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Abstract: As electricity supply expands, it is essential for providers to predict and analyze consumer
electricity patterns to plan effective electricity supply policies. In general, electricity consumption
data take the form of time series data, and to analyze the data, it is first necessary to check if there is
no data contamination. For this, the process of verifying that there are no abnormalities in the data is
essential. Especially for power data, anomalies are often recorded over multiple time units rather than
a single point. In addition, due to various external factors, each set of power consumption data does
not have consistent data features, so the importance of pre-clustering is highlighted. In this paper,
we propose a method using a CNN model using pre-clustering-based time series images to detect
anomalies in time series power usage data. For pre-clustering, the performances were compared
using k-means, k-shapes clustering, and SOM algorithms. After pre-clustering, a method using the
ARIMA model, a statistical technique for anomaly detection, and a CNN-based model by converting
time series data into images compared the methods used. As a result, the pre-clustered data produced
higher accuracy anomaly detection results than the non-clustered data, and the CNN-based binary
classification model using time series images had higher accuracy than the ARIMA model.

Keywords: electric power data; clustering; CNN; time series image; anomaly detection

1. Introduction

Most people living in modern civilization are provided with electricity produced by
the state or private enterprise. From the perspective of the private company or government
that supplies electricity, it is important to manage electric power received so that it can be
used efficiently. From the perspective of providing electricity, it is necessary to understand
how customers use the electric power they receive to make plans to reduce various costs
in terms of production and supply [1,2]. Therefore, analyzing data on how customers use
electric power has become an important task for most electric power providers [3].

In general, data representing the electric power used by customers are stored and
recorded in a time series [4,5]. This is because the detector recodes electric power usage
according to the time unit. These data obtained through this process have various features,
such as cycles and trends over time. However, detection devices for calculating the electric
power used by customers can lose data uniformity due to various environmental factors.
Considering possible electric power system component failures, communication failures,
protection failures, and market and load uncertainties, it is important to analyze recorded
power data by taking errors resulting from various factors into account [6–8].

Detection of anomalies in power usage data is a task that can monitor whether power
is wasted. Most power usage data take the form of time series data. The usage is recorded
according to the unit of time, and they are gathered to show one periodic characteristic. In
these cases, anomalies are measured using a variety of statistical techniques [9,10] or simple
LSTM-AE family models [11–13]. However, if it is not a point anomaly in which anomalies
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are recorded in only a single time unit, but a collective anomaly in which anomalies are
accumulated over a day or more, the effect of statistical techniques is not greater than before.
Since power usage data have periodicity, context should also be considered when it comes
to anomalies. So, most anomalies in power usage data have contextual properties. The
contextual anomaly has many variables to refer to and it is difficult to know which variables
to refer to. Therefore, it is worthwhile to try different conditions and methodologies to
detect anomalies in power usage data [14–16].

In addition, since electric power detection devices are provided to individuals, data
belonging to a cluster corresponding to a unit (building, apartment complex, region) are
not subjected to the same environmental change, making it difficult to cluster. If common
environmental variables are applied in clusters, data features can be easily extracted by
using a single method of clustering. However, since data with various errors are combined
and delivered, it is important to cluster data to which individual environmental variables
are applied. Studies have been conducted using various clustering methods or using
clustering with complex process forms [17], such as clustering data from electrical power
distribution systems using a feature-based clustering approach that performs principal
component analysis first [18]. By using a clustering method to detect anomalies in power
usage data, capturing features of recorded data according to environmental variables can
be advanced.

To detect anomalies in the power usage time series data recorded according to various
environmental variables, a pre-clustering method can be used in the data preprocessing
step, and various methods other than the anomaly detection method using the existing
LSTM and statistical techniques can be used. In this paper, we used a CNN-based binary
classification model that is different from existing methods to preprocess time series data
with various pre-clustering methods and to detect effective anomalies. To apply the
CNN-based model to time series data, methods for generating time series images were
applied. If the approach proposed in this paper is used, we can show high performance in
electric power analysis tasks such as anomaly detection of power data in various electric
power detection systems. For example, in a smart grid, a pre-clustering-based power
anomaly detection method can be used to have a generation-optimized electric power
supply pattern. Moreover, the method of this study can be adapted to label the generation
in which anomalies are recorded.

The rest of this paper is organized as follows. Section 2 introduces time series data, an
important keyword appearing in this paper, the clustering method used in this experiment,
and methods for generating time series images. Section 3 shows the overall clustering
process and anomaly detection method used in the experiment. Experimental results and
conclusions are summarized in Sections 4 and 5, respectively.

2. Related Research

This section introduces the algorithms and concepts mentioned and used in this
study. How electric power data are collected and pre-processed, general-purpose clustering
algorithms for time series data, and generating time series image algorithms used in this
study are described in this section.

2.1. Electric Power Data

Large-scale electric power suppliers provide power systems to private customers,
supply current separately, and provide services in the form of receiving cost for the usage.
Providers generate electric power through power plants, build facilities to supply power to
customers, sell power to customers, and record calculated data. Electric power data are
classified into three categories according to the place and time when data are recorded. The
first is power generation statistics, which record the amount of power produced by power
plants. The second is facility statistics, which show the trends and status of facilities built
to supply power to private users. The third is sales statistics, which supply power to users
and record how much power they lose during supply.



Electronics 2022, 11, 3315 3 of 16

Power data are preprocessed from raw data into various types of data. Image data
are used for visually expressing power facilities, faults, or defects. For example, we can
use a picture of a detector or a faulty power plant equipment as image data. Financial
data are used for expressing financial characteristics such as unit price and monthly sales
volume to establish a supply plan. Financial data include data that adjust unit price to plan
power supply according to the recorded amount of electric power. Time series data are
used for recording data in which private customers use power over time or receive power
from power plants. Time series data can be used to perform a variety of tasks, such as
making predictions and detecting anomalies [19]. In general, data such as power supply
and demand, power demand, and power loss are used to predict the power consumption
of private customers and to cluster power demand patterns. Since all data are recorded
and collected over time, time series data are the basic type of electric power data because it
is easy to preprocess such data. Power suppliers need to understand features of electric
power data by clustering collected data to efficiently establish power supply and facility
maintenance plans.

Figure 1 is an example of normalized power data actually detected in a building. We
can clearly see the trend in electric power usage from day to day, and if we take a long time
unit as a basis, we can see the trend in that electric power usage. These data are recorded by
a general building detector, and if the detector malfunctions due to various environmental
factors, the maximum or minimum value of the measured power value may be recorded
abnormally.
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Figure 1. Example of normalized electric power usage data.

2.2. Time Series Data Clustering

The goal of clustering is to identify structure in an unlabeled dataset by objectively
organizing data into homogeneous groups where the within-group-object similarity is
minimized, and the between-group-object dissimilarity is maximized. Unlike static data,
which have certain rules and fixed format, time series data have a feature in that values will
change with time. Given a set of unlabeled time series, it is often desirable to determine
groups with similar time series.

Figure 2 shows three different approaches: raw-data-based, feature-based, and model-
based. Note that the left branch of the model-based approach trains the model and uses
model parameters for clustering without needing another clustering algorithm. Unlike a
raw-data-based approach, a feature-based approach has steps to extract features, allowing
researchers to effectively understand characteristics of the data. A model-based approach
clusters by extracting model parameters or determining coefficients and residuals through
various models. This approach allows researchers to proceed with the clustering process
and use several general-purpose clustering algorithms to cluster according to the given
data [20–22].
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Figure 2. Three time series clustering approaches: (a) raw-data-based; (b) feature-based; (c) model-
based.

2.2.1. Agglomerative Hierarchical Clustering

An agglomerative clustering method can repeatedly perform the following commands.
At startup, each data coordinate is designated as one cluster and two most similar clusters
are merged. At that time, similar clusters are combined until the specified number of
clusters remains. There are three main ways to merge two clusters. The first is Ward,
which merges two clusters so that the increase of variance within all clusters is the smallest.
The second is average, which combines two clusters with the shortest average distance
between cluster centers. The third is complete, which combines two clusters with the
shortest maximum distance between cluster points.

Cluster aggregations each stage or level are grouped into cluster trees and operated,
forming a layer of trees. As shown in Figure 3 below, agglomerative or divisive strategies
are performed depending upon whether a bottom-up or top-down strategy is used. The
agglomerative hierarchical clustering method is more popular than the divisive method.
Hierarchical clustering is not restricted to cluster time series with equal length. It is
applicable to series of unequal length as well if an appropriate distance measure such as
DTW (dynamic time warping) is used to compute similarity.
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2.2.2. K-Means and Fuzzy c-Means

K-means (interchangeably called c-means in this study) was first developed more than
three decades ago. The main idea behind it is the minimization of an objective function,
which is normally chosen to be the total distance between all patterns from their respective
cluster centers [23–25]. The centroid is randomly determined by the initial value of k. After
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that, the process of touring all data is repeated to assign each dataset to the cluster to
which the nearest centroid belongs. The centroid then moves to the center of the cluster.
Algorithms alternate until the value of the objective function can no longer be reduced.

Given n patterns {xk|k = 1, . . . , n}, c-means determine c cluster centers {vi|i = 1, . . . , c},
by minimizing the objective function given as:

minJ1(U, V) =
c
∑

i=1

n
∑

k=1
uik‖xk − vi‖2

uik ∈ {0, 1}∀i, k.
∑i=1,c uik = 1, ∀k

(1)

where ‖ · ‖ in the above equation is normally the Euclidean distance measure. However,
other distance measurements can also be used. Recurring solution procedures typically
have the following steps:

1. Choose c (2 ≤ c ≤ n) and ε (number for stopping the iterative procedure). Set the
counter l = 0 and the initial cluster center, V(o), arbitrarily.

2. Distribute xk, ∀k to determine U(l) such that J1 is minimized. This is achieved
normally by reassigning xk to a new cluster that is closest to it.

3. Modify cluster centers V(l).
4. Stop if the change in V is smaller than ε; otherwise, increment l and repeat steps 2–3.

Dunn has devised a method using fuzzy segmentation by expanding the k-means
algorithm and presenting the objective function as shown in Equation (2) below [26,27]:

minJ2(U, V) =
c
∑

i=1

n
∑

k=1
(µik)

2‖xk − vi‖2

uik ∈ {0, 1}∀i, k, ∑i=1,c uik = 1, ∀k.
0 < ∑k=1,n µik < n, ∀i.

(2)

Note that U = [µik] in this equation and the following equations denotes the matrix
of a fuzzy c-partition (same as k-partition). Fuzzy c-partition constraints are conditions
under the objective function of Equation (2). In other words, each xk could belong to more
than one cluster with each belongingness taking a fractional value between 0 and 1. Bezdek
has generalized J2(U, V) to an infinite number of objective functions. The new objective
function subject to the same fuzzy c-partition constraints is shown in Equation (3) below:

minJm(U, V) =
c

∑
i=1

n

∑
k=1

(µik)
m‖xk − vi‖2 (3)

By specifying the number of clusters and weighting coefficient, alternative optimiza-
tion procedures are repeated to solve the fuzzy c-means model. The fuzzy c-means algo-
rithm works better for time series with the same length. This is because the concept of the
cluster center is unclear when the same cluster contains different time series of different
lengths [28–30]. Various methods using fuzzy and k-means algorithms have been applied
and developed for clustering [31–33].

2.2.3. Self-Organizing Maps (SOM)

Self-organizing maps developed by Kohonen [34] are a type of neural network in
which neurons are arranged in a low-dimensional structure and trained by repetitive
unsupervised learning or self-organizing procedures. The weight vector of the neuron is
initialized. After presenting the pattern, it is updated according to the distance between
the input pattern and the weight vector. This is in accordance with the following rule:

wi(l + 1) =
{

wi(l) + α(l)[x(l)− wi(l)], if i ∈ Nt(l)
wi(l), if i /∈ Nt(l)

(4)
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As neighboring neurons are updated at each stage, neighboring neurons in the network
tend to indicate neighboring locations in feature spaces. Like the k-means and fuzzy c-
means algorithms, SOM is an inappropriate algorithm for time series whose lengths are
not the same because it defines dimensions of the weight vector [35].

In addition to methods describe above, there are various methods for clustering time
series data. There is an approach that has an algorithm suitable for applying features of a
time series rather than static data. However, if data are recorded with complex environmen-
tal variables such as electric power data, it is difficult to define similar time series groups
and extract their characteristics. Thus, it is often desirable to learn the characteristics of
time series groups using multiple clustering techniques or adopting clustering using neural
network techniques. Among various neural network techniques, a method of estimating
subspaces and generating sample clustering using adversarial learning effectively analyzed
features and clustered data of multidimensional and multivariate data.

2.2.4. K-Shapes

The k-means algorithm classified clusters according to the homogeneity between
individual observations using Euclidean distance (ED) to measure the distance between
the data and the center of the cluster. Unlike that, the k-shape algorithm proposed by John
Paparrizos [36] uses a distance measurement method called CC (cross-correlation). When
two data are given in the form of a sequence, if an l of padding is given in one direction,
much leading occurs. Considering that the lengths of the two sequences are the same as
m and the maximum case of possible readings, the lengths of the sequences are 2m − 1.
Currently, the purpose of CC is to find a shifting point that gives padding by 2m − 1 and
maximizes similarity when calculating ED. According to the convolution theory, CC can be
defined as Equation (5).

CCw

(→
x ,
→
y
)
= F−1F

(→
x
)
∗ F
(→

y
)

(5)

Since fast forwarder transform (FFT) can be used to reduce the time complexity of ob-
taining CC, CC is defined using the above equation. Additionally, to increase performance,
the k-shape algorithm normalizes CC. This is called normalized cross-correlation (NCC).
The k-shape algorithm uses the objective function shown in Equation (6) below.

1−max
w

(
CCw

(→
x ,
→
y
)

√
R0

(→
x ,
→
x
)
× R0

(→
y ,
→
y
) ) (6)

Since it means that the two-sequence data are close as the NCC (normalized cross-
correlation) increases, the value obtained by subtracting the maximum NCC from 1 is
used as the objective function. The k-shapes algorithm used CC, a distance measurement
method that can be calculated from sequence data, not ED used by k-means. K-shapes
show excellent performance when using sequence-type data, i.e., time series data, because
they used approaches such as the dynamic time warping (DTW) method of finding points
that correspond to the mean value.

2.3. Generating Time Series Images
2.3.1. Recurrence Plot (RP)

The recurrence plot algorithm is a visualization algorithm that aims to explore the
m-dimensional phase space trajectory by expressing the regression of data values in two
dimensions [37,38]. To convert time series data into images using RP, the m-dimensional
spatial trajectory of time series data must first be configured. Given the time series data as
X = {x1, x2, . . . , xi}, the m-dimensional spatial trajectory can be defined as Equation (7)
below.

S = {s1 = (x1, x2), s2 = (x2, x3), · · · , sn = (xn, xn+1)} (7)
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sn can be seen as the trajectory of time series data from xn to xn+1. To express trajectory
information in the form of a matrix, a distance matrix may be defined based on spatial
trajectory data. To express this mathematically, the elements of the matrix can be defined as
Equation (8) below.

Ri,j = ϑ
(

ε− ‖→si −
→
sj‖
)

(8)

ε is the distance threshold, and θ(x) is the unit step function. Ri,j is the element value
of the distance matrix and means the distance (L2 Norm) between Si and Sj in the equation.
Thus, the distance matrix R is represented by a matrix of distances between the two s. The
diagonal elements of R become zero because they define the distance from themselves.
Additionally, Ri,j and Rj,i are the same according to the definition of Equation (2) and
thus become symmetric matrices. The time series image converted by the RP algorithm
describes a collection of time pairs at the same location of orbit. If that orbit is strictly
periodic through period T, then all pairs of times are separated by multiples of T and
displayed diagonally. That is, the visual representation of the RP provides information on
the period and the change width of the time series data.

2.3.2. Gramian Angular Field Algorithm

A Gramian Angular Field (GAF) is an algorithm that expresses temporal correlation
between each time point based on polar coordinates. Polar coordinate-based matrices
have the advantage of preserving time correlations when changing time series data into
images [39]. Since the GAF may first have a given time series data value too large or too
small, it is normalized to the interval [−1, 1] or [0, 1]. The time index ti of the normalized
signal x̃i is expressed in radius ri, and is converted into polar coordinates as shown in
Equation (9) below with the angle φ.{

φi = cos−1(x̃i), −1 ≤ x̃i ≤ 1, and x̃i ∈ X̃
ri =

ti
N , ti ∈ N

(9)

Here, N is the normalization constant for the range of polar coordinate systems. GF
is divided into two ways depending on the sum and difference of angles. The Gramian
angular summary field (GASF) is expressed as the sum of the angles of polar coordinate
time series data consisting of time pairs of i and j, and then is defined as Equation (10).

GASF =
[
cos
(
φi + φj

)]
= x̃′·x̃−

√
I − x̃′2·

√
I − x̃2 (10)

Gramian angular difference field (GADF) is defined as Equation 5 of the difference
between the angles of the polar coordinate system as opposed to GASF.

GADF =
[
sin
(
φi − φj

)]
=
√

I − x̃′2·x̃− x̃′·
√

I − x̃2 (11)

GAF preserves time dependence because time increases as it moves from the top left
to the bottom right. Since the main diagonal line includes the value and angle information
of the raw data, the raw data may be recovered using the same.

2.3.3. Markov Transition Field Algorithm

The Markov transition field (MTF) algorithm is an algorithm representing the prob-
ability of transition of time series data that is discretized [39]. To configure the MTF, the
given time series dataset X is divided into Q sections according to the value, and then
assigned to the interval qj(j ∈ [1, Q]) corresponding to the time series data value xi of the
time index ti. In the first Markov chain method along the time axis, a weighted adjacency
matrix W of the size of Q×Q is constructed as shown in Equation (12) below.

W =


w11| P(xt∈q1|xt−1∈q1)

· · · w1Q| P(xt∈q1|xt−1∈qQ)

...
. . .

...
wQ1| P(xt∈qQ |xt−1∈q1)

· · · wQQ| P(xt∈qQ |xt−1∈qQ)

 (12)
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wi,j represents the frequency of transition from the qi interval to the qj interval. By
normalizing the sum of each column of W to 1, the Markov transition matrix can be
constructed. In this process, W eliminates the distribution of X and the time dependence
on the time index ti. To overcome the information loss of W, MTF is defined as Equation
(13) below by aligning each probability along the time order.

M =

M11 · · · M1n
...

. . .
...

Mn1 · · · Mnn

 =


wij|x1∈qi ,x1∈qj

· · · wij|x1∈qi ,xn∈qj
...

. . .
...

wij|xn∈qi ,x1∈qj
· · · wij|xn∈qi ,xn∈qj

 (13)

Mij||i−j|=k, which is the i-row j-column value of MTF, represents the probability of
transitioning from the interval qi to which the data value of time index ti belongs, to the
interval qj to which the data value of time index tj belongs. That is, the probability of
transition between points where the difference is between the two times k. If the width
of the section is large, most of the values are counted as the section closest to the average,
and if the width of the section is small, the value aggregated in the extreme section is
reduced [39].

3. Experiment

This section describes the pre-clustering and anomaly detection methods proposed
in this study. After explaining the data used in the experiment in detail, the experiment
process according to the clustering algorithm and anomaly detection method used in the
experiment is described.

3.1. Dataset

In this study, time series power data are clustered to predict and analyze power
data. The dataset used in this study is data that store power consumption provided by
the Korea Energy Agency. The electric power usage of 60 buildings was recorded every
hour from 1 June 2020 to 24 August 2020. The column of the dataset is configured as
shown in Table 1 below. There are a total of 122,400 rows in the dataset, and no outliers
exist. Figure 4 shows a boxplot for each column in the dataset. Outliers were recorded
in the wind speed column and humidity column in all buildings, and few outliers were
found in power usage or temperature. In this study, the performance of time series data
prediction and analysis according to the presence or absence of clustering was compared
using the above dataset. Columns other than electric power usage were not used to
measure performance under the same conditions and to consider the characteristics of
power data. This experiment compared the performance according to the clustering
technique performed in the preprocessing process to predict the power consumption
dataset in a time series data format.

Table 1. Electric power dataset description.

Column Name Data Type Min Max Mean Standard
Deviation

Building Number Categorical Data 1 60 - -
Date time Date Time 1 June 2020, 00 h 24 August 2020, 23 h - -

Power Usage (kWh) Float 0.0000 17,739.2250 2324.8309 2058.9993
Temperature (◦C)

Wind Speed (m/s)
Float
Float

11.1000
0.0000

36.3000
20.1000

24.2517
2.1516

3.4079
1.5148

Humidity (%) Float 19.0000 100.0000 80.1698 15.5259
Precipitation (mm) Float 0.0000 81.5000 0.5150 2.6245

Sunlight (h) Float 0.0000 1.0000 0.2135 0.3705
Operation of non-electric

cooling equipment Boolean - - - -

Solar Power Boolean - - - -
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3.2. Clustering Methods

In the pre-clustering step, 60 building power usage data were clustered. To detect
anomalies, time series data were clustered to apply the time series feature of each cluster.
For detecting an anomaly, we clustered using four methods to explore effective clustering
methods. The first was to use only the power usage column. Anomaly detection was
performed using only single-dimensional data without separate categorical data. Second
and third, power usage data were clustered using the k-means and k-shapes algorithm and
separate categorical data were added and used. To set k, clustering was performed from 1
to 60, the maximum number of buildings, and the appropriate k was set using the elbow
method. As a result, it was appropriate to set k to 7 as shown in Figure 5. The clustering
results using the k-shape algorithm can be confirmed in Figure 6. Fourth, power usage
data were clustered using the SOM algorithm and separate categorical data were added
and used. To determine the optimal number of nodes and map arrangement, appropriate
nodes were obtained using Equation (14) proposed by Tian et al.

M ≈ 5
√

N (14)
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N is the number of objects to be observed and M is the number of neurons, which
is an integer close to the value of the right-hand side. When the observation target is 60
(number of builds), the number of neurons calculated was about 39 (= 5

√
60). Therefore,
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clustering was performed using SOM composed of a feature map of 7 × 6 corresponding
to the number of arrays close to the number of neurons.
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3.3. Data Preprocessing and Add Anomaly for Learning

We needed to preprocess the data to detect whether anomalies were recorded on a
daily basis within a total of 60 building power usage data belonging to a certain number of
clusters. For each building, the power usage data were recorded every hour for 85 days.
Building power usage data were divided into 85 sections to extract daily power usage data.
In conclusion, power usage data having a shape of (60, 2040) were preprocessed into data
having a shape of (60, 85, 24). For example, if there were 12 building power usage data in
the first cluster, these data were converted into time series data with a shape of (12, 85, 24).

Anomalies were not recorded in the dataset used in this experiment. As shown in
Figure 7, we had a process of arbitrarily injecting anomalies to construct a training model
that detects anomalies through supervised learning. First, the daily power usage data
were normalized. Anomalies were injected by converting any data from normalized daily
power usage data to values close to the maximum and minimum values in daily data.
Additionally, the index of the data with injected anomalies was extracted and set as the
label to be used in supervised learning. In conclusion, anomalies were injected into random
indexes, and this label was set to ground-truth and used as a y dataset for the model trained
in this experiment.
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3.4. Using ARIMA for Detecting Anomalies

We adopted a method using ARIMA that statistically analyze time-series data, to
validate and compare the performance of imaging time-series data for anomaly detection.
The optimal p, d, and q factors were searched by applying the ARIMA model to the
preprocessed power usage time series data. As a result of the search, we confirmed that (p,
d, q) has the most appropriate ARIMA model when (4, 1, 1). In the analyzed time series
data, the date on which data having a difference value of 10 or more is recorded is defined
as data on which anomalies are recorded. As shown in Figure 8 below, after visualizing
the data at the time when the anomalies were recorded, the date containing the data was
anomaly defined and an F1-score was given compared to the label.
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3.5. Generating Time Series Images

In this experiment, as shown in Figure 9, time series images were generated using RP,
GASF, GADF, and MTF algorithms for time series data recorded in 24 h time units. When
using the RP algorithm, the cross recurrence plot generates a black and white time series
image by substituting 1 if it is greater than a certain distance (element value), but in this
experiment, the distance threshold was not used to obtain more information from data in
the CNN model. CNN-based layers were designed as shown in Table 2 with the generated
time series image to learn a model that classifies normal data and anomalies.
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Table 2. CNN-based model structure for binary classification.

Layer Channel Kernel

Input 1 × 24 × 24 1 × 1 × 24
Conv 1 24 × 24 3
ReLU 24 × 24 3

MaxPooling 24 × 24 3
Conv2 16 × 16 3
ReLU 16 × 16 3

MaxPooling 16 × 16 3
Fully Connected 1 N/A

Then, as shown in Figures 10–13, time series data recorded for 85 days were imaged.
Time series data recorded over 85 days per building were imaged using 85 recurrence
plot (RP), GASF, GADF, and MTF algorithms. The time series image coordinate values
calculated through each algorithm are expressed as Figures 10–13 through colormap. In
Figures 11–13, the colormap used in this figure is a jet, which set a minimum value to blue
and a maximum value to red, so the coordinate values are converted into colors in RGB
format in jet colormap. Exceptionally, in Figure 10, we used a specific colormap, which set
a minimum value to blue and a maximum value to yellow. Data with existing shapes (60,
85, 24) have been increased to (60, 85, 24, 24) shapes. The two results were compared using
original data and dimensionally increased data as training and testing data for anomaly
detection models. As ARIMA models were used to detect anomalies for each clustered
time series data, CNN-based models can be used to classify whether they were anomalies
by converting clustered power usage data into time series image datasets.
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3.6. Using CNN-Based Model for Detecting Anomalies

Although CNN is mainly used for object (defect, forgery, etc.) detection or image
analysis, in this experiment [40,41], a convolutional neural network was used for binary
classification of image datasets generated using four algor ithms. The neural network
structure for binary classification is specified in Table 2. Since the shape of the image data
used in this experiment was (24 and 24), the dimensions of the input data were set to (1,
24, 24). A neural network was constructed to determine whether the input image data
were an anomaly through the neural network and to calculate a value close to 1 if normal
and 0 if anomaly. After constructing two convolutional layers, a fully connected layer was
placed for binary classification. The epoch was set to 50 to ensure sufficient learning. For
the label for learning, the label constructed in the preprocessing stage of injecting anomaly
was used, and the model was trained by dividing 70% of the training dataset and 30% of
the test dataset to contain the same ratio of anomalies.

4. Result

In this experiment, the F1-score metric was used to indicate the accuracy of the model
for detecting anomalies. To use a metric that shows higher accuracy, as the number of false
positives and false negatives is reduced in the confusion matrix, the F1-score using the
harmonic average of precision and recall was selected as the metric. Models for detecting
anomalies for each cluster were separately configured and trained, and the F1-scores
of the clusters were averaged and are shown in Table 3 to evaluate the performance of
each method.



Electronics 2022, 11, 3315 14 of 16

Table 3. Experiment result according to generating time series image and clustering algorithm.

No Clustering K-Means K-Shapes SOM

Cluster 1 8 8 6

ARIMA 0.91 0.92 0.92 0.93
RP 0.94 0.94 0.93 0.94

GASF 0.93 0.93 0.93 0.95
GADF 0.94 0.94 0.94 0.95
MTF 0.96 0.97 0.97 0.97

As a result of the experiment, the clustering method using the SOM algorithm had the
highest accuracy when pre-clustering for anomaly detection, and the accuracy was lower
than the non-clustering method. In addition, after pre-clustering, the case of applying the
CNN-based binary classification model by generating the time series data image obtained
higher accuracy than the case of applying the ARIMA model using the time series data as
it is. When the time series data image generation method was applied, the model to which
the MTF algorithm was applied yielded the highest F1-score.

5. Conclusions

In this paper, we proposed a CNN-based anomaly detection model using time series
images after pre-clustering to detect anomalies in time-recorded power data. In previous
studies, anomalies were detected using a statistical model or an RNN-based unsupervised
learning model to consider the statistical characteristics of time series data. The proposed
method uses a pre-clustering technique to characterize time series data collected from
various domains. In addition, to effectively detect anomalies, a CNN-based unsupervised
learning model specialized for binary classification was used by converting time series
data into time series image data. To use the proposed method, three methods of pre-
clustering and four methods of converting time series data into images were used to
compare performance.

For this experiment, data recorded and provided every hour from 1 June 2020 to
24 August 2020 were used, and data per hour were purified into data every three hours
and normalized to perform clustering. The effectiveness of pre-clustering was proved by
comparing the prediction accuracy according to the presence or absence of pre-clustering.
In addition, other clustering techniques were compared to evaluate best pre-clustering
techniques. K-means and k-shapes clustering techniques were conducted using the elbow
method, and clustering was performed by setting appropriate neurons according to the
number of observations to utilize SOM.

After pre-clustering, the power time series data written in this study was converted
into an image form using recurrence plot, Gramian angular field, and Markov transition
field algorithms, and anomaly data and normal data were discriminated using a CNN-
based binary classification model. The performance of the anomaly detection model using
all CNN-based time series image data were better than the performance of the anomaly
detection method using the ARIMA model using the existing time series data. In particular,
the performance of the binary classification model using the time series image dataset
constructed using the MTF algorithm was the best.

For anomaly detection of time series data, pre-clustering the time series data and
applying the anomaly detection model individually to each cluster showed higher per-
formance than training the raw data on a single model. In addition, using a CNN-based
unsupervised learning model by imaging time series data showed equivalent or better
performance than using an ARIMA model using raw data. Therefore, to detect anomalies
in time series data, it is also worth considering ways to augment or image the dimension
of time series data. As a future study, we will build a dataset using other dimensional
augmentation techniques as well as the imaging method used in this paper.
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