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Abstract: This paper aims to review some of the available tunable devices with emphasis on the
techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic
microstrip communication devices, versatility and stability have become key features of microfluidic
devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying,
or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either
in the form of loading components, switching, or as the radiating/conducting path of a microwave
component such as liquid metals. The major benefits and drawbacks of each technology are also
emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials,
their novel fabrication/patterning methods.

Keywords: microfluidic devices; reconfigurable filters; fluidic couplers; power dividers; phase
shifters; SPST switches; MEMS switches

1. Introduction

Over the past decade, switchable/tunable microwave components have become an
active research area, and much research reveals that tunable microwave components can im-
prove the performances of RF and microwave devices in many ways. Improvements in the
frequency of tunable devices, such as microelectromechanical systems (MEMS) [1–4], field-
effect transistor (FET) couplers, power dividers, phase shifters, filters, sensors, switches [5,6]
varactor diodes [7–10], and PIN diodes [11–14], permitted the popularity of frequency-
switchable technologies, leading to versatility and reliability of the systems. Despite many
of the advantages of tunable devices, such as fast switching, improvement in bandwidth,
and high quality they offered, these tunable mechanisms, on the other hand, have some
drawbacks. They have poor power-handling capability and are not fully compatible with
many conformal devices. They also required DC bias networks to function. However, it is
quite challenging to isolate the control circuitry and the biasing network [15]. For tunable
microwave components to be compatible with conformal devices, the passive components
associated with it also be to be flexible as well. This implies that it will be difficult to use
the classical printed circuit board printing technologies for prototyping such components.
To find better ways for prototyping such flexible components incorporated with tunable
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circuitries, it is necessary to make use of various techniques of using fluidics within the
microwave components to have full flexibility of the devices.

Fluidic techniques are used either in the form of loading components, switching,
or as the radiating/conducting path of a microwave component such as liquid metals.
In either case, they have to gain more popularity because of their benefits compared to
semiconductor devices ad MEMS [16]. Some of these advantages are its low insertion loss,
high linearity, high radiation efficiency, high-frequency tunability, and easy fabrication
compared with other tuning and switching approaches [17]. Due to its tremendous advan-
tages, the microfluidic technique is becoming an alternative switching method due to the
fact that it does not require any separate DC biasing networks [18]. This proposed paper
aims to review some of the available tunable devices with emphasis on the techniques em-
ployed, fabrications, merits, and demerits of each technique to guide researchers working
in the area.

2. Fluidic Coupler, Power Divider, and Phase Shifters

A quad-port coupler is a uniform network to when any of the coupler’s port is excited
with power, then it divides the power correspondingly among the two opposing ports
with one of the outputs lagging the other by 90◦, whereas the next port to the input is
fully separated. A fluidically tunable branchline coupler (BLC) was presented in [19].
In this design, a classical BLC was designed, and the ground path was etched, forming
12 channels beneath the main structure of the BLC, as shown in Figure 1. To evaluate the
frequency-tuning response of the coupler, these channels were systematically occupied
with the C4H8O2 (dielectric-fluid-ethyl-acetate).
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Figure 1. Diagram of the tunable branch line coupler (BLC).

The dielectric and loss tangents of the fluid are 6.0 and 0.0059, correspondingly. From
the fluid’s dielectric property, it could be observed that the difference between the sub-
strate’s permittivity and that of the fluid is almost the same as the difference between that
of the substrate and air. For this reason, both the ascending and the descending frequency
shift of the coupler when the four channels are completely or partially filled with the fluid,
and when it is empty, then it is almost comparative to the operating frequency of the
coupler. After forming the channels, two cases were considered. The first case is when
no fluid is injected into the coupler. The second case is when the fluid is injected onto the
coupler. In this latter case, it was injected such that the symmetrical nature of the coupler is
maintained. In both cases, the coupler was measured by means of VNA (vector network
analyzer) from 1 to 3 GHz. The experimental results have shown an excellent tuning of
about 390 MHz within the range from 2.19 to 1.80 GHz. Microwave power dividers, on the
other hand, are cousin brothers to hybrid couplers with little difference in the number of
ports and the output phase difference. It plays a significant role in microwave devices. It is a
network whose input power is divided into N-ways output according to some proportions.
A microfluidic compact broadband power divider was designed and implemented in [20]
using nematic liquid crystal. In this paper, the power divider used an inverted microstrip
line and loaded a split-ring resonator (SRR) on the metal conduction band. It also loads
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a nematic liquid crystal on the inverted microstrip lines, which results in providing a
wideband power divider operating in C band.

The major setback of using nematic liquid crystal is that the arrangement of its molec-
ular structure is not as stable compared to its crystal form. As such, it is susceptible
to variation because of environmental changes such as temperature and the presence of
electromagnetic fields.

Phase shifters are an important part of the building block of many wireless mobile
communications equipment. It is a gadget that provides a variation in the phase angle
of each signal that travels across it. Favorably, it must not yield any attenuation, and it
must be excellently equal from input to the output terminal of the transmission line. In
the case of the microstrip method, any further line in addition to a recommended line
presents a phase shift [21]. A reconfiguration phase shifter presented in [22] is also based
on a microfluidic technique. It consists of a conventional coupler with reflective microstrip
lines at the terminations ends. From this design setup, a microfluidic channel is constructed
with a polydimethylsiloxane (PDMS) layer, and the selectively metalized plate (SMP)
prepared from Rogers RO4003C was sandwiched in-between the microfluidic and the
reflective microstrip terminations line to vary the electrical lengths of the main phase shifter
through the capacitive short mechanism. Figure 2 depicts the prototype and the return loss
results presenting the insertion and return losses exhibited by the reconfiguration phase
shifter. The design comprehends 360-degree phase difference with an overall 9.5 mm SMP
shift subsequently given a total actuation time of 1.95 s with the micropumps. However,
insertion and return loss better than 20 and 0.95 dB, respectively, were achieved in the
whole-frequency bands.
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Figure 2. The photograph of the phase-shifter.

A 4 × 4 Butler matrix using single-layered Rogers’ RO3003 substrate without phase
shifters is reported in [23]. A dual-band novel BLC (branchline coupler) and a 4 × 4 Butler
matrix with modified PI-shaped TL are reported in [24]. The proposed novel BLC is a dual
resonance branchline coupler and combination of the phase shifter and able to accomplish
dual-band resonance for 2.3–4.4 frequency ratios. In both cases, the prototypes were
calculated by means of a VNA from 1 to 3 GHz. Roger 5870 with relative permittivity of
εr = 2.33, tangent loss of tan δ = 0.0012, and thickness of h = 0.787 mm is used as a substrate.
The S11- features of the projected dual resonance branchline coupler (BLC) achieved the
maximum phase-deviation and amplitude imbalance of about and respectively. Figure 3
depicts the prototype of BLC and 4 × 4 BM and simulated and measured phase difference
in degrees.
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Figure 3. (a) The branchline coupler (BLC) prototype; (b) simulated measured phase variation of
BLC; (c) the 4 × 4 Butler matrix prototype; (d) measured and simulated phase difference of 4 × 4
Butler matrix [24].

On the other hand, a compact size UWB 90-degree phase shifter is designed in [25]. It
consists of a main line and a reference line to make it ultra-wideband. This miniaturized
phase-shifter covers the frequency range from 1.36 to 4.53 GHz with only ±5% phase
error. Roger RO4350B with epsilon value of εr = 3.48, tangent loss tan δ = 0.0037, and a
height of h = 0.762 mm is used as a substrate. Figure 4 depicts the miniaturized phase
shifter and shifted phase results exhibited by the UWB phase shifter. However, a return
loss and insertion loss superior to 1.25 and 20 dB, correspondingly, were achieved in the
whole-frequency bands.
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An inkjet printer 3 dB coupler with flexible phase difference and equal power division
is presented in the work of [26]. This 3 dB coupler covers the frequency range from
5.09 to 6.97 GHz with a slight phase variation of about ±1◦. Transparent polyethylene
terephthalate (PET) with epsilon in free space εr = 2.71, tan δ = 0.043 (loss tangent), and
h = 0.125 mm (thickness) is used as a substrate. Figure 5 depicts the 3 dB coupler with
simulated and measured results. However, a return loss and insertion loss are −28 and
−48 dB, respectively, and were achieved in the whole-frequency bands. The overview
about the fluid coupler, power divider, and phase shifters is given in Table 1.
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Table 1. Comparison analysis of fluidic coupler, power divider, and phase shifters.

References Fluid
Material/Substrate Technique/Type Band Application Advantage Disadvantage

[19] Rogers’ RO4003 Tunable branchline
coupler 1.8–2.29 GHz Microfluidic

application
Reconfigurability/power
combiner/simple design

Need to improve the
errors, coupler
mismatching

[20] Nematic liquid
crystal

Inverted microstrip
line with loaded

split-ring resonator
(SRR)

C band Power coupler

Low loss,
easy integration with other

circuits
RL > 24 dB
IL = 3 dB

Susceptible to
environment change and

EM radiation

[21] Polyethylene
terephthalate (PET)

Low-cost inkjet
printing technique 6 GHz

Phase shifters/4 × 4
Butler matrix (BM)

for wearable
applications

High isolation and return
loss/RL. 19 dB

IL. 0 dB
90-degree phase shifted

Susceptible to
environment change and

EM radiation

[22]

PDMS and SMP
prepared from

Rogers RO4003C
sandwiched in b/w
microfluidic and the
reflective microstrip

terminations line

Microfluidic
techniques x-band

Microfluidically
reconfigurable

reflection phase
shifter

Low loss and high
power-handling

capability/360◦ phase
shifted,

RL. 20 dB, IL. 0.95 dB

Not miniatur-
ized/susceptible to

environment change and
EM radiation

[23] Rogers’ RO3003 Microstrip hybrid
modified coupler 6 GHz 4-by-4 Butler matrix

for future 5G

Stable beam-scanning,
Couplers having 45◦ Phase

difference/
RL: 25.6 dB

45◦ PS

Complex issues
involved in the design of

Butler matrix

[24] Rogers 5870
Modified PI-shaped
transmission lines

(TL)
1 and 2.85 GHz

Dual-band
branchline coupler

and 4 × 4 Butler
matrix

Compact size,
simple design,

Not UWB/large
size/Susceptible to

environment change and
EM radiation

[25] RO4350B substrate Miniaturization 1.36 to 4.53 GHz

Phase shifter used
in mobile

communication
systems

Compatible to integrated
communication

systems./Suitable
agreement with the EM

simulation/ultrawideband/
miniaturized/

RL. 20 dB,
IL. 1.25 dB

-

[26]
Transparent

polyethylene
terephthalate (PTE)

Instant inkjet
printing silver nano 5.09 to 6.97 GHz Inkjet-printed 3 dB

coupler

Fast prototyping of
electronic circuitries

RL = −28 dB

Narrowband/susceptible
to environment change

and EM radiation

3. Microfluidic Reconfigurable Filters

Fluidic channels are used in microwave circuits for unlike applications such as recon-
figuration, polarization, and frequency tuning. In this sub-heading, different methods for
reconfigurable filters are mainly discussed. Reference [27] proposed a substrate concen-
trated of the microfluidically reconfigured frequency-tunable filter as depicted in Figure 6.
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In this setup, Rogers 6010 substrate with peak relative permittivity and tangent loss of
εr = 10.2 and tan δ = 0.0025 correspondingly, is used for the recognition of the microstrip
line resonators. The second substrate was formed from PDMS, having dielectric and loss
tangents of 2.8 and 0.04 individually. The microfluidic channel is created on the PDMS,
and the two substrates were bonded by means of benzo cyclobutene (BCB) having εr = 2.4
and tan δ = 0.002. With the aid of a metal plate (MP), a less lossy dielectric fluid 3 M FC-40
with density = 1.855 g/cm3, tan δ = 0.0005, and εr = 1.9 was used to fill the channel created.
The results obtained revealed that the unpacked Q.F. (quality factor) of the resonators is
sustained a dielectric constant value within 210 to 190 across the whole tunable range with
a very less insertion loss (IL = 3 dB) and a greater power-handling capacity of about 15 W
under continuous excitation of the power. A fractional bandwidth of the filter design was
experimentally verified to be about 5%.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 28 
 

 

[25] RO4350B substrate Miniaturization 
1.36 to 4.53 

GHz 

Phase shifter used 
in mobile commu-
nication systems 

Compatible to inte-
grated communica-
tion systems./Suita-
ble agreement with 

the EM simula-
tion/ultrawide-
band/ miniatur-

ized/ 
RL. 20 dB, 
IL. 1.25 dB 

- 

[26] 
Transparent polyeth-
ylene terephthalate 

(PTE) 

Instant inkjet 
printing silver 

nano 

5.09 to 6.97 
GHz 

Inkjet-printed 3 
dB coupler 

Fast prototyping of 
electronic circuit-
ries RL = −28 dB 

Narrowband/susceptible 
to environment change 

and EM radiation 

3. Microfluidic Reconfigurable Filters 
Fluidic channels are used in microwave circuits for unlike applications such as re-

configuration, polarization, and frequency tuning. In this sub-heading, different methods 
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ated. The results obtained revealed that the unpacked Q.F. (quality factor) of the resona-
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Figure 6. Microfluidically reconfigurable half-wavelength resonator filter. 

A microfluidic reconfigurable triple-band filter resonating at (1, 1.4, and 1.8) GHz 
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mode ring resonators, and the metallic liquid switches were used inside for the interrela-
tion of various resonators and lines. The design employed eutectic gallium indium liquid 
metal as the fluid mixed up with sodium hydroxide for improvement in the liquid metal 

Figure 6. Microfluidically reconfigurable half-wavelength resonator filter.

A microfluidic reconfigurable triple-band filter resonating at (1, 1.4, and 1.8) GHz was
designed and presented in [28]. The structure was constructed by means of dual-mode
ring resonators, and the metallic liquid switches were used inside for the interrelation of
various resonators and lines. The design employed eutectic gallium indium liquid metal as
the fluid mixed up with sodium hydroxide for improvement in the liquid metal fluidity.
The combination of these fluids is used as the switches for shifting different frequencies,
and micropumps are used to inject the liquid metal switches. This configuration has the
advantage of providing autonomous exterior Q tuning that is obtained by converting means
of various tap coupling feedlines. This design was printed on a Rogers UL200 substrate
with εr = 2.5 and a height of h = 0.762 mm, as shown in Figure 7. Fairly suitable experimental
insertion losses at the three bands were found to be 0.68, 0.69, and 0.47 dB, respectively.
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A bandpass filter operating at dual-band frequencies with fixed lower-frequency
band and tunable higher-frequency band was presented in [29]. This paper consists of a
microfluidic channel, stub, and two split-ring resonators (SRRs). The resonant frequency
at the lower band is being controlled by one of the SRR, whereas the combination of the
stub and the other SRR-controlled the upper frequency. However, the higher band is being
resolved by stub lengths and the SRR. A metallic liquid called EGaIn (eutectic gallium
indium) includes indium that is being inserted into the microfluidic channel to excellently
change the electrical stub length. The channel was melded from polydimethylsiloxane
(PDMS) elastomer. Figure 8a proves the area of the setup, and the picture of the prototype
filter is shown in Figure 8b.
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Figure 8. (a) Side view of the final filter; (b) pictures of the proposed prototype filter injecting EGaIn
into the filter [29].

The fluidic channel was fabricated with the aid of a 3D printer, and the complete filter
was printed on a flexible Rogers substrate RT5880 with εr = 2.2, as presented in Figure 8.
When the metallic liquid was inserted into the channel, the result of the EGaIn enlarging
the dimension of the stub, and this, in turn, reduces the resonance band. This variation in
frequency is depicted in Figure 9. From the results of the transmission coefficient obtained,
the lower band was kept fixed at 1.85 GHz, but the upper band was kept movable from
2.95 to 3.06 GHz as a result of injecting the liquid metal into the channels.
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One of the common challenges of using polydimethylsiloxane (PDMS) is how to bond
it with a different material. In this case, the adhesive film used to bond the Rogers substrate
and the PDMS together might be responsible for the slide shift at the upper resonance
frequency [30]. A frequency-reconfigurable CSRR (complementary-split-ring-resonator)
loaded QMSIW (quarter-mode-substrate-integrated-waveguide) bandpass filter was pre-
sented in [31], Other fluidically based microwave devices are reflection-type oscillators
using a SIW (substrate-integrated-waveguide) resonator [32], microfluidically controlled
waveguide switch [33], and fluidic split-ring resonator [34]. The proposed fluidic bandpass
filter, CSRR, was formed as a square-shaped slot design divided in the metallic pattern.
Once the complementary split-ring resonator is overloaded on the upper level of the
QMSIW structure, it results in tremendous size reduction in the structure, which directly
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provides advantages in terms of cost and space conservation. For frequency switchability, a
microfluidic channel with a PDMS substrate and EGaIn was used. It is printed by using the
3D printer. Figure 10 illustrates the prototype method of the microfluidic channel with a
PDMS substrate.
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Figure 10. Procedure of the microfluidic channel mold filled with PDMS solution.

However, when the metallic liquid was inserted into the channel, the operating fre-
quency varied from 2.205 to 2.56 GHz with practically little change in the coupling coeffi-
cient. For the fractional bandwidth, there was an improvement of about 2.58% compared
to when the channel was empty. This is retributed to the structure of the CSRR varies and
the reduction in the outer Q factor. For quick verification, the measurement was repeated
when the liquid was completely removed from the channel, and the measured results
are quite like those recorded before the liquid metal was injected. A switchable liquid
metal alloy bandpass/bandstop filter was presented in the work of [31], in which there is
no need for biasing. EGaIn with PDMS is used as a liquid metal on a Roger RT/Duroid
5880 substrate. A third-order balanced reconfigurable bandpass microstrip filter operating
in seven different bands was proposed in [35]. Sodium hydroxide (NAOH) is used as a
liquid metal on a substrate Roger RT/Duroid 5880. Figure 11 presents the prototype of the
microstrip filter with the microfluidic channel.
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Figure 11. (a) Fabricated design of the microstrip filter; (b) mircrofluiding channel implementation [35].

Another research was implemented on tunable microstrip filters [36]. At 10 GHz,
the resonators are developed on a Rogers RT/Duroid 5880 substrate with a thickness of
0.254 mm. The basic concept is to use a suspended substrate with an integrated network
of plastic tubes that can be filled selectively with a high-permittivity dielectric fluid, such
as water. The electrical length of certain elements of MS circuits may be changed in a
controlled and reversible manner by changing the substrate’s effective permittivity in this
way. Tunable stub resonators based on suspended and inverted MS lines are constructed
and characterized in frequency and temporal domains as proof-of-concept. The same
concept is then used to create a fourth-order bandpass filter with a fractional bandwidth
of 40% that operates at 5 GHz. An adjustable range of 19.5% is demonstrated, with an
insertion loss of 0.6 dB.
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Enrique Gonzalez-Carvajal et al. presented an mm-wave tunable microfluidic reconfig-
uration bandpass filter in [37]. This BP filter was found attractive for wideband tunability,
low loss, and high power-handling capacity. Different layers of fluids such as fused silica,
parylene, and FC-40 were used in a microfluidic channel. Roger RO4003C was chosen
for selectively metalized plates (SMP). Figure 12 shows the prototype of the bandpass
microstrip filter with microfluidic channel details. The comparison about parameters about
different microfluidic reconfigurable filters is given in Table 2.
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Table 2. Comparison analysis of microfluidic reconfigurable filters.

Reference Fluidic
Material/Substrate Frequency (GHz) Technique/Filter

Type Applications Advantage Disadvantage

[27] 3 M FC-40/Rogers
6010.2 and PDMS 4 to 1.5 GHz microstrip line

comb-line filters 4th-order filter

Reconfigurability/high
tunable-frequency

range/IL = 3 dB and
RL = 9.5 dB,

power-handling
capacity = 15 W

Susceptible to
environment

change and EM
radiation

[28]

Eutectic gallium indium
liquid metal mixed up

with sodium
hydroxide/Rogers

UL2000

1, 1.4, and 1.8 GHz

Metal liquid
switches and

dual-mode ring
resonators

RF filters Reconfigurability/
IL = 0.47–0.68 dB

Need of bias-
ing/temperature

sensitive

[29]
eutectic gallium indium
(EGaIn)/Roger Duroid

5880

Lower
band = 1.85 GHz,

Higher band = 3.06–
2.95 GHz

Split-ring resonator Dual-band
bandpass filter

Fluidically tunable/dual
mode/

IL ≤ 2.72 and
< 3.21

Need of bias-
ing/temperature

sensitive

[30] Zoflex conductor/PDMS 6 GHz Planar microstrip
circuit

3 dB-branchline
coupler

Bandwidth is wider than
single conventional

coupler/RL and isolation
>18 dB, IL > 4 dB

Need of bias-
ing/temperature

sensitive

[31]
Eutectic gallium indium
(EGaIn)/Roger 5880 and

PDMS
2.205 to 2.56 GHz CSRR/QMSIW Bandpass filter

Switchable frequency/
RL > 15 dB,
IL < 1.5 dB

Need of bias-
ing/temperature

sensitive

[32] Distilled water C band SIW
Fluidic tuning of

microwave
oscillators

Frequency tuning/tuned
over a 110 MHz band

Need of bias-
ing/temperature

sensitive

[33]

Eutectic gallium indium
(EGaIn)/thermoplastic
acrylonitrile butadiene

styrene

K band Using multiline
technique

Microfluidically
controlled

waveguide switch

Low cost, lightweight,
RL > 15 dB
IL = 0.5 dB

Temperature
sensitive

[35] Sodium hydroxide
(NAOH)/Roger RT 5880 S band Microstrip 3rd-order bandpass

filter

Reconfigurability/
RL < 40 dB

IL = 1.67–2.17 dB

Temperature
sensitive

[37]
(fused silica, perylene,

and FC-400)/Roger
RO4003C

28 Gto 41 GHz Microstrip Tunable mm-wave
bandpass filter

Reconfigurability/low
loss/high

power-handling capacity
IL = 1.9–3.1 dB

Need of bias-
ing/temperature

sensitive
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4. Fluidic Antennas

Fluidics is very common in antenna technology, especially for feeding networks [38–40].
Abhishek Dey et al. presented a microfluidically switched broadband tunable metallic liquid
monopole antenna [38]. The design is based on the volume of the movable metallic liquid
where the micropump unit is coupled using a microstrip feedline capacitively. To enhance
the capacitive coupling at the feeding point, a microfluidic channel model is developed
by bonding between 0.0254 mm-thick liquid crystal polymer and PDMS substrates. The
design was measured for frequency band 1.29 to 5.17 GHz, and this monopolar antenna
can also be operated as a component to make a broadband frequency tunable with peak
gain antenna aperture without any further microstrip unit. The schematic of this presented
antenna is shown in Figure 13.
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Figure 13. Liquid metal monopole.

Using deionized water R.R. Franklin and C. Murray were structured an independently
tunable slot antenna operating frequencies water [40]. Two resonating frequency channels
are introduced. The resonating bandwidth of the first channel is 3.3 GHz to 4.2 GHz, and
the second channel is 5.2 to 8 GHz. A ringed slot antenna with a cohesive surface fluidic
channel is carefully designed and investigated to obtain independent control on these two
channels. The schematic of the final design is presented in Figure 14a. The electric field
distribution using the simulator for both channels is discussed in Figure 14b,c.

In concluding remarks, high dielectric loss fluid is suitable for channel control but
caused to degradation the peak gain and using lower dielectric constant fluid gain degra-
dation is reduced. In the work of [41], to nullify the effect of a human hand on antenna
performance, a microfluid-based planar inverted F antenna impedance tuning is intro-
duced. The impedance matching is attained by changing the impedance of the liquid
metal alloy stub injected by the piezoelectric micropump. The antenna was printed on
FR-4 substrate and worked at 900 MHz. The injection and extraction of microfluidics are
faster and easier in this design as compared to the work of [42,43], where liquid metal
is constantly inserted into a long fluidic channel. The microfluid channel was fabricated
inside the PDMS (polydimethylsiloxane). The oxidation problem is solved by pre-treating
the microfluid channel with Nafion solution. The fabricated model of the antenna with a
microcontroller is presented in Figure 15.
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A reconfigurable double stub tuner with Galinston liquid metal is proposed in the
work of [44]. The whole structure is supported on Roger RT/Duroid 5870 substrate.
The input impedance can go beyond 75 ohms when the resolution in the liquid metal
pumping is increased. Three-dimensionally printed multiple polarization switchable E-
shaped microfluidic antenna was introduced in [45]. This is a dual-polarized microfluidic
patch antenna, i.e., linearly polarized and circularly polarized fabricated on Roger RT5880.
Multilayer prototype microfluidic E-shaped patch antenna is presented in Figure 16.
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On the other hand, a wideband switchable slotted patch antenna based on microfluidic
was introduced in [46]. The patch antenna was printed on the Roger substrate RT/Duroid
5880. The fabricated model of the switchable slotted patch antenna is presented in Figure 17.
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Kai Kit Wong et al. presented a fluidic flexible antenna that can switch its position
easily in vacuum [47]. Within a small space, the antenna can attain the capacity of the
multiple antenna maximum ratio combining (MRC) system. A low-cost novel monopolar
closed-loop fluidic antenna system that can switch itself in real-time. An Agilent 85070E
probe kit is used to measure the loss tangents and the dielectric constants of the poly-
dimethylsiloxane (PDMS). Two kinds of ionized solutions, NaCl and KCl, were used as
fluidic materials. The whole system was fabricated on FR-4 (εr = 4.3, tan δ = 0.008) substrate.
The antenna system covers the frequency range from 3.2 to 5 GHz. Isometric view of the
3D-printed monopolar fluidic antenna and simulated h-field at 3.5 GHz as presented in
Figure 18.
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A miniaturized monopolar water patch antenna using ethyl acetate substrate was
presented in the work of [48]. This water patch antenna is an elective applicant of a
crystalline antenna.

It involves three layers: first layer of water patch, second layer of ethyl acetate sub-
strate, and the third layer of water ground plane. The proposed water patch antenna is
shown in Figure 19. The overall summary about different fluidic antennas is given in
Table 3.
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Table 3. Comparison analysis of fluidic antennas.

References Fluidic
Material/Substrate Bands Techniques/Antenna

Type Applications Advantages Disadvantages

[38] EGaIn/PDMS/Roger
RT Duroid 5880 2.5 GHz Liquid metal alloy

as fluidic switch

Switchable
bandpass/bandstop

filter

Low cost, no need of
biasing, high temperature

sensitivity, RL > 15 dB,
IL = 0.5 dB

-

[39]

Low-loss
Teflon/(PDMS +

liquid crystal polymer
+ Roger 5880)

1.29 to 5.17 GHz Microfluidical
reconfiguration

Micropump driving
circuit,

microcontroller

Miniaturized, tuneable
array

Susceptible to
certain applications

that require
compact size

[40] (Air + acetone + DI
water)/FR-4

3.3–4.2 GHz for
1st band,

5.2–8 GHz for
2nd band

Surface-integrated
fluidic channel

Channel placement
locations -

Susceptible to
environmental

change

[42] PDMS/Rogers
RT/Duroid 5880 900 MHz PIFA Piezo

electric-micropump
Perfect impedance

matching
Susceptible to the

environment

[43]
PTFE, polyimide,
Galinstan, Rogers
RT/Duroid 5880/

3.37 to 6.02 GHz

Continuous
electrowetting

(CEW)/liquid metal
slugs

Frequency-tuneable
amplifier

The amplifier can be tuned
with higher precision -

[44] Polystyrene/Roger
RT/DUROID 5870 3.275 GHz

Liquid metal
reconfigurable

double stub tuner

Automated
pumping and

tuning mechanism
High tuning resolution

With high
resolution, input

impedance beyond
75 points

[45] PTFE, RT5880 PCB 2.4 GHz 3D-printed
microstrip

Tuning and
switching

mechanisms

Multiploidizations, highly
effective, reconfigurability -

[46]
Optical clear acrylic
(Veroclear)/Rogers
RT/Duroid 5880/

2–2.5 GHz Microstrip slotted
patch antenna 3D printing Wideband/switchable/high

resolution/reusable
More transition

time

[47] (NaCl + KCl)/FR-4 3.2 to 5 GHz
Closed-loop

system/microstrip
feedline

Multiple
communications/3D-

printed fluidic
antenna

Low loss, low cost,
reconfigurable, efficient, Not flexible

[48] Water patch
antenna/ethyl acetate 1.9 GHz

Monopolar patch
with

high-permittivity
substrate

Optically
transparent

Low cost, miniaturized,
transparent, ease of access,

flexible
Less efficient
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5. Fluidic-Based SPST Switch

Microfluidic is also very useful in controlling the switches of RF and microwave
devices. Switches such as single pole single through switch (SPST) and single pole double
through switch (SPDT) are some of the popular RF and microwave switches available.
The SMPs-based high power-handling and wider bandwidth line combining filter were
proposed using capacitive loading and length variation concept. According to some recent
research, up to 10 m microfluidic channel walls were proposed in [49] with a high-speed
feeding switch for millimeter-wave beam-steering focal plane arrays. Although the liquid
metals switching has limitations due to oxidization and low conductivity, these problems
were solved using selectively metalized plates (SMPs). Reference [50] reports that recently
some researchers were designed a combined actuation of the microfluidic switchable
millimeter-wave SPST switches. It exhibited a low insertion loss (IL) of about 0.42 dB,
wide bandwidth, and fast switching. The combined piezoelectric reconfiguration and the
actuation time of the design is 1.12 ms with a working bandwidth from 22 to 40 GHz. The
piezoelectric actuation is based on the method discussed in [48]. Where frequency tunability
is attained by employing a portable metalized plate in the microfluidic channel. The design
is coupled capacitively with a microstripline through 12 µm-thick non-conductive benzo
cyclobutene (BCB), used to make a bond, and wrapped the polydimethylsiloxane (PDMS).
The comparison between fluidic-based SPST switches is given in Table 4.

Normally, the water droplet has a capacitive contact with a dielectric, as reported
in [51]. Chen et al. described the design of a new wideband microfluid-based reflective and
absorptive switch [52]. This water-based switch works more than 20 GHz. They are cheaper
than liquid metal switches. The major issues discussed in this design are less isolation
and droplet evaporation because of substrate losses. Droplet is modeled in a packed form
in this design, and the isolation is practically improved, and more than 15 dB for whole
operating bandwidth is successfully attained. Conventional droplet size measurement
technology discussed in [52] was used for the capacitive switch. In this work, it is studied
that if the number of droplets in a coplanar waveguide (CPW) is increased to a droplet 2
to 3, the isolation also increases from 15 to 20 dB, respectively, at 20 GHz. From the first
absorptive switch, only a partial E-field is enclosed by the water droplet while, for the next
absorptive switch in Figure 20, the water surrounds the CPW line, producing an E-field to
circulate through its volume.
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The applications of RF (radio frequency) MEMS (micro electro-mechanical systems)
switches in space hardware need extensive study and test efforts. An electrowetting concept
of the liquid metal droplet is proposed in [53]. A silicon-based MEMS technology SPDT
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RF switch was reported in [54]. Moreover, in [55], a low actuation power employing a
liquid metal-based fluid is designed by means of continuous electrowetting and air bubbles
trapped. It has a wide bandwidth and a low-loss shunt switch. With this low actuation
power, the bandwidth of the structure ranges from 4 to 16 GHz with a 10 dB isolation, and
less than 5 dB insertion loss is successfully achieved. The OFF and ON working states of
the device were performed satisfactorily by injecting an air bubble and liquid metal into
the capillary.

A reconfigurable slot array antenna with a radiofrequency MEMS switch for X-band
applications was proposed in [56]. External micropumps and slow speed are the major
drawbacks in microfluidic antennas. To overcome these issues, microfluidic switches for
millimeter-wave beam-steering antenna arrays were presented in [57]. The microfluid
channel is occupied by low-loss liquid FC-40. Four elements antenna array is operated
with an insertion loss of <0.9 dB and isolation of <18 dB at 18 GHz. The fabricated model
of the antenna with a microcontroller.

Table 4. Comparison analysis of fluidic based spst switches.

References Fluid/Substrate Band Technique/Antenna
Type Applications Advantages Disadvantages

[49] Roger RO4003C Ka-band Microfluidic
reconfigurable

Piezoelectric
micropump

actuation

Closed loop,
reconfigurability,
position sensing

IL < 0.2 dB

Toxic for the
environment

[50]

(SU-82075
Microchem +

parylene)/
Roger RO4003C

22 to 40 GHz Microfluidic microstrip
SPST

reconfigurable
switch

Low loss, wideband,
high reliability, low

reconfiguration time,
superior

power-handling
capacity/

IL = 0.42 dB,
isolation > 20

SPST switch
performance is

not so good, not
closed loop

[51]

FC-40, benzocu-
clobutane

(BCB)/PDMS,
RO4003C

1.7–3.5 GHz
Microfluidically

tunable monopole
antenna

Piezoelectric
micropumps-
based SPST

switch

High RF power,
highly efficient,

tunable
Not closed loop

[52] Teflon/galinstan
solution/PDMS 20–100 GHz Coplanar waveguide

technique MEMS switch

Very wideband,
nontoxic for the

environment,
IL < 1.3 dB

Isolation > 20 dB

-

[55] PTFE, polyimide,
polystyrene 4–16 GHz Coplanar waveguide

technique Shunt switch Low power, wideband,
IL < 5 dB, Is > 10 dB

Toxic for the
environment

[57] Low-loss liquid
FC-40/RO4003C 30 GHz

Four elements
millimeter-wave

beam-steering antenna
array

Microfluidic
switches

Less actuation time, low
loss, high

power-handling
capacity/IL < 0.9 dB,

isolation < 18 dB

[58] FC-40/RO4003C 28GHz

Microfluidically
reconfigurable spatially
adaptive antenna array

(MRSA)

Millimeter-wave
wireless channel
control systems

High gain,
reconfigurability, long
microfluidic channel,

Slightly
misalignment in

fabrication

Microfluidic-based reconfigurations of a spatially adaptive antenna array (MRSA) for
millimeter-wave wireless channel control systems were proposed in [58]. The microfluid
channel is occupied by low loss liquid FC-40 on a Roger RO4003C substrate and the
sidewalls of the channel executed from Photo-resist SU-8. The fabricated model of the
MRSA is shown in Figure 21.
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6. Microfluidic Sensors

A gas sensor contains an active layer and a transducer. It has many applications,
which include home control, industrial safety, environmental monitoring and control,
quality control of agricultural food products, biomedical diagnostics, etc. [59]. Different
technologies that involve various transduction principles are used for gas sensing. This
includes electrochemical, conductometric optical, acoustic wave, plasmonic transduction,
impedance spectroscopy, and microwave. The need for having real online monitoring
in remote sensing applications that have been deployed wirelessly has recently made
microwave-based gas sensing popular. Microwave is one of the frequency bands in the
electromagnetic spectrum that has been used for remote sensing applications. The perfor-
mance of surface-micromachined devices may be superior to that of bulk-micromachined
devices, according to research. At 1 mW heater dissipation, the sensitivity for hydrogen
in the air was determined to be 60 V per percent H2. As stated in the section, sensitivity,
reaction time, selectivity, compact size, and low power consumption are all aspects that
influence the performance of any sensor. According to multiple studies on various gas
sensors, the current trend is to build gas sensors employing microelectronics technol-
ogy, which offers the advantages of compactness and low power consumption. The
microwave transduction principle is created on the response of the dielectric sensing ma-
terial, which has propagative structures when exposed to the target gas [60,61]. Finally,
RF sputtering from the Pt target (99.999%) via a tape mask at an RF power of 142 W and
a sputtering pressure of 7 mTorr was used to coat a Pt film as a catalyst over the ZnO
layer. However, different types of sensing materials have also been deployed as sensing
layers such as metal oxides [62], conducting polymers [63], organic nanomaterials [64],
etc. In [62], a C2H2/H2 (20/80 sccm) gas combination was used to create the plasma in
the RF-PECVD growth reactor. The process parameters for growing CNTs were set to
100 W, 1.5 Torr, and 450 ◦C, respectively, for rf power (13.56 MHz), working pressure,
and temperature. The most used gas sensors are the conductometric sensors that use
oxides as an active layer and require high operating temperature and high-power con-
sumption, and this makes them costly. Therefore, there is the need for having gas sensors
that are passive, wireless, cost-effective, and can operate at room temperature. This
makes microwave-based gas sensors a suitable candidate to achieve these characteristics.
The major benefits of these sensors comprise low power consumption, small size, low
cost, wireless operations, and real-time online monitoring. Microwave gas sensors have
been used for gas detection, humidity sensing, flow sensing, and liquid sensing, and
microfluidic systems [61].

Conducting polymers are promising sensitive materials due to their numerous advan-
tages, which include low cost, high sensitivity, and low temperature. Poly (3,4-ethylene
dioxythiophene) polystyrene sulfonate (PEDOT. PSS) have been used as sensing material
for humidity sensing due to their outstanding properties. An actual humidity sensor was
created on a microwave resonator attached with PEDOT. PSS polymer layer has been pre-
sented by [65]. To increase the sensitivity of the sensor, the polymer layer is placed inside
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the area that has been the powerful E-field in the resonator. It was fabricated on a PCB,
which was excited by electric and magnetic field coupling. The results obtained showed
that the transmission coefficient (S21) and operating frequency vary with comparative
humidity varied from 5% to 80%. Fabricated humidity sensor, S21 frequency response
of DSRR, and S21 isotherm characteristics of the sensor were obtained as illustrated in
Figure 22.
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In the same way, it has been presented by [66] that a resonator fixed within a 3D-
printed fluidic channel might be used for fluid sensing implementations. The sensor
was fabricated to operate among 5.3–5.8 GHz operating bands with a Q factor of 116
and a resonating amplitude of −15 dB. The sensor was placed inside the microfluidic
channel to enhance the sensitivity and accuracy of the sensor. The input transmission
line was printed on a flexible Rogers substrate RT5880, whereas Rogers Ultralam 3850
was used for the ring structure with copper as the material for striplines, input lines, and
resonators using the 3D printing process. HFSS simulations were used to validate the
improvement of the Q factor and the resonating amplitude by changing the values of the
resonator comparative to the feedlines. Transmission parameters (S21) obtained from the
vector network analyzer showed different variations in the shift in resonant frequencies
for different liquids, including water, methanol, isopropyl alcohol, and reverse osmosis
water. Water, which has the highest relative permittivity, showed the largest resonant
frequency shift of about 500 MHz. The minimum detectable limit was found to be 0.1%
ethanol experimentally. However, there was a suitable agreement between simulation and
measured results.

Sensitivity and high accuracy are key performance parameters for an ideal sensor. This
could be enhanced using open-loop resonators, split-ring resonators, and metamaterials.
Split-ring resonators have also been used to enhance the sensitivity in microwave-based
sensors. As shown by the work of [67], a planar microstrip ring resonator structure
was developed on an alumina substrate, as illustrated in Figure 23. A simulation was
accomplished using finite element modeling (FEM) software in COMSOL. The microwave
sensor was designed to operate at 8.5 GHz at room temperature with Fe-zeolite as the
sensing layer film. The change in resonant frequency and S11 was recorded as the sensor
response when exposed to the target gas. The sensor was revealed to various concentrations
of ammonia varying from 0 to 500 ppm and then from 500 to 1000 ppm, and the change in
resonant frequency was recorded for each ammonia gas concentration.
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Figure 23. Three-dimensional sensor models with gas-sensitive cover layers; (a) types of transmission;
(b) reflection resonator type; (c) fabricated microwave ring transducer [67].

The same sensor was also tested as a humidity sensor for water adsorption. Similarly,
an OCSRR was used for microwave-based gas sensors [68]. The sensor was constructed
on a couple of similar unpaired lines, each loaded with OCSRR, and was arranged for the
estimation of solute absorption in fluidic solutions and used for the evaluation of complex
dielectric constants in fluids (see Figure 24).
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Figure 24. (a) Prototype sensor containing connectors and the fluidic channels; (b) reflection coeffi-
cient of the single OCSRR loaded with DI waster [68].

In another research by [69], a microstrip gas sensor that was based on a trapezoidal
spiral resonator was presented. The resonator was covered by titanium oxide nanoparticles
as the sensing layer. The reflection and transmission coefficients were obtained before
and after coating of the sensing layer, and the shift in resonance frequencies was obtained.
The measurements were carried out between 1 and 8 GHz, and multiple resonances were
observed. Different ammonia concentrations from 50 to 300 ppm were tested for the sensor.
Results obtained presented a decent response to NH3 gas with a response time that was
lower than a minute. The sensor exhibited suitable reversibility and stability with a mono-
frequential temporal analysis. Maximum feedback was observed at 7.76 GHz with a return
loss of 0.45 dB at 300 ppm ammonia gas.

A parallel plate capacitor could also be used to improve the stored electrical energy in
the sensitive area that is discovered during measurements, as shown by [70]. A resonator
that is based on complementary electric LC was used for the sensor design. The sensor was
simulated using HFSS and printed on a flexible substrate R04350 using PCB technology
with a resonance frequency of 4.434 GHz. The sensor was employed to sense variations
in a dielectric slab that was implanted into the gap of the channel. The fabricated sensor
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was verified for the observation of the variations in the concentration of chloroform with
permittivity of 4.81 and cyclohexane with permittivity of 2.02. The sensor detected a
concentration of 5% and presented an improved performance of 304% as related to the
sensor without the added top capacitance.

To enhance the sensitivity of planar microwave sensors, metamaterial-inspired res-
onators have been employed. This was shown by the work of [71], in which a novel
metamaterial that has negative refractive index transmission lines was employed. The
sensor was designed to operate at 2.5 GHz. MTM/MS and MS/MS sensors were simulated
using HFSS and then fabricated on Rogers 5880 substrate. Different concentrations of
ethanol and methanol ranging from 50 to 700 ppm were tested for both sensors. It was
observed that the metamaterial-based sensor could sense liquid concentrations as less as
50 ppm relative to the conventional sensor, as shown in Figure 25. Results obtained showed
a suitable correlation between analytical, simulation, and measurement.
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Figure 25. Metamaterial-based conventional sensor.

SAW-based resonators have also been used for gas-sensing applications. It was pre-
sented by [72] that dual SAW resonators with operating bands of 433.42 and 433.92 were
used to design a dual SAW resonating system. The system was fabricated using PCB
technology on FR4 substrate. The sensing layer was incorporated into the circuit as a
standalone that is connected in parallel to the matching circuit. It consists of functionalized
multiple walled carbon nanotubes and a poly-aniline layer. It was then tested toward vari-
ous concentrations of hydrogen ranging from 1% to 2%. The sensor response was obtained
based on the shift in resonance frequency. Results obtained presented an excellent response
to H2 gas and recovery times. The sensitivity of the sensor was found to be 3.2 Hz/ppm.
Stub resonators have also been shown to have promising results in microwave gas sensing,
as shown in the work of [73]. Fabricated flexible gas sensor and scattering parameters are
presented in Figure 26.
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Similarly, capacitive resonators have also been used for the detection of environmental
pollutants such as volatile organic compounds. This was shown by [74], in which two
capacitive resonators were used for ethanol vapor detection. One of the resonators has the
sensing layer, while the other was used as a reference. The sensing layer was made up of
3,4-ethylene dioxythiophene polystyrene sulfonate with multiwalled carbon nanotubes
of ANSYS-HFSS was used as the simulation software using paper as the substrate, silver
nanoparticles as the metal electrodes with PEDOT. PSS-MWCNTs as the sensing layer. The
sensor was printed on flexible paper using inkjet printing technology. The sensor was
then tested toward ethanol vapor of concentrations between 0 and 2000 ppm. The shift in
resonance frequency was observed using the vector network analyzer (VNA) operating at 2
and 4 GHz. The sensitivity of the sensor was reported as −2.48 kHz/ppm, which is capable
of gas sensing. A new device was placed on the test cell basement as shown in Figure 27.
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Carbon nanomaterials, including carbon nanotubes and grapheme have been used
extensively in microwave sensors as sensing materials [60]. However, to enhance its
sensitivity, metal loading on these materials further enhances its sensitivity as shown by
(gas sensing by microwave transduction: review of progress and challenges Li Fangxin
et al.) in order to enhance its sensitivity by using Pt loaded to detect small concentrations
of hydrogen as low as 1 ppm. The large surface area of grapheme and the metal decoration
proved enhanced sensitivity. In another research by [75], SIW cavity resonators for gas-
sensing application have been reported in Figure 28. Both SRR and CSRR were printed and
then covered with graphene grownup by CVD (chemical vapor deposition), and a layer of
PMMA (polymethyl methacrylate) was blended on its peak. Operating bands shifts were
noticed as 59 MHz for SRR and 157 MHz for CSRR when the sensor was kept in front of
NH3 gas.

In another study, a GHz frequency range passive voltage transformer using a me-
chanically tunable strip-line resonator at 1–2 GHz is proposed in the work of [76]. The
stated sensor can detect low radiofrequency signals that may be used to wake up a sensor
node in case there is a need to sense or send the information. At high radiofrequency
frequency bands, the transformer is harder to implement owing to the low impedance of
load capacitive loads. The transformer exhibited a 19.5 dB gain at 1.007 GHz and achieved
gains over 19 dB with load capacitances of 0.8–2.4 pF. A piezoelectric AlN GHz transducer
was also used to measure the gain of the resonator. An RF waveguide model has been
developed, which matches experiments well for both frequency and gain responses. The
schematic diagram of GHz resonator device is shown in Figure 29.
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For large-scale distant ethanol sensor applications, a unique flexible adjustable meta-
surface absorber is presented [77]. Periodic split-ring-cross resonators (SRCRs) and mi-
crofluidic channels made up the suggested metasurface absorber. The SRCR designs were
created on paper using silver nanoparticle inks in an inkjet printer. On polydimethylsilox-
ane (PDMS) material, the microfluidic channels were laser-etched. For various liquids, the
suggested absorber can detect changes in effective permittivity. As a result, by monitoring
variations in resonant frequencies, the absorber may be employed as a distant chemical
sensor. Full-wave modeling and measurement data are used to illustrate the performance
of the proposed absorber. When the concentration of ethanol is raised from 0% to 100%, the
resonant frequency increases from 8.9 to 10.04 GHz, according to the experimental data.
Furthermore, the suggested absorber has exhibited a linear frequency shift from 20% to
80% of the varied ethanol concentrations.

In [78], the authors had reported the complementary split-ring resonator (CSRR)-based
microfluidic chemical sensor. The major goal of this chemical sensor was to detect the
presence of ethanol. On a Rogers RT/Duroid 5870 substrate, two tightly coupled concentric
CSRRs loaded on a patch were first realized, and then a microfluidic channel was engraved
on polydimethylsiloxane (PDMS) was integrated for ethanol chemical sensor applications.
The structure’s resonance frequency before loading the microfluidic channel was 4.72 GHz.
When the ethanol content was changed from 0% to 100%, the dielectric perturbation phe-
nomena caused a 550 MHz shift in the resonance frequency after loading the microfluidic
channel. Various amounts of ethanol were tested and evaluated to determine the sensitivity
range of the reported sensor. The measurement setup confirmed that our suggested sensor
has suitable reproducibility and can detect 10% ethanol. The top view, CSSR’s structure
and overall view of the design is shown in Figure 30.
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Gas-sensing devices are becoming increasingly used in a variety of settings, includ-
ing interior spaces, industries, aircraft, and detectors for numerous harmful household
gases and vapors [79]. Several distinct fluid/gas flows must be monitored for industrial
applications since the flow of the fluid might affect the product under production. As a
result, precise measurement is required to produce a high-quality product at the conclusion
of the manufacturing process. Gas sensors are mostly employed in the petrochemical
industry in the industrial world. Some carbon dioxide sensors, ammonia sensors, nitric
oxide sensors, and other sensors can be used in specialized applications to detect carbon
dioxide, ammonia, chlorine, and other dangerous gases [80]. The interaction between typi-
cal aroma composing components and the response of semiconducting gas sensors and one
microgravimetric sensor is presented using some fundamental concepts [81]. The selection
of sensor materials to manage baking and roasting operations has been based on several
broad principles. Using a basic electronic nose with two to four oxide sensor components,
important aroma molecules, such as 2-acetyl-1-pyrroline (typical pop-corn scent), were
demonstrated to affect the toasting of white bread (no pre-selection by a chromatographic
column necessary). Other uses, such as controlling meat roasting, will continue to be
problems in the future. Sensor components that are sensitive to sup-ppm levels, as well
as particular to key scent constituents, are needed. Finally, packaging, transportation,
and aging of items during storage or usage can all affect flavor; some of these factors
are covered in the work of [82]. Table 5 summarize the parameters comparison between
different microfluidic sensors.
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Table 5. Comparison analysis of microfluidic sensors.

References Fluid/Substrate Bands Techniques Applications Advantages Disadvantages

[61]
Polymer, carbon

nanotube/ST X-CUT
quartz substrate

157 MHz
Mass flow

controller and
photolithography

SAW gas sensor

Highly responsive to
volatile gases,

IL = 15 dB,
attenuation = 9 dB

Only detect limited
gases

[62] ZnO nanoparticles/Pt
catalyst

129.28 MHz for
uncoated,

126.93 and
128.85 MHz for

coated

Post-annealing
process

SAW hydrogen
sensor

Suitable repeatability
and stability,

largest frequency shift

Sensitivity may
vary by

temperature,
material and area of

SAW sensor

[63] Carbon nanotube,
ST-cut quartz substrate

433.93 and
915 MHz Langmuir-Blodgett

(LB)
Multiwalled SAW

gas sensor
Low cost, highly gas

sensitive

Sensitivity may
vary by area of SAW

sensor

[64] Polyethyleneimine (PEI),
ST-cut quartz substrate 69.4 MHz Nanotubes

SAW
nanocomposite-

based
sensors

Reduced noise level,
better time response,
highly gas sensitive

Sensitivity may
vary by area of SAW

sensor

[65]

Conducting polymer,
polystyrene

sulfonate/printed circuit
board (PCB) substrate

2.45 GHz Double slip ring
resonators (DSRR) Humidity sensor Outstanding repeatable

response

Sensitivity may
vary by material

and the area of the
humidity sensor

[66]
Polymer/Rogers RT5880

and ULTRALUM 3850
substrates

5.3 and 5.8 GHz
3D-printing
microfluidic

channel

RFID and liquid
detection

High accuracy,
sensitivity, affordable,
reusable, environment

friendly

Minimum
detectable

concentration
toward

ethanol-water
mixture

[67]
Fe-Zeolite,

alumina/RO4003C
substrate

8.5 GHz Planar microstrip
ring resonators

Humidity and
ammonia sensing

miniaturized, high
accuracy, sensitivity

Sensitivity may
wary with material

[68] PDMS, polyester/FR-4 0.9 GHz

Open
complementary slip

ring resonators
(OCSRR) and cross
mode insertion loss

Differential
permittivity sensors

Very sensitive to
asymmetric loadings,

highly sensitive

Less sensitive to
symmetric loadings

[69]
Ceramic-filled

PTFE/
Roger RT6202 substrate

1–8 GHz Microstrip spiral
resonator

Microwave-based
ammonia gas sensor

Suitable reversibility and
sensitivity Limited sensitivity

[70] Water,
chloroform/Roger 5870 2.5 and 2.65 GHz Quarter ring

microstrip

Dual-band
microwave

microfluidic sensor

Temperature variant,
overall loss decreases by
increasing temperature

Limited sensitivity

[71] Roger 5880 substrate 2.5–2.6 GHz Metamaterial MTM-infused MW
sensor

High gain, negligible
loss of power, large

invariant coupling level

Less sensitive to
low permittivity

materials

[72] Platinum, zirconium,
GaPO4 layers on PCB

433.42 to
433.92 MHz

Double SAW
resonator system

Hydrogen gas
sensor

Insensitive to vibrations
and other external

disturbance
Limited sensitivity

[73] Polymer/Kapton
flexible substrate 0–6 GHz Inkjet printing Low coat MW

flexible gas sensor

Harmful gas detection,
for IoT applications, low

power consumption
Less sensitive

[74]

Carbon nanotube,
carbon composite

polymer,
flexible paper substrate

1–6 GHz Inkjet printing
IoT,

inkjet-printed
chemical gas sensor

Low cost, multiwall,
highly effective surface

area
Limited sensitivity

[75] PCB RO4350B 4.2 GHz SIW cavity
resonators, CSRR

Microwave gas
sensor, ammonia

gas detection

Low cost, highly
sensitive, environment

monitory solutions

Sensitivity may
wary with material

7. Conclusions

This article reviews different aspects of fluidic couplers, power dividers, phase shifters,
microfluidic reconfigurable filters, fluidic antennas, and microfluidic sensors. Different
techniques for fluidic couplers, power dividers, phase shifters are discussed in this review,
including tunable branchline coupler [19], microstrip hybrid modified coupler [23], in-
verted microstrip line with loaded split-ring resonator (SRR) [20], low-cost instant inkjet
printing [21], microfluidic [22], modified PI-shaped transmission lines (TL) [24], miniatur-
ization [25], instant inkjet printing silver nano [26]. Microfluidic materials, which include
3 M FC-40 [27], EGaIn liquid metal [28] mixed up with NaOH [34], Zoflex conductor [30],



Electronics 2022, 11, 229 24 of 27

distilled water [32], thermoplastic acrylonitrile butadiene styrene, fused silica, and parylene,
show long-period stability of electric properties when enclosed in microfluidic channels [38],
printed on substrates such as Rogers 6010.2, PDMS, Rogers UL2000, Roger Duroid 5880,
Roger RO4003C, etc. Microfluidic antennas possess extraordinary flexible properties as
radioactive elements in antennas, where 90% total radiation efficiency was sustained for
fluidic antennas irrespective of 50% applied strain.

Different technologies that involve various transduction principles are used for gas
sensing. This includes electrochemical, conductometric optical, acoustic wave, plasmonic
transduction, impedance spectroscopy, and microwave. The major benefits of these sensors
contain low power consumption, small size, low cost, wireless operations, and real-time
online monitoring. Microwave gas sensors have been used for gas detection, humidity
sensing, flow sensing, and liquid sensing, and microfluidic systems [60]. Since the ideal
sensors have properties defined by selectivity, sensitivity, fast recovery time, and high
response time. Every sensor technology is progressing in order to achieve the optimum
properties of an ideal gas sensor. The tendency is to construct the sensor to keep the size
as compact as possible. The SAW has all these features of an ideal gas sensor. This is the
technique that employs small size, less cost, and less power consumption devices for gas
sensors. Carbon nanomaterials have been used extensively in all different types of sensors
in order to enhance their sensitivity as a result of their large surface area. However, more
research needs to be performed by using hybrid materials such as grapheme with polymer
and other metal oxides. The use of metal-decorated materials should also be explored
for improved sensitivity and selectivity. Research could also be performed in microwave
sensors by also using novel nanomaterials. In terms of measurement, more research should
be performed to measure the return loss as a measure of gas response and not only focus
on frequency shifts alone. The use of nanomaterials as sensing layer advanced researchers
must pay much attention to this useful property for gas sensors as it saves energy and
power consumption.
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