the concurrent
execution characteristics of the distributed system, OMNeT++ is adopted to complete the
task of performance evaluation. The model of the sensor node is constructed using the
OSI model on this simulation platform, and the different functionalities of sensors are
implemented on the corresponding logic layers. A visualization example of this layered
sensor model is depicted in Figure 5a, where the “nic” layer contains both the physical
and data link layer. In this model, the many-to-many data aggregation scheduling method
is implemented as a MAC protocol. A periodic data collection event is implemented as
the network application, which helps to make data aggregation produce a significant
effect on data transmissions. The routing protocol at the network layer builds the routing
structure to determine the upstream and downstream relationship of nodes. Sensor nodes
are randomly deployed in simulation scenarios and the network always remains connected.
A visualization example of node deployment on OMNeT++ is depicted in Figure 5b,
where two sinks and 40 sources are located in a multi-channel WSN. By conducting a
sufficient number of priori tests, there are some recommended settings for important
system parameters. For example, α ∈[0.05, 0.2], γ ∈[0.1, 0.3], σ ∈[2, 8].

Figure 5. Visualization example of network model on OMNeT++

The proposed method in this paper is named MDS-ML (Many-to-many Data aggrega-
tion Scheduling based on Multi-agent Learning for multi-channel WSN). As comparison
targets of performance, three existing methods are selected. EESPG (Energy Efficient
Scheduling in wireless sensor networks for Periodic data Gathering) [20] as a typical
centralized method is adopted in simulation. Data Aggregation Scheduling method for
multi-channel Duty cycle WSN called DASD [24] is implemented to support many-to-many
communication mode, and it works in a centralized way. CDSM (Cluster-based distributed
Data aggregation Scheduling algorithm with Multi-power and multi-channel) [26] using
different transmission power and channels for intra-cluster and inter-cluster, respectively.

5.2. Performance Evaluation

The scheduling results are optimized using a multiple objectives function, such as
communication delay and residual energy. Since one node only performs the schedul-
ing operation once in one data collection period, the number of periods represents the
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number of time steps for a learning method. Figure 6 depicts the comparison results on
an average delay, where the scenarios with the different number of nodes are displayed,
and a tuple (source,sink) is used to denote the number of source nodes and sink nodes.
If the source nodes or sink nodes increase, the average transmission delay will increase
as well, because the network structure becomes more complex and the path of packet
transmission usually becomes longer. EESPG, DASD and CDSM have higher values of
average delay than MDS-ML. One possible reason is that these methods are originally
designed for many-to-one data aggregation, and they have to transform some components
to support many-to-many data aggregation. The gap between the compared methods and
MDS-ML become more obvious along with the increase in nodes. When there are 60 source
nodes and 4 sink nodes in the application scenario, MDS-ML has about a 36% lower delay
than the second best performing DASD.

Figure 6. Average delay with different number of nodes.

If more channels are available in network, all methods designed for a multi-channel
WSN can obtain a lower delay; the related result can be found in Figure 7. When a wireless
channel increases from 2 to 4, MDS-ML and EESPG decrease to 77% and 74% of their
original value, respectively.

Figure 7. Average delay with different number of channels.
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The impact of node number on the average residual energy is depicted in Figure 8.
When there are 20 source nodes in a network, MDS-ML and EESPG have a similar perfor-
mance; however, their difference becomes bigger along with the increase in source nodes.
Especially for the scenario with 60 sources and 4 sinks, MDS-ML keeps its energy value
about 22% higher than the value of EESPG. In addition, the increase in sink nodes has a
relatively limited impact on the energy value of MDS-ML.

Figure 8. Average residual energy with different number of nodes.

Figure 9 depicts the comparison result on average residual energy. DASD did not
consider the reduction in energy consumption as a primary optimization objective, so
it performs the worst among four methods, and its energy level drops quickly along
with an increase in time. CDSM utilized different power and channel for different kinds
of communication, but it also cannot obtain a satisfactory result due to its distributed
nature. MDS-ML is hardly affected by the change in the number of periods, and its energy
percentage is almost 1.5 times the energy percentage of DASD.

Figure 9. Average residual energy with different number of periods.

For the purpose of evaluating the comprehensive performance on multiple objectives,
the weighted sum with normalized objective value is adopted. The value of weighted sum
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is named a scheduling quality, which represents the quality of an optimized scheduling
result, and the comparison result on this metric with different numbers of nodes is depicted
in Figure 10. More nodes involved in data transmission generally means the scheduling
optimization becomes more complex, and it is harder to obtain a higher value of scheduling
quality.MDS-ML always holds the best scheduling quality when comparing with the other
three methods. In the scenario with 20 source nodes and 2 sink nodes, the quality of
MDS-ML becomes almost 1.1 times larger than the quality of EESPG and DASD. When the
number of sources and sinks become 60 and 4, the advantage increases to 1.5 times larger
than the quality of EESPG and DASD, at most.

Figure 10. Comparison of scheduling quality with different number of nodes.

Figure 11 indicates the advancement made by our proposed method by comparing the
scheduling quality with a different number of channels. CDSM always obtains the lowest
value of scheduling quality. EESPG and DASD have a similar overall performance. In the
scenario with four channels, the scheduling of MDS-ML is almost 1.4 times higher than
CDSM. The benefits of increasing channels on scheduling quality becomes very little when
the number of channels becomes 6.

Figure 11. Comparison of scheduling quality with different number of channels.
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In Table 1, the impact of learning rate α on scheduling quality is presented. Along
with the increase in time steps, the proposed method uses more steps to learn better policy
and to obtain better quality. When α is small, the update rule keeps more of the original
Q-value, so the learning speed in relatively slower. When α is set to 0.2, a scheduling with
good quality is learned early, but it barely changs along with the increase in time steps.
The most apparent variation with time steps happens when α = 0.1; the quality increases
about 2.2 times.

Table 1. Impact of learning rate α on scheduling quality.

Periods α = 0.05 α = 0.1 α = 0.2

500 0.13 0.39 0.73
1000 0.21 0.67 0.78
1500 0.37 0.85 0.81

In Table 2, the impact of shrinking factor σ on scheduling quality is presented.
The smaller value of shrinking factor leads to a higher probability of random action.
Even though it may help to explore more different schedulings, it also may slow down
the convergence speed due to too many random actions. An example can be found when
σ = 2: along with the increase in time steps, the quality only promotes about 1.5 times.
The best performance on shrinking factor σ is equal to 4 in these tests.

Table 2. Impact of shrinking factor σ on scheduling quality.

Periods σ = 2 σ = 4 σ = 6 σ = 8

500 0.41 0.39 0.35 0.32
1000 0.55 0.67 0.58 0.48
1500 0.63 0.85 0.78 0.69

The convergence of scheduling result is an indispensable feature for learning-based
methods, and a specific metric called selection consistency SC is designed to observe the
convergence of the proposed method. Let us assume the current period to be tc; then, the
selection consistency of an agent for recently observed periods hrt can be defined as follows:

SC(LS) =
1

hrt − 1

hrt−1

∑
i=tc−hrt+1

|LSi
⋂

LSi+1|
|LSi

⋃
LSi+1|

(21)

Figure 12 depicts the result of selection consistency with different numbers of nodes;
when the value is equal to 1, it means selection becomes stable and convergent. With the
increase in nodes, MDS-ML takes more periods to reach consistency. When there 20 sources
and 2 sinks, it only takes about 120 periods, and when there are 40 sources and 2 sinks
in a network, it costs about 400 periods. This phenomenon is probably caused by the
complexity of the scheduling problem. The more nodes represent more chance of conflicts,
and arranging more working time slots and channels.

PLR (packet loss ratio) and PDR (packet delivery ratio), as two common performance
metrics, are used to evaluate network throughput. By applying the proposed algorithm
to the different network scenarios, the influence of the number of nodes on PLR and PDR
can be further observed, and the corresponding result is depicted in Figure 13. In case
of the fixed number of collection periods, the more complex network scenario with more
nodes implies that the scheduling method spends more time to achieve convergence, so
more packets will be lost due to the unsuccessful communications during the uncovergence
stage. For example, PLR increases by about 4 times when the source nodes increase from
20 to 60 and the sink nodes increase from 2 to 4 in the simulation scenario. When there is
20 source nodes in the simulation scenarios, the change in sink number distinctly affects
PLR and PDR. However, this tendency is gradually diminished if the number of source
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node reaches 60, where the gap among the scenarios with different sink numbers is only
about 2.5% at most.

Figure 12. Selection consistency.

Figure 13. Average PLR and PDR with different nodes.

5.3. Discussion of Simulation Results

According to the simulation results presented above, MDS-ML obtains better perfor-
mance on transmission delay, energy consumption overall scheduling quality, and PLR
and PDR. As this new scheduling method is directly designed for supporting many-to-
many data aggregation in a multi-channel WSN, it also considers multiple optimization
objectives. Thanks to the feature of continuous learning, this new method can obtain good
performance for data transmission. CDSM as a distributed scheduling method lacks the
optimization capability for the global network; then, it achieves the relatively poor per-
formance. Although EESPG and DASD have good performance as well, the construction
and maintenance of a virtual tree structure still increases the additional network overhead,
because the exchanges of extra control packets among nodes are inevitable, and they target
implementing the many-to-one data aggregation scheduling for multiple channels. When
these scheduling methods are compulsorily applied into the multi-sink scenarios, concur-
rent and independent scheduling operations toward different sinks have to be executed,
and these operations without cooperation lead to higher costs in the network. The perfor-
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mance advantage of the new method is more obvious when there are more source nodes
and sink nodes in simulation scenarios. Since the network structure becomes more complex,
it is more difficult to find the optimal scheduling set.

6. Conclusions

To handle the many-to-one data aggregation scheduling problem for a multi-channel
WSN, a cooperative multi-agent learning-based scheduling method is proposed in this
paper. The optimization goal of scheduling is formulated and analysed, firstly. According
to the characteristics of many-to-many data aggregation scheduling, the scheduling process
is mapped to a decentralized partially observable Markov decision model. The coopera-
tive multi-agent learning is implanted into a many-to-many data aggregation scheduling
procedure. Nodes within one hop distance establish a group, which is a basic cooperative
unit to learn the optimal policy. Finally, performance experiments are conducted on a
discrete event simulator, and the simulation results validate the advantage of the proposed
method on common metrics. In future work, a more detailed system model which is
closer to the realistic communication environment should be considered for the proposed
scheduling method. In this new model, the channel fading problem will be effectively
handled, the communication security will be guaranteed, the malicious and selfish nodes
will be detected and prevented.
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Appendix A

Table A1. Table of Abbreviations.

Abbreviation Description

WSN Wireless sensor network
IOT Internet of Things

HVAC Heating, ventilation, and air conditioning
TDMA Time division multiple access

Dec-POMDP Decentralized partially observable Markov decision process
ACK Acknowledgement

DCOP Distributed constraint optimization
MDS-ML Many-to-many data aggregation scheduling based on multi-agent learning

EESPG Energy efficient scheduling in WSN for periodic data gathering
DASD Data aggregation scheduling method for multi-channel duty cycle WSN

CDSM Cluster-based distributed data aggregation scheduling algorithm
with multi-power and multi-channel
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Appendix B

Table A2. Table of Notations.

Symbol Description

V The set of sensor nodes
vi Sensor node i
~L The set of communication links
~lj,i Link from node i to node j

ngh(vi) The neighbor nodes of node i
CH The set of available wireless channels
chk Channel k
di Sink node i

TSc Communication period (or a frame)
ts Time slot

US(vi) The upstream nodes of node i
DS(vi) The downstream nodes of node i

LS The link based scheduling set
~lsi,j The resource allocation set for the link~li,j
wd Working window
wdr Reception slice including the time slots for data reception
wdt Transmission slice including the time slots for data transmission
ηk The kth objective function
ϕ Overall objective function

RS Routing structure (set)
I The set of agents
S The set of system or joint states
A The set of joint actions
P The transition function of the state
R Reward function
Ω The set of joint observations
O Observation function
b Initial system state distribution (initial belief)
T Horizon or the number of time steps
Φ The action-observation history
π Agent policy

Vπ(~s) The value of a joint policy π from state~s
Q Q-function or Q-value function
γ Discount factor
α Learning rate
g Agent group

sgn Signum function
ε̂t Alterable parameter of selection probability
σ Shrinking factor

SC Selection consistency
hrt Recently observed periods
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