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Abstract: Current anchor-free object detectors do not rely on anchors and obtain comparable accuracy
with anchor-based detectors. However, anchor-free object detectors that adopt a single-level feature
map and lack a feature pyramid network (FPN) prior information about an object’s scale; thus, they
insufficiently adapt to large object scale variation, especially for autonomous driving in complex
road scenes. To address this problem, we propose a divide-and-conquer solution and attempt to
introduce some prior information about object scale variation into the model when maintaining a
streamlined network structure. Specifically, for small-scale objects, we add some dense layer jump
connections between the shallow high-resolution feature layers and the deep high-semantic feature
layers. For large-scale objects, dilated convolution is used as an ingredient to cover the features of
large-scale objects. Based on this, a scale adaptation module is proposed. In this module, different
dilated convolution expansion rates are utilized to change the network’s receptive field size, which
can adapt to changes from small-scale to large-scale. The experimental results show that the proposed
model has better detection performance with different object scales than existing detectors.

Keywords: object detection; multiscale; anchor-free; convolutional neural networks;
autonomous driving

1. Introduction

Object detection is an essential element in fields such as autonomous driving [1–3] and
robotics [4] and has, in recent years, drawn the attention of many researchers. This has led
to substantial developments in the creation of existing object detection techniques. In par-
ticular, with the development and application of deep learning [5] and other technologies,
newer object detection techniques continue to show significantly improving performances
over their predecessors.

Object detectors can be divided into one-stage and two-stage pipelines [6,7]. The early
deep detection recurrent convolutional neural network (R-CNN) model [8] and others [9–11]
are traditional methods that follow a sliding window-based pipeline. Subsequently, two-
stage detectors, including SPPNet [10], Fast R-CNN [9], Faster R-CNN [11] and others,
were developed and continued to follow this route. Two-stage detectors have high de-
tection accuracy but have high computational complexity as well. To address this issue,
many one-stage detectors were subsequently proposed, such as the SSD [12–14] and YOLO
series [15,16]. Object detectors can also be divided into anchor-based and anchor-free
methods. Following the proposal of the anchor concept in object detection with Faster
R-CNN [11], many two- and one-stage detectors were subsequently developed. A preset
box with different scales and ratios at the anchor point can provide some prior information
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about the object’s scale. By appropriately setting the parameters of the anchor, the pre-
diction space of the model can be reduced. In addition, the anchor box can alleviate the
problem of unbalanced category distribution between the foreground and background in
object detection.

However, current anchor-based detection methods are limited by a number of deficien-
cies. First, the performance of the detector is sensitive to the anchor parameters, but adjust-
ing these parameters can be complicated. Second, the detection model requires additional
preprocessing operations such as anchor definitions and postprocessing operations such as
nonmaximum suppression (NMS), thus increasing the model’s computational complexity.

With the goal of addressing the shortcomings of anchor-based detection, some anchor-
free detectors have been subsequently proposed, including CornerNet [17], FCOS [18],
CenterNet [19], and ATSS [20]. FCOS and ATSS implement a feature pyramid network
(FPN) [21] with multilevel feature maps which can alleviate the object scale variation
problem. However, the FPN module, which uses multiple feature layers for prediction,
adds complexity to the network structure. Unlike FCOS and ATSS, CornerNet, CenterNet,
and other models that lack the FPN structure only use a single-level feature layer for
prediction. The detectors thus have a streamlined structure but lack prior information
about the object’s scale variation (both the predefined anchor boxes and multilevel feature
maps). The size of the receptive field on the single-level feature is relatively fixed, and it
is difficult to ensure the scale adaptability of the model by directly inputting only the
single-level feature map. As a result, these modules perform poorly in scenarios with large
target scale variations, such as in complex road scene object detection for autonomous
driving. As shown in Figure 1, the target scale varies widely on both camera image datasets
in complex road scenes, which are KITTI [22] and BDD100K [23].

One question raised is whether multiscale detection can be performed using only
single-level features without an FPN module or multilevel feature maps. In this paper,
to address the insufficient adaptability of anchor-free models lacking the FPN module to
large object scale variation in complex scene object detection, we propose a divide-and-
conquer solution, introduce some prior information about object scale variation into such
a model, and finally propose the scale-aware CenterNet, or SA-CenterNet. Specifically,
to adapt to small-scale object detection, an improved high-resolution feature extraction
network is adopted. This network adds some dense layer jump connections between the
shallow high-resolution feature layers and the deep layers; we argue that these shallow
high-resolution features are helpful for the detection of small objects. To adapt to large-scale
object detection, dilated convolution [24] is utilized as an ingredient to cover the features of
large-scale objects. To overcome the issue that the target varies greatly from small-scale
to large-scale and maintain high calculation efficiency, a parallel structure with multiple
branches and different dilation rates is designed. The varying dilated convolution rate on a
single-level feature map can be regarded as compensation for the size variation of the target.
Finally, a large number of experiments are performed on two publicly used road scene
camera image datasets for autonomous driving. The experimental results show that the
proposed model has better performance in detecting different scales than the original classic
CenterNet and other similar recently proposed anchor-free detectors. The effectiveness of
each module included in the model is verified by ablation experiments.

To summarize, our paper makes the following contributions:

• We propose a divide-and-conquer strategy for anchor-free and multiscale object detec-
tion without a feature pyramid structure.

• We present a densely connected high-resolution network and a scale adaptation
module to improve the performance of multiscale detection.

• We conduct extensive experiments on publicly available autonomous driving datasets
to compare some recently advanced detectors and demonstrate the effectiveness of
our proposed approach.
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Figure 1. The distribution of the range of variation of the object scale on the KITTI and BDD100K
datasets. The scale on the y-axis represents the maximum side length of the object’s bounding box.
The x-axis represents the number of objects whose scale does not exceed the corresponding value of
the y-axis. (a) KITTI. (b) BDD100K.

2. Related Work

Anchor-free Object Detection. A number of anchor-free detectors have been pro-
posed recently to overcome the weaknesses of the anchor design in previous anchor-based
detectors. YOLO [15] first predicts the bounding box’s location based on cells in the image,
not on the additional predefined anchor box. CornerNet [17] models object detection as
the problem of predicting the upper-left and lower-right corners of the object, but the
processing for this corner matching is highly computationally complex. To avoid corner
matching processing, CenterNet [19] and FCOS [18] were subsequently proposed; both
model object detection as the problem of predicting the center and size of the object. The dif-
ference between the two models is that CenterNet predicts the heatmaps of the center of
the object, while FCOS predicts the centrality of the center with a fully convolutional
architecture. Another recently proposed model is ATSS [20], which implements a novel
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adaptive training sample selection strategy that can bridge the gap between anchor-based
and anchor-free detection.

Multiscale Object Detection. In the early stages, image pyramids [25,26] were used
to overcome the problem of multiscale changes in the target. Due to the need to repeatedly
perform feature extraction and classification on images of different scales, image pyra-
mid processing significantly increases the computational complexity of object detection.
In the era of deep learning, a feature pyramid module [21] was proposed to address the
object multiscale variation problem and avoid the very large computational costs of the
image pyramid module. Subsequently, different improved feature fusion methods based
on the FPN were proposed to better extract multiscale information [27–29,29]. Trident
networks [30] generate scale-specific feature maps through a parallel multibranch architec-
ture in which each branch shares the same transformation parameters but with different
receptive fields. Pang et al. [31] introduced self-interaction modules to adaptively extract
multiscale information from specific levels by using average pooling to enlarge the recep-
tive fields. The difference between our proposed method and the above methods is that we
propose new strategies for improving small object, large object, and object scale change
detection in an anchor-free architecture. YOLOF [32] only utilizes single-layer features
without dominated feature pyramid networks (FPN) and the success of FPN is due to its
divide-and-conquer solution to the optimization problem rather than a multiscale feature
fusion. In this paper, we follow this idea and propose a method to improve the scale
adaptability of anchor-free detectors that only utilize one-layer input features.

3. Materials and Methods

Inspired by YOLOF [32], we maintained the one-level feature layer and then designed
a scale-aware and anchor-free object detector named SA-CenterNet. Specifically, for small-
scale object detection, we designed densely connected high-resolution networks; for large-
scale object detection, we utilized dilated convolution [24] as an element; to mitigate the
issue of targets greatly varying from small to large scale, we propose the scale adaptation
module. The overall architecture diagram is shown in Figure 2.

Densely 
Connected Backbone

Scale Adaptation 
Module

centre-size prediction

Figure 2. The overall architecture of our SA-CenterNet, which primarily consists of a densely
connected backbone, a scale adaptation module and a center-size prediction module. The first two
modules are proposed in this paper and introduced in the text below. The center-size prediction
module is the same as that in the original CenterNet.

3.1. Preliminary

High-Resolution Networks. Recently, the work in [33] argued that deep high-resolution
representation benefits visual recognition, and they proposed a high-resolution network
(HRNet) that connects high-to-low resolution convolution streams in parallel and repeat-
edly exchanges the information across different resolutions. The benefit of this is that
the deep high-resolution representation is semantically richer and spatially more precise,
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and parallel processing makes it efficient. As illustrated in Figure 3, HRNet outputs N4i,
defined as

N4i = fi(∑
j

gij(N3j)) (1)

Nlr represents the feature map obtained during the l-th stage with a resolution index r,
and f (•) and g(•) represent the transform layers of the networks.

CenterNet. CenterNet [19] is a representative anchor-free object detector. This detector
models the target detection as the location of the target center point and the regression
of the length and width of the target, given only a single-level feature map. Specifically,
the location of the target center position is achieved by predicting the center point heatmap
and taking the maximum local response. The length/width of the object is decomposed
into the distance from the center of the object to the boundary of the bounding box.

11N 21N

22N

31N

32N

33N

41N

42N

43N

44N
(a)

11N 21N

22N

31N

32N

33N
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44N
(b)

Figure 3. Simplified architectures of HRNet and the densely connected HRNet. The blue dotted
line in the figure corresponds to the connecting line of the original HRNet. The solid red line in the
figure represents the proposed short-circuit connection line to connect the initial high-resolution
convolutional feature maps to the later low-resolution convolutional feature maps. (a) HRNet. (b)
Densely Connected HRNet.

3.2. Densely Connected High-Resolution Networks

HRNet maintains high-resolution convolutional features and exchanges high-level
and low-level information in parallel; consequently, it can achieve better performance on
some computer vision tasks. In this paper, we propose a more densely connected high-
resolution network based on HRNet. Inspired by DenseNet [34] and PANet [35], we further
connect the former high-resolution convolutional feature maps to the later low-resolution
convolutional feature maps to obtain and use the high-resolution convolutional features of
the former more effectively. These densely connected high-resolution networks contribute
to the detection of small-scale objects.

In this paper, our densely connected high-resolution network output Ñ4i is defined as

Ñ4i = fi(∑
j

gij(N3j) + φi1(N21)+φi2(N22)), (2)

Nlr represents the feature map obtained during the l-th stage with a resolution index r, f (•)
and g(•) represent the transform layers of the networks, and φ(•) represents the transform
layers of the networks, consisting of a convolution layer, a batch normalization layer, and a
ReLU layer.

3.3. Scale Adaptation Module

We note that CenterNet and other detectors that lack the FPN module only use a
one-level feature map to predict the object’s category and size. However, the receptive field
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of one-level feature maps is fixed; consequently, these detectors have limited performance
when the object’s scale varies over a large range. Inspired by the techniques proposed
in [24,30], we use dilated convolution to enlarge the receptive field size to cover large-scale
objects. In addition, we use different dilated convolution expansion rates to change the
receptive field size, which can then adapt to changes in the object scale. To maintain
efficiency, we adopt a parallel structure; given an input one-level feature map X, the scale-
aware module calculates the scale-aware feature map Y as

X = Ñ41 ⊕U(Ñ42)⊕U(Ñ43)⊕U(Ñ44), (3)

Y = f (X⊕ D1(X)⊕ D2(X)⊕ D3(X)), (4)

where U(•) is an upsampling operation, D1(•), D2(•), and D3(•) represent the dilated con-
volution module with different expansion rates n ⊕ represents the concatenate operation,
and f (•) represents the transform layers that contain the convolution layer for reducing
the number of channels, as illustrated in Figure 4. Each Scale-aware-n module consists
of three consecutive convolutions: the first 1× 1 convolution applies channel reduction
with a reduction rate of 4, then a 3× 3 convolution with dilation is used to increase the
receptive field, and finally, a 1× 1 convolution expands the number of channels. Specifically,
Scale-aware-0 represents a direct connection without any dilated convolution or other layers,
Scale-aware-2 represents a dilated convolution module with expansion rate 2, Scale-aware-4
represents a dilated convolution module with expansion rate 4, and Scale-aware-6 represents
a dilated convolution module with expansion rate 6. In each Scale-aware-n module, ConvM
contains the convolution layer with a kernel size of M×M, a batch normalization layer
and a ReLU layer. Conv-dilation-n contains a dilated convolution module with expansion
rate n, a batch normalization layer and a ReLU layer.

Scale-aware-0

Scale-aware-2

Scale-aware-4

Scale-aware-6

Scale-aware-n

concatenate

Conv1
Conv3-

dilation-n
Conv1

feature map

(b)

(a)

Figure 4. (a) shows the architecture of the scale-aware module, and (b) shows the dilated convolution
module in detail. In (a), Scale-aware-n represents a dilated convolution module with expansion rate
n. Scale-aware-0 represents a direct connection to transmit the previous layer information more
efficiently. In (b), Conv1 contains a convolution layer with a kernel size of 1× 1, a batch normalization
layer, and a ReLU layer. Conv3 contains a convolution layer with a kernel size of 3× 3, a batch
normalization layer and a ReLU layer. Conv-dilation-n contains a dilated convolution module with
expansion rate n, a batch normalization layer, and a ReLU layer.

3.4. Model Training

The networks are trained by minimizing the following loss function:

L = Lheatmap + λo f f setLo f f set + λsizeLsize (5)



Electronics 2022, 11, 3303 7 of 15

where Lheatmap is the loss from predicting the heatmap of the center points, Lo f f set is the
loss from predicting the offset of the center points, Lsize is the loss from predicting the
object size, and λo f f set and λsize are the weight parameters. Specifically, Lheatmap is formed
by (6) and Lo f f set and Lsize are formed by an L1 loss, which is formed by (7). λo f f set is set
to 1, and λsize is set to 0.1, as in CenterNet [19].

Lheatmap = −∑
t
(1− pt)

γlog(pt) (6)

where pt is the t-th logit of the prediction on the heatmap for classification and γ is a
constant that is set to 4 in both CenterNet and our model.

Lo f f set/size = −1/N(∑
i
|Li − L̂i|) (7)

Li is the i-th predicted offset or size and L̂i is the corresponding ground truth of the offset
or size.

4. Experiments
4.1. Dataset and Evaluation Metrics

We conducted experiments on two publicly available autonomous driving datasets,
KITTI [22] and BDD100K [23], which contain a large number of objects with large-scale
changes. Specifically, the KITTI dataset was collected from different scenes in Karlsruhe
during the daytime. We choose the 2D object detection data contained in KITTI, which
consists of 7, 481 labeled images and then randomly reserved one-tenth of the original
labeled dataset for testing. The chosen classes in KITTI include car, van, truck, pedestrian,
person (sitting), cyclist, tram, and misc. BDD100K is a large-scale dataset that was released
by the AI Lab of the University of Berkeley and collected from a complex road scene
and contains sample images of various scenes under different venues, different weather
conditions, and different lighting conditions. After processing, the dataset contains 70,000
images for training and 10,000 images for testing. The classes in BDD100K include car, bus,
person, bike, truck, motor, train, rider, traffic sign, and traffic light.

For evaluation, we use the average precision (AP) and average recall (AR) metrics
defined on the MS-COCO benchmark [36]. To verify the detection performance with objects
at different scales, we use COCO-style APs, APm, APl , ARs, ARm, and ARl on objects of
small (less than 32× 32), medium (from 32× 32 to 96× 96), and large (greater than 96× 96)
sizes as the additional evaluation metrics. Given the total number of classes C, the class
index c, the total number of objects of class c expected to be detected Nc, the number of
objects of class c truly detected Pc, and the number of false alarms Mc, AP and AR are,
respectively defined as:

AP = (
C

∑
c=1

Pc/(Pc + Mc))/C (8)

AR = (
C

∑
c=1

Pc/Nc)/C (9)

4.2. Implementation Details

We trained the network with the Adam optimizer, a starting learning rate of 1.25 × 10−4,
and a total batch size of 20 on 2 Nvidia A100 GPUs. The structural parameters of the base-
line feature extraction network are consistent with the default settings of the original HRNet,
and the downsampling rate of the output feature map is set to 4. Similar to CenterNet [19],
we selected the top 100 response points from the heatmap and used the same settings
as those in CenterNet for the remaining parameters. The networks were trained for 80
epochs to achieve convergence. In our experiment, the input KITTI image kept its original
scale 1242× 375 due to its large aspect ratio, and the input BDD100k image was scaled
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to 512× 512 while maintaining a constant aspect ratio. We built our model based on the
official implementation code of CenterNet.

4.3. Comparison with State-of-the-Art Methods

Here, we extensively evaluate our approach using a comparison to a variety of compet-
ing algorithms that contain the FPN module on the KITTI and BDD100K datasets. In these
experiments, the input images are also scaled to 512× 512 while preserving the aspect ratio.
All competing algorithms are implemented with MMDetection [37].

4.3.1. KITTI Dataset

We compared our approach with a number of typical anchor-based and anchor-
free object detectors that contain FPN structures. As illustrated in Table 1, our model
appears to achieve the best accuracy among all comparison models in all metrics. Notably,
although our method uses a similar feature extraction network as CenterNet, the values
of AP@.5:.95, APs, APm, APl , ARs, ARm, and ARl were higher; specifically, the model’s
detection performance for small and large targets was improved by more than four points.
It is worth noting that CenterNet was better than FCOS with FPN in the detection of small
and medium objects. This may be because high-resolution feature networks contribute
to small object detection. FCOS with FPN is better than CenterNet for the detection of
large-scale objects. However, our model performs better than FCOS with FPN structure in
the detection of both small and large objects. These results show the effectiveness of the
optimized strategies for multiscale object detection in our method.

Table 1. Experimental results from different models on the KITTI dataset. All competing algorithms
are implemented with MMDetection, and the default settings are used for the parameters.

Method Backbone AP APs APm APl ARs ARm ARl

Faster R-CNN ResNet-101-FPN 49.3 29.0 51.7 61.0 32.1 58.7 67.8
SSD VGG16 36.5 27.3 37.0 45.4 34.8 47.7 59.6

YOLOv3 DarkNet53 36.5 32.3 39.1 40.3 38.1 47.0 49.5
FCOS ResNet-101-FPN 51.3 41.9 53.3 56.3 48.5 62.9 67.8

CenterNet HRNet-w48 52.8 52.8 55.4 53.3 58.1 61.8 65.7
ATSS ResNet-101-FPN 54.2 47.7 54.8 60.1 53.3 64.9 72.8

Ours (SA-CenterNet) HRNet-w48 56.9 53.6 59.4 57.4 58.2 66.0 67.9

4.3.2. BDD100K Dataset

The results from the models with the BDD100K dataset are presented in Table 2,
showing that our method achieved higher AP@.5:.95, APs, APm, APl , ARs, ARm, and ARl
scores than the other state-of-the-art methods. Compared to CenterNet, which shares the
same backbone network, our method achieved higher scores on all metrics. Specifically,
APs was increased from 9.1 to 9.6, APm was increased from 29.7 to 30.6, and APl was
increased from 47.0 to 49.9. In addition, compared with FCOS with an FPN structure, APs
was increased from 8.9 to 9.6, APm was increased from 29.8 to 30.6, and APl was increased
from 45.3 to 49.9. Similar to the previous results on the KITTI dataset, the results on the
BDD100K dataset once again show that our method improved detection performance for
small, medium, and large targets and that the improvement in the detection performance
for medium and large targets is more substantial.
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Table 2. Experimental results from different models with the BDD100K dataset. All competing
algorithms are implemented with MMDetection, and the default settings are used for the parameters.

Method Backbone AP APs APm APl ARs ARm ARl

Faster R-CNN ResNet-101-FPN 17.7 1.6 23.0 45.3 1.4 35.3 54.0
SSD VGG16 19.0 3.6 22.6 39.8 9.1 34.2 48.9

YOLOv3 DarkNet53 18.8 5.5 24.4 39.5 13.7 35.7 49.3
FCOS ResNet-101-FPN 24.4 8.9 29.8 45.3 19.2 44.1 57.8

CenterNet HRNet-w48 24.6 9.1 29.7 47.0 20.2 43.3 56.0
ATSS ResNet-101-FPN 24.5 9.7 30.1 43.7 20.5 46.2 58.8

Ours (SA-CenterNet) HRNet-w48 25.8 9.6 30.6 49.9 20.6 44.7 58.1

4.4. Ablation Study

In this section, we omit different key components of our model to investigate their
roles in the effectiveness of the proposed technique with the KITTI and BDD100K datasets.

Densely Connected High-Resolution Networks. Densely connected high-resolution
networks are proposed to obtain and use high-resolution convolutional features of the for-
mer stage more effectively. These networks further connect the initial high-resolution convo-
lutional feature maps to the later low-resolution convolutional feature maps. From Table 3,
we see that all the metrics were improved greatly when using these enhanced networks
alone. Particularly, APs was increased from 52.8 to 53.3 and ARs was increased from 58.1
to 58.6. These results indicate that densely connected high-resolution networks contribute
to detecting small-scale objects.

Table 3. Ablation study results for the two proposed strategies. We use “DC“ to denote the densely
connected module in the backbone networks and “SA“ to denote the scale adaptation module.

DC SA AP APs APm APl ARs ARm ARl

52.8 52.8 55.4 53.3 58.1 61.8 65.7
X 53.9 53.3 56.4 55.0 58.6 63.1 66.7

X 53.5 47.9 57.1 54.0 54.5 63.4 65.1
X X 56.9 53.6 59.4 57.4 58.2 66.0 67.9

Scale Adaptation Module. In this module, we use dilated convolution to enlarge the
receptive field size of the feature maps. In addition, we use different dilated convolution
expansion rates to change the receptive field size. To maintain efficiency, the module is
organized in a parallel structure. We first verified the effectiveness of the proposed scale-
aware module. As illustrated in Table 3, APm was increased from 55.4 to 57.1, APl was
increased from 47.6 to 55.1, ARm was increased from 55.9 to 57.3, and ARl was increased
from 53.3 to 54.0. However, APs and ARs were decreased to some extent.

We argue that on coarse feature maps, the enlarged receptive field size may cover more
noisy features for small objects; as a result, it hinders the detection of small objects. Never-
theless, when combining the scale-aware module with densely connected high-resolution
networks, the performance in detecting small objects was also improved. Specifically, APs
was increased from 52.8 to 53.6, APm was increased from 55.4 to 59.5, and APl was increased
from 53.3 to 57.4. The result again verifies the effectiveness of the densely connected module
for detecting small targets.

Number of Branches. We conducted experiments to determine the appropriate num-
ber of branches to produce an efficient model on the KITTI and BDD100K datasets, and the
results are shown in Tables 4 and 5. The scale-aware module contains different branches
to adapt to the scale changes in the objects. The results in Table 4 show that increasing
the number of branches from 1 to 3 yielded extensive improvements in the detection of
middle and large objects, which is due to the increase in the receptive field size of the
feature maps. However, when the number of branches was further increased, the detection
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performance was not further improved. In particular, APs decreased when the number of
branches was further increased. The enlarged receptive field size may hinder the detection
of small objects. Similarly, as shown in Table 5, increasing the number of branches from
1 to 3 yielded extensive improvements in the detection of middle and large objects. As a
result, in this paper, we set the number of branches to 3 with one directly connected branch
in parallel.

Table 4. Ablation study results for the number of branches on KITTI. The number here refers to
the number of branches with dilated convolution. According to the results, we set the number of
branches to 3.

Number of Branches AP APs APm APl ARs ARm ARl

1 53.1 52.4 56.1 53.7 56.9 62.9 65.9
2 55.3 53.5 57.7 54.2 58.5 64.5 64.4
3 56.9 53.6 59.4 57.4 58.2 66.0 67.9
4 55.9 51.2 56.8 58.7 56.6 62.4 67.8

Table 5. Ablation study results for the number of branches on BDD100K. The number here refers to
the number of branches with dilated convolution. According to the results, we set the number of
branches to 3.

Number of Branches AP APs APm APl ARs ARm ARl

1 25.2 9.6 30.2 48.1 20.5 42.4 56.4
2 25.2 9.5 30.4 48.8 20.8 42.3 56.4
3 25.8 9.6 30.6 49.9 20.6 44.7 58.1
4 25.3 9.6 30.4 48.6 20.5 45.6 56.7

Dilation Rate. For the scale-aware module, we conducted further experiments to
determine the appropriate dilation rate. We set two different dilation rate patterns: in one,
the dilation size in each branch is identical and expands equally among the branches; in
the other, a different dilation size is set for each branch, which then expands independently.
The experiments were conducted on the KITTI and BDD100K datasets to further verify
the stability of the results. As illustrated in Table 6, a larger dilation rate is associated with
higher APl and ARl values, which indicates that larger dilation rates are more beneficial
for large-scale object detection. However, a dilation rate that is too large will reduce the
detection performance for large-scale objects. For example, when the dilation rate was set
to 3, 6, and 9, the APl and ARl values are lower than when the dilation rate was set to 2,
4, and 6. In addition, enlarging the dilation rate of each branch with different sizes can
achieve better detection performance than expanding the dilation rate of each branch with
the same size, especially for small object detection, as seen in the changes in the APs and
ARs values in Table 6. We argue that setting different dilation rates for different branches
leads to better adaptation to different object scale variations.



Electronics 2022, 11, 3303 11 of 15

Table 6. Ablation study results for different dilation rates on KITTI. We set two different dilation rate
patterns: in one, the dilation size in each branch is identical and expands equally among the branches;
in the other, a different dilation size is set for each branch, which then expands independently.
According to the results, the dilation rate was set to 2, 4, and 6.

Dilation Rate AP APs APm APl ARs ARm ARl

2, 2, 2 52.1 51.5 54.2 54.3 57.0 61.8 65.3
3, 3, 3 53.4 49.0 56.7 53.2 55.0 64.7 64.8
4, 4, 4 52.8 51.2 55.6 53.1 56.5 61.7 65.6
1, 2, 3 55.4 51.8 57.8 56.7 56.5 64.3 67.2
2, 4, 6 56.9 53.6 59.4 57.4 58.2 66.0 67.9
3, 6, 9 55.0 52.9 57.7 55.8 57.9 63.3 66.8

From Table 7, the dilation rate is smaller, and APs and ARs are higher. However, using
a variable dilation rate can obtain higher detection accuracy values at different scales than
using a fixed dilation rate by comparing the first three rows of results with the last three
rows of results in the table. The result is consistent with Table 6. Therefore, our method is
stable on different datasets.

Table 7. Ablation study results for different dilation rates on BDD100K. We set two different dilation
rate patterns: in one, the dilation size in each branch is identical and expands equally among
the branches; in the other, a different dilation size is set for each branch, which then expands
independently. According to the results, the dilation rate is set to 2, 4, and 6.

Dilation Rate AP APs APm APl ARs ARm ARl

2, 2, 2 25.3 9.7 30.2 47.8 20.9 42.5 57.1
3, 3, 3 25.5 9.3 30.6 49.5 20.4 42.8 57.2
4, 4, 4 25.0 9.6 30.4 48.4 20.4 44.5 56.2
1, 2, 3 25.4 9.6 30.9 49.0 20.8 43.5 57.4
2, 4, 6 25.8 9.6 30.6 49.9 20.6 44.7 58.1
3, 6, 9 25.3 9.5 30.2 48.7 20.7 42.7 56.5

Different Backbones. We further conducted experiments to verify the effectiveness
of the scale-aware module proposed in this paper on the features extracted by different
backbone networks. As illustrated in Table 8, our method can improve the APm, APl , ARm,
ARl , and AP values when adopting the Hourglass features. In addition, our method can
improve the APm, APl , ARm, and AP values when adopting the original HRNet features.
These results show that our method is effective for different types of input features. It is
worth noting that the result again shows that using only the dilated convolution module
degrades the detection performance of small objects. Higher APs and ARs values can
be obtained with the HRNet feature than with the Hourglass feature. When our densely
connected high-resolution networks are adopted, the APs and ARs values are further
improved. These results suggest that high-resolution features contribute to small-scale
object detection.

Table 8. Ablation study results for different backbone networks on KITTI.

Method Backbone AP APs APm APl ARs ARm ARl

CenterNet Hourglass 55.9 45.9 56.2 63.4 51.8 62.0 69.3
Ours (SA-CenterNet) 56.1 45.6 56.0 65.3 52.4 62.5 70.3

CenterNet HRNet-w48 52.8 52.8 55.4 53.3 58.1 61.8 65.7
Ours (SA-CenterNet) 53.5 47.9 57.1 54.0 54.5 63.4 65.1

Ours (SA-CenterNet) DC-HRNet-w48 56.9 53.6 59.4 57.4 58.2 66.0 67.9
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Inference Speed. In this work, to maintain as much of the computational efficiency of
the model as possible, we adopted the following strategies. First, we chose HRNet as the
basis for our network because it connects high-to-low resolution convolution streams in
parallel. Second, we only added the skip connection between level 2 and level 4 feature
maps, as shown in Figure 3, rather than connecting all low-level features to high-level
features, such as DenseNet. Third, in our scale adaptation module, different branches are
connected in parallel, which is different from the serial connection of YOLOF. We compared
and verified the inference speed of the method; in particular, we compared the inference
speed with different backbone features. As can be seen in Table 9, when adopting the same
Hourglass backbone, the inference time of our method was only 8 ms longer than that of
the baseline model, CenterNet. In addition, when adopting the HRNet-w48 backbone with
high-resolution features, the inference time of our method was only 18 ms longer than that
of CenterNet. Notably, our method was 2 ms faster than the state-of-the-art ATSS when
using a slim Hourglass. These results show that our method does not significantly improve
the inference time.

Table 9. The model’s inference speed on the KITTI dataset. The resolution of all the input images was
set to be the same. All the models were tested on the same computing platform. The stack number of
Hourglass was set to 1.

Method Backbone Millisecond/Image

ATSS ResNet-101-FPN 39

CenterNet Hourglass 29
HRNet-w48 73

Ours (SA-CenterNet) Hourglass 37
HRNet-w48 91

Model Stability. To test the stability of our model, we conducted multiple sets of
experiments with different random seeds. We plotted the error–epoch curves on the test
dataset of KITTI, as shown in Figure 5. The mean and standard deviation are approximately
0.45 and 0.01, respectively, when converged.
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Figure 5. The error–epoch curves on the test dataset from three rounds of experiments with different
random seeds.
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4.5. Qualitative Results

We provide a visualization of the results achieved by CenterNet and our approach
on the KITTI dataset in Figure 6. The first column, the second column, and the third
column are the visualization results of the original CenterNet, our method, and the ground
truth, respectively. The three images in the first row show that our method successfully
detected nearby large-scale pedestrians without false detections of trucks. The pictures
in the second row indicate that our method successfully detected both the nearest and
the farthest pedestrians. The images in the third row show that our method successfully
detected nearby large-scale cyclists without false detection of pedestrians. The images in
the fourth row show that our method successfully reduced the false detection of the farthest
pedestrian. From the pictures in the last row, we can see that our method successfully
detected nearby large-scale cyclists. These results demonstrate that our method achieves
better detection performance for objects of different scales than CenterNet.

CenterNet Ours Ground Truth

Figure 6. Visualization of detection results on the KITTI dataset. The first column in the figure shows
the detection results from the original CenterNet, the second column shows the detection results
from SA-CenterNet, and the third column shows the ground truth. These results demonstrate that
our method achieves better detection performance for objects of different scales. The object categories
are Car, Van, Truck, Pedestrian, Person_sitting, Cyclist, Tram, Misc.

5. Conclusions

In this paper, aiming to address the insufficient adaptability of the classic anchor-free
model lacking the FPN module to object scale variation, such as CenterNet, we propose a
divide-and-conquer strategy and introduce some prior information about the object’s scale
into the model. Based on CenterNet, we propose SA-CenterNet in this paper. Specifically,
an improved high-resolution feature extraction network is proposed to adapt to small-scale
object detection, and a scale adaptation module is designed to adapt to the detection of
large-scale objects and object scale variation. Finally, a large number of experiments are
performed on two publicly used road scene camera image object detection datasets for
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autonomous driving. The experimental results show that the proposed model outperforms
the original, classic CenterNet and other recent anchor-free detectors with the FPN module
in the detection of objects with different scales, and the effectiveness of each module of the
model is verified by ablation experiments.

In the future, we intend to explore dynamic scale-adaptive networks and generalize
our approach to different types of detectors, such as studying the scale adaptation problem
based on the recently popular transformer-based detectors.
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