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Abstract: In the modern era, the trading methods and strategies used in the financial market have
gradually changed from traditional on-site trading to electronic remote trading, and even online
automatic trading performed by pre-programmed computer programs. This is due to the conduct of
trading automatically and self-adjustment in financial markets becoming a competitive development
trend in the entire financial market, with the continuous development of network and computer
computing technology. Quantitative trading aims to automatically form a fixed and quantifiable
operational logic from people’s investment decisions and apply it to the financial market, which has
attracted the attention of the financial market. The development of self-adjustment programming
algorithms for automatically trading in financial markets has transformed to being a top priority
for academic research and financial practice. Thus, a new flexible grid trading model incorporating
the Simplified Swarm Optimization (SSO) algorithm for optimizing parameters for various market
situations as input values and the Fully Connected Neural Network (FNN) and Long Short-Term
Memory (LSTM) model for training a quantitative trading model for automatically calculating and
adjusting the optimal trading parameters for trading after inputting the existing market situation are
developed and studied in this work. The proposed model provides a self-adjust model to reduce
investors’ effort in the trading market, obtains outperformed Return of Investment (ROI) and model
robustness, and can properly control the balance between risk and return.

Keywords: flexible grid trading model; simplified swarm optimization (SSO); artificial intelligence
(AI); fully connected neural network (FNN); long short-term memory (LSTM) model

1. Introduction

The formulation of financial market trading methods and strategies has changed with
the continuous development of network and computer computing technology from the
late 20th century to the present. Increasingly more financial institutions and major market
trading are gradually changing from traditional on-site trading to electronic remote trading,
and even automated trading can be performed in a pre-programmed computer program
(algorithmic trading). According to statistics, the US stock market, with the most developed
financial market, currently has as many as 60 to 70 percent of its trading automated by
programmed programs. In this wave of application of computer computing technology
and financial markets, the combination of quantitative trading and computer algorithm is
particularly prosperous [1].

The main function of the financial market is to provide the current market price of
traded commodities so that market participants can benefit from it. Quantitative trading
emerged in the stock market in the late 20th century. In recent years, it has been widely
applied in automated trading systems in the stock, currency, and futures markets. In order
to receive excess returns, statistics and mathematical models are used to obtain the high
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probability of the market happening in the future and formulate a corresponding set of
modeled trading logic for market trading by observing a large amount of historical data in
the past.

The biggest feature of quantitative trading is the use of a fixed set of logic for trading,
which is most often used in the stock and futures trading market, in order to obtain a stable
and continuous excess return above the average return. In addition, the aspects considered
by quantitative trading are becoming increasingly more diverse including market com-
position, developmental evaluation of investment targets, and market sentiment, which
can be used for further analysis and reference. With the development of the information
age, more relevant information has been completely collected and retained, which can
provide quantitative trading models for reference and analysis, make up for the inability
of the human brain to quickly digest large amounts of data, and can make decisions more
objectively and not be affected by market sentiment.

Nowadays, with the changes of the times, international trade and the internet have
promoted the active free trade market, which reduces trading costs and expands the scale
and scope of trading, and the relationship between the financial industry and technology
is also deepening as well as becoming more mature and popular [2,3]. How to use the
increasingly developed computer computing as an auxiliary tool for financial market
trading and even becoming the key to the success of traders’ profits has become the focus
of research in the financial community in recent years.

In the early e-commerce applications, more attention was paid to how to transform
the physical trading form into an electronic trading form including inputting and storing
trading information by the form of electronic files, which is convenient for future searching
and analysis. Such simple trading is changed from manual services to electronic services,
which greatly reduces labor costs.

After the preliminary results of electronic finance in recent years, financial industry
players hope that in addition to using computers to complete simple trading procedures,
they can further use mature computer programs to help people complete more complex
trading decisions. Especially in recent years, artificial intelligence has become increasingly
prosperous, and there have been many breakthrough developments [4–7]. How to use
computer programs to imitate human thinking logic, assist trading, and even think faster,
wider, and deeper than humans has become the direction of development and research in
the financial field in recent years.

Trading-related programming algorithms have emerged since the late 1980s. In the
early days, more human or statistical tools were used for analysis and decision making, and
then computer programs were used for trading. However, in the past 10 to 20 years, more
quantitative trading has modeled the decision-making process and designed it into the
trading algorithm with the trading logic resulting to make the algorithm more intelligent
and automatic. Additionally, it has become a highly practical and popular research, which
has attracted the attention and practice of many governments and financial institutions [8].

Today, there are many rich and diverse research results in the field of trading algorithm
research, such as the use of mean regression to adjust the allocation of stock investment
weights [9], the use of LSTM combined with the grid trading method (GTM) to predict
market trends for currency trading [10], using box theory combined with Support Vector
Machine (SVM) to assist stock trading decisions [11], using Ichimoku Kinkohyo to analyze
foreign exchange trading [12], and the use of market trends instead of fixed time series
to make trading decisions for the trading strategy of the execution unit [13]. It is not
difficult to see that the use of computer programs to assist trading and even directly making
trading decisions and executing trading have become an unstoppable trend in financial
development.

The most basic definition of the grid trading method is an average pending order
within a specific price range to carry out a trading strategy of buying low and selling
high [14]. The principle of grid trading is simple but it can effectively earn spread profits
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when prices fluctuate. In recent years, this strategy has been often applied to arbitrage in
many financial markets [15,16].

SSO was proposed by Yeh [17] in 2009 to improve the problem of Particle Swarm
Optimization (PSO) in solving discrete problems with the core concept of simplicity. SSO
simplifies the algorithm and improves the efficiency of the solution, and has been widely
used in solving problems in many different fields [18–29]. Finding the best parameter
combination is one of the SSO applications. Multiple parameters can be considered and
adjusted at the same time to find the best parameter combination, which has been used to
adjust the hyperparameter combination of convolutional neural network [30], optimize the
parameters of solar models [31–33], and adjust the parameters in Artificial Neural Network
(ANN) [34].

Recently, the application of Deep Learning (DL) and ANN in financial activities has
become more diverse, of which the most widely used include the prediction of the stock
market, exchange rate, and financial index [35]. At present, there are still many studies
trying to use various neural network models to assist people in financial forecasting and
decision making [36–38] for making more rational and accurate judgments.

In sum, this study proposes a new grid trading model, adopts SSO algorithm to
find parameters suitable for various market situations as input values and labels, trains
the FNN and LSTM model, and finally, a quantitative trading model can automatically
calculate and adjust the optimal trading parameters for trading after inputting the existing
market situation.

Following the rise of e-commerce and quantitative trading mentioned above, the
relationship between people’s economic activities and technology has become increasingly
more inseparable, and many trading relies on programs to complete. In future trends,
programs will not only help people record trading and complete transfers but even help
people make trading decisions automatically, including determining the timing and price
of trading. Against the foregoing background, the purpose of this study is to:

1. Provide a new set of grid trading algorithms to improve the shortcomings of prema-
ture entry and exit of existing grid trading models in the market.

2. Enable the trading algorithm to adapt to change in the external environment as time
and market conditions change, and self-adjust the model to reduce investors’ effort in
the trading market.

3. Reduce the irrational decisions brought about by investors’ subjective trading deci-
sions, through a set of training models with logical rules.

4. Balance the relationship between risk and profit, and obtain an excellent reward under
a certain reasonable risk.

The structures of the remaining sections of the article are organized as follows. An
overview of grid trading, SSO, and DL are described in Section 2. Section 3 introduces
the proposed approach, including operation mechanism of grid trading, concept, and
architecture of flexible grid, SSO for optimal parameters, and training ANN to automatically
adjust flexible grid parameters. The experimental results are analyzed in Section 4. Finally,
the conclusions are discussed in Section 5.

2. Overview of Grid Trading, SSO, and DL
2.1. Grid Trading

The most basic definition of grid trading method is an average pending order within
a specific price range to carry out a trading strategy of buying low and selling high [14].
There are two key factors in grid trading that determine the effectiveness of this strategy.
The first is price volatility including both ups and downs. If the price goes up all the way,
those who hold the spot make more profit than grid trading. If the price goes down all
the way, spot traders basically cannot have many profit opportunities but short futures
buyers are more able to make profits. If the market goes up and down, the grid trading
strategy has the greatest profitability. The more frequent the fluctuations, the greater the
profit rate increases. In most markets, prices are highly fluctuating and often have a price
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mean reversion [39–41] so that grid trading strategies are now being used by more and
more market players.

The other key aspect that determines the profit size of grid trading is its parameter
setting, including grid average, upper bound of the grid, lower bound of the grid, number
of grids, initial price, stop loss point, and stop profit point. The setting of the above
parameters should be based on product price fluctuations, trading costs, risk tolerance,
and the amount of principal as the setting considerations, which directly affect the final
performance of grid trading.

Grid trading is mainly divided into two types: equal-distance grid and equal-ratio
grid. At present, the grid that many people use in practice is the equal-distance grid.

The setting of the equal-distance grid is based on the initial price P0, and the setting of
upper bound of the grid Gul, the lower bound of the grid Gll, the total number of grids n,
and the calculation of the grid spacing Gs by Equation (1).

Gs =
Gul − Gll

n
(1)

After the setting of the grid model, the trading is based on this grid to buy and sell
financial products with the rise and fall of prices. An example of the equal-distance grid is
shown in Figure 1.
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Figure 1. Schematic diagram of equal-distance grid trading.

The grid spacing Gs of equal-ratio grid is a fixed ratio and the equal-ratio grid is
calculated at this ratio. An example of the equal-ratio grid is shown in Figure 2.
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2.2. SSO

SSO was proposed by Yeh [17] in 2009 based on the concepts of personal best (pbest)
and global best (gbest) and adds random numbers resulting in the solution owning the
opportunity to escape from the local optimal solution and improve the diversity of the
solution.

The major difference between SSO and other heuristic algorithms is its special update
mechanism. There are three particularly important parameter settings: Cg, Cp, and Cw,
where Cg > Cp > Cw. The update mechanism is shown in Equation (2). According to the
correspondence between the random number ρ and Cg, Cp, and Cw, the next generation
solution xt

i,j is determined, which may be gbest, pbest, the current solution or a random
number, respectively.

xt+1
i,j =


gj, i f ρ ∈ [0, Cg)
pi,j, i f ρ ∈ [Cg, Cp)
xt

i,j
, i f ρ ∈ [Cp, Cw)

x, i f ρ ∈ [Cw, 1)

(2)

where, let xt
i,j = xt

i,1, xt
i,2, . . . , xt

i,j be the ith solution with j variables in the tth generation; ρ

is a random number subject to uniform distribution between [0, 1].
The update method is that when ρ is between [0, Cg), the variable xt+1

i,j is replaced
by the global best solution gj that is the best performing solution among all the solutions
at present; when ρ is between [Cg, Cp), it is replaced by the best solution in the region
pi,j that is the optimal solution in the past generations of the variable; when it is between
[Cp, Cw), it maintains the solution of the previous generation xt

i,j; when it is between [Cw, 1),
it is replaced by x that is a random number generated in the upper and lower bounds of
the variable. The purpose is to reduce the chance of becoming trapped in local optimal
solutions, while also increasing the diversity of solutions.

2.3. DL

This section provides an overview of the ANN, back-propagating method, and LSTM
adopted in this study.
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2.3.1. ANN

In recent years, DL has been widely used in medicine, industry, transportation, and
other fields, which can help the completion of speech recognition and machine vision. It is
a Machine Learning (ML) algorithm based on ANN, which learns through data features.

The computing architecture of ANN was first proposed by McCulloch and Pitts [42],
and subsequently, it has been continuously improved by many outstanding scholars [43,44],
and it has become a famous ML model in Artificial Intelligence (AI).

The basic structure of ANN is divided into three parts including input layer, hidden
layer, and output layer. Each node of the input layer corresponds to the input predictor
variable, each node of the output layer corresponds to the objective variable, and the hidden
layer is sandwiched between input layer and output layer.

Except for the nodes in the input layer, each node in the ANN is connected to several
nodes in front of it and each node has a corresponding weight that is called FNN.

2.3.2. Back-Propagating Method

In DL, the back-propagating method [45] is an extremely important key to make the
model complete and is often used to train and optimize ANN. Using the back-propagation,
the gradient of the loss function to the weight can be efficiently found, and then the gradient
descent method [46] is used to solve each weight. The “loss” in the loss function refers to
the error of the actual value and the predicted value. The main concept of back-propagation
is to return the error resulting that the weight can use the error size to perform the gradient
descent method to obtain and update the more suitable weight, further reduce the error,
and optimize the weight.

2.3.3. LSTM

LSTM is a model generated to improve the short-term memory of Recurrent Neural
Network (RNN). It is mainly composed of four units including memory cell, input gate,
output gate and forget gate.

The input gate controls whether it is input into the memory unit this time, the memory
unit is responsible for storing the calculated value, the forget gate controls to clear the
memory, and the output gate controls whether to output the operation result.

3. Proposed Approach

The approach proposed in this study is presented in sequence. The initial setting and
operation mechanism of grid trading is introduced in Section 3.1. Section 3.2 presents the
concept and setting method of flexible grid. The use of SSO to obtain the optimal flexible
grid parameters in different situations is shown in Section 3.3. As the training basis for
DL, a neural network is finally trained that can automatically output the suitable grid
parameters for trading by inputting recent market information to obtain excess returns
from market fluctuations is represented in Section 3.4.

3.1. Operation Mechanism of Grid Trading

This section presents the grid trading practices in this study, including initial parameter
setting and calculation, and subsequent operation mechanisms and processes, in detail.

3.1.1. Initial Parameter Setting of Grid Trading

A total of five basic parameters need to be set, namely the total investment capital F0,
the initial price P0, the upper bound of the grid Gul, the lower bound of the grid Gll, and
the total number of grids n, before operating a grid trading model. The total investment
capital and initial price are set as control variables in this study, i.e., when comparing the
results, the total investment capital and initial price used in any method will be set to the
same fixed value, and compared on the same standard.

Before the grid trading model runs, the unit price difference Gs, which is the grid
spacing, needs to be calculated using Equation (1) in Section 2 if the grid is an equal-distance
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grid. Gs is a certain value in equal-distance grid. However, it is a fixed ratio in equal-ratio
grid, for example, the value of the next grid is P0·G1

s = 110 and the next grid is P0·G2
s = 121

when P0 = 100 and Gs = 1.1, and this ratio can be calculated from Equation (3) below.

Gs =
n

√
Gul − Gll

Gll
+ 1 (3)

In addition, it is also necessary to calculate how much funds should be used to
purchase the spot before grid trading, i.e., the initial purchase of spot S0, so as to sell for
profit when the price rises, and how many funds must be kept on hand to buy spots when
the price falls; here, C0 means to start holding cash. Hence, the total investment funds are
divided into two parts that is represented by the following Equation (4). The spot and
funds held in each subsequent period are represented by Sj and Cj, where j represents the
jth period.

F0 = S0 + C0 (4)

In order to calculate the initial purchase of spot S0 and the initial holding of cash C0,
it is necessary to first calculate the number of upper grids nu and the number of lower
grids nl, the sum of which is equivalent to the total number of grids n such as shown in
Equation (5). The values of nu and nl can be obtained by Equations (6) and (7), respectively.
Here, the equal-distance grid is used as an example.

n = nu + nl (5)

nu = (Gul − P0)/Gs (6)

nl = (P0 − Gll)/Gs (7)

After calculating the number of upper grids nu and the number of lower grids nl,
and then further use Equations (8) and (9) to calculate the initial purchase of spot S0 and
the initial holding of cash C0. At this time, the single-cell trading volume Gv is still an
unknown value.

S0 = Gv · nu · P0 (8)

C0 = Gv · [(P0 − Gs) + Gll]/2 · nl (9)

Finally, substitute Equations (8) and (9) into Equation (4) to obtain the single-cell
trading volume Gv, which can be calculated by Equation (10).

Gv = F0/{[(P0 − Gs) + Gll]/2 · nl + nu · P0} (10)

Finally, calculate the price of each grid cell gi, i from 1 to n using Equation (11) (equal-
distance grid) or Equation (12) (equal-ratio grid).

gi = Gll + Gs · (i − 1) (11)

gi = Gll · G(i−1)
s (12)

3.1.2. Operation Mechanism of grid Trading

The following Figure 3a–e illustrate in detail how the grid trading model updates
and adjusts with the market price after the initial parameters are set, and how to settle at
the end.
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1. When the grid is initially running, the current price is used as the benchmark, and the
above grid price is placed on a sell order, and the following grid price is placed on a
buy order as shown in Figure 3a.

2. If the price rises until it hits the first grid line, make a sell action, update the spot
volume and funds held, and place a buy order at the original grid position as shown
in Figure 3b.

3. If the price falls back to the initial grid line, make a buy action, update the spot
volume and funds held, and place a sell order at the original grid position as shown
in Figure 3c.

4. If the price continues to drop to a grid line, make a buy action, update the spot
volume and funds held, and place a sell order at the original grid position as shown
in Figure 3d.

5. Continue to trade with the above mechanism. Although the price has returned to
the original point of grid trading, it has successfully arbitraged seven times, which is
equivalent to seven grids of grid spread profits as shown in Figure 3e.

6. When the grid trading model is to be closed, there are two ways to end it. One is to
directly keep the current spot and funds held, and the other is to sell the spot at the
current price and convert it into cash. The former is recommended to be used when
the market price is low, and the latter is not recommended. In this study, the grid is
closed and settled in the second method.

The overall process of the grid trading operation is shown by the grid trading operation
flow chart in Figure 4.
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3.2. Concept and Architecture of Flexible Grid

Based on the equal-distance and equal-ratio grid trading models used in the financial
market today, this study proposes a new and adaptive grid trading model: flexible grid.
Through a more flexible grid structure combined with the SSO algorithm and DL, a grid
trading model that can adjust parameters according to market changes and adapt to various
external conditions is constructed.

Under the framework of the equal-distance grid trading model, it can exert its maxi-
mum model benefits when the market fluctuates. Even if the price returns to the original
point, it is still possible to arbitrage from the volatile market situation based on the adoption
of the mean reversion strategy in quantitative trading [47]. On the other hand, equal-ratio
grid trading can obtain better returns in the volatile rise based on the combination of the
two strategies of mean reversion and trend following [48].

The flexible grid proposed in this study captures the advantages of the equal-distance
grid and the equal-ratio grid at the same time. It can outperform the traditional grid trading
structure of the past whether the market is sideways, rising, or even falling.

When the flexible grid is initially set, it also needs to set its total investment capital
F0, the initial price P0, the upper bound of the grid Gul, the lower bound of the grid Gll,
the number of upper grids nu, and the number of lower grids nl. There are two main
differences compared with other models in the initial setting:

1. The number of upper grids nu and the number of lower grids nl in Equation (5) are no
longer calculated with Equations (6) and (7) but can be initially set.

2. The grid is divided into upper and lower parts with the initial price P0 as the boundary.
The upper part and the lower part can set the number of the grids and have their
own grid spacing ratio. The ratio of the upper grid spacing is Gsu and the lower
grid spacing is Gsl. It should be noted here that Gsu must be a number greater than 0
and less than 1, and Gsl must be a number greater than 1. The feature of this is that
the upper grid spacing becomes smaller and smaller as the price is higher, i.e., the
trading frequency becomes more and more frequent. Similarly, the lower grid spacing
becomes smaller and denser when the price is lower.

The specific calculation method of the grid value is shown in Equations (13) and (14)
and the over structure is shown in Figure 5.

Gsu =
1

nu
√

Gul−P0
P0

+ 1
(13)

Gsl =
nl

√
P0 − Gll

Gll
+ 1 (14)

The core concept in the design process of the flexible grid is to perform more frequent
sell actions when the price is high, and buy the cheaper spot more frequently when the price
is lower. The flexible grid has a similar structure to the equal-distance grid in the middle
section of the model, while the lower half of the model is more similar to the equal-ratio
grid, and the upper half of the model is different from the current common equal-distance
grid and equal-ratio grid trading model with higher mesh density at higher prices. The
main purpose of this model is to capture the advantages of the equal-distance grid and
equal-ratio grid, and can have better performance than the current existing model whether
the market trend is volatile, or a continuous rise or fall.

However, in order to truly take advantage of the flexible grid model architecture,
the optimal parameter setting and self-adjustment in line with the market situation are
crucial determinants for the success or failure of the model. Therefore, this study uses an
SSO algorithm to determine the appropriate parameters of the flexible grid in different
situations that is described in Section 3.3, and inputs the calculated parameter combination
and the corresponding market situation into the artificial neural network (ANN) for model
training that is presented in Section 3.4. Finally, this study produces a trained DL model,
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which can automatically adjust to the grid parameters most suitable for the current market
situation by simply inputting the current market situation.
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3.3. SSO for Optimal Parameters

In this subsection, the SSO algorithm is adopted to adjust the optimal solution of the
flexible grid under different market conditions based on the flexible grid constructed in the
previous subsection. The market situation and the optimal parameters are input into the
ANN as the training set for model training in Section 3.4.

3.3.1. Objective and Constraint

The main objective pursued by this study is to maximize the investment return.
Therefore, the market investment commodity price is set by the SSO algorithm after the j
period of update. The objective model is shown in Equation (15).

Max Sj × Pj × Cj (15)

where Sj, Pj, and Cj represent the spot quantity, the commodity market price, and the funds
held in the last period after the initial purchase of spot S0 and initial holding of funds C0
are inputted through the price of a total j-periods.

In addition, in the flexible grid model, it is necessary to ensure that the profit of each
trading is greater than the trading cost h% (usually the trading fee rate) so that the following
constraint Equation (16) is set, where i is from 0 to n.

s.t. gi+1 − gi > h% × gi+1 (16)

The calculation of gi can refer to Equations (11) and (12). After substitution, it can be
found that this constraint is actually a constraint on the grid parameters Gul, Gll, nu, and nl.

On the other hand, additional constraints are placed on the grid upper and lower
bounds Gul, Gll, nu, and nl for experiment 1 and experiment 2 as shown in Equations
(17)–(19), where x is from 0 to j.

According to the upper and lower bound conditions, each data set is divided into
two groups for experiments in Section 4. The first group uses 1.3 times the initial price
as the upper bound of the grid, and 0.7 times the initial price as the lower bound of the
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grid; while the second group uses 1.5 times the initial price as the upper bound of the grid,
and 0.5 times the initial price as the lower bound of the grid. Namely, (Gul, Gll) = (P0 × 1.3,
P0 × 0.7) and (Gul, Gll) = (P0 × 1.5, P0 × 0.5).

s.t. (experiment 1) P0 × 105% < Gul < P0 × 130% (17)

P0 × 70% < Gll < P0 × 95% (18)

s.t. (experiment 2) P0 × 105% < Gul < P0 × 150% (19)

P0 × 50% < Gll < P0 × 95% (20)

10 < nl < [P0 × 100/(maximum Px × 1.3)] − 10 (21)

The above four constraints are to keep the error space and avoid the overfitting of
subsequent ANN training, which cause the price to easily exceed the upper and lower
limits of the grid resulting in losing arbitrage opportunities, and control the parameters
within a reasonable range.

3.3.2. Solution Encoding

According to Section 3.3.1, the construction of a grid trading model must be set by
the total investment F0, initial price P0, grid upper bound Gul, grid lower bound Gll and
total number of grids n. In this study, F0 and P0 are control variables, hence, the parameters
to be solved by SSO are Gul, Gll and n. In flexible grid, the total number of grids n can be
divided into the number of upper grids nu and the number of lower grids nl.

The solution range is shown in Table 1.

Table 1. Upper and lower bounds of grid trading parameters.

Scope of Use Parameters Variable Upper Bound Variable Lower Bound

Experiment 1 Grid upper bound Gul P0 × 130% P0 × 105%
Grid lower bound Gll P0 × 95% P0 × 70%

Experiment 2 Grid upper bound Gul, P0 × 150% P0 × 105%
Grid lower bound Gll P0 × 95% P0 × 50%

In common use Number of upper grids nu [P0 × 100/(maximum Px × 1.3)] − 10 10
Number of lower grids nl [P0 × 100/(maximum Px × 1.3)] − 10 10

The solution encoding in this study is shown in Figure 6, for which x1, x2, x3, and x4
are set as the grid upper bound Gul, the grid lower bound Gll, the number of upper grids
nu, and the number of lower grids nl, respectively.
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For example, when X = (150, 100, 10, 30), it means the grid upper bound is 150, the
grid lower bound is 100, the number of upper grids is 10, the number of lower grids is 30,
and the total number of grids is 40.
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3.3.3. Parameter Setting and Scope of Update Mechanism

This study adopts SSO algorithm to solve the studied problem, where ρ is a random
number subjects to uniform distribution between [0, 1], and the solution of the problem is
updated according to this random number: when ρ is between [0, Cg), the variable xt+1

i,j
is replaced by the global best solution gj that is the best performing solution among all
the solutions at present; when ρ is between [Cg, Cp), it is replaced by the best solution in
the region pi,j that is the optimal solution in the past generations of the variable; when is
between [Cp, Cw), it maintains the solution of the previous generation xt

i,j; when is between
[Cw, 1), it is replaced by x that is a random number generated in the upper and lower
bounds of the variable. The update mechanism can refer to Equation (2).

The symbols and definitions used in the SSO operation are shown in Table 2.

Table 2. Symbols and definitions of SSO.

Symbols Definitions

Nvar
The number of variables: the grid upper bound Gul, grid lower bound Gll and total number of grids n
in this study.

Nsol Total number of solutions.

xt
i

xt
i = (Gt

uli, Gt
lli, nt

i ) represents the ith solution in the tth generation, where t = 1, 2, . . . , Ngen, i = 1, 2,
. . . , Nsol.

Ĝp
ul , Ĝg

ul , Ĝp
ll , Ĝg

ll , n̂p, n̂g pbest and gbest of each variable during the update process.

Cg, Cp, Cw
The three key parameters used to determine the update value in SSO Can be adjusted according to
different situations.

UB UB = (ub1, ub2, . . . , ubNvar) is the upper bound of each variable, i.e., x ≤ ubj.

LB LB = (lb1, lb2, . . . , lbNvar) is the lower bound of each variable, i.e., x ≥ lbj.

3.4. Training ANN to Automatically Adjust Flexible Grid Parameters

After using SSO to obtain the optimal grid configuration under various market condi-
tions, the market conditions and the calculated grid parameters are used as the questions
and answers for training ANN training. The market situation is interpreted in terms of
the following values and is inputted into the input layer of ANN including the highest
price during the period, the lowest price during the period, the average market price, the
average trading quantity, the price change (initial price minus final price), the trading quan-
tity change (initial quantity minus final quantity), price standard deviation, and trading
quantity standard deviation as shown in Figure 7.

The output layer of the ANN outputs the relevant parameters required to construct a
grid trading model including upper bound of the grid, lower bound of the grid, the number
of upper grids, and the number of lower grids. The specific ANN architecture is shown in
Figure 7.

In the neural network training process, the weights in the ANN nodes continuously
adjust themselves through the error value calculated by the loss function until the training
is completed when it converges to a state with the smallest error. Afterwards, through
this trained neural network, the optimal parameters of the grid trading model can be
generated by inputting the recent market state and trend, and a flexible grid model can be
automatically constructed for market trading activities.

In this study, two kinds of neural networks are used for training, namely, the FNN
and LSTM neural network, which is often used for time series prediction in recent years, to
observe and compare which neural networks perform better in learning grid parameters.



Electronics 2022, 11, 3259 14 of 24

Electronics 2022, 11, 3259 14 of 26 
 

 

Table 2. Symbols and definitions of SSO. 

Symbols Definitions 

𝑁𝑣𝑎𝑟 
The number of variables: the grid upper bound Gul, grid lower bound Gll and total number of grids n 

in this study. 

𝑁sol Total number of solutions. 
t

ix  t t t t

i uli lli ix G G n( , , )=  represents the ith solution in the tth generation, where t = 1, 2,…, Ngen, i = 1, 2, …, 𝑁sol. 

p g p g p g

ul ul ll llG G G G n n, , , , ,  pbest and gbest of each variable during the update process. 

Cg, Cp, Cw 
The three key parameters used to determine the update value in SSO Can be adjusted according to 

different situations. 

UB UB = (ub1, ub2, …, ubNvar) is the upper bound of each variable, i.e., jx ub . 

LB LB = (lb1, lb2, …, lbNvar) is the lower bound of each variable, i.e., jx lb . 

3.4. Training ANN to Automatically Adjust Flexible Grid Parameters 

After using SSO to obtain the optimal grid configuration under various market con-

ditions, the market conditions and the calculated grid parameters are used as the ques-

tions and answers for training ANN training. The market situation is interpreted in terms 

of the following values and is inputted into the input layer of ANN including the highest 

price during the period, the lowest price during the period, the average market price, the 

average trading quantity, the price change (initial price minus final price), the trading 

quantity change (initial quantity minus final quantity), price standard deviation, and trad-

ing quantity standard deviation as shown in Figure 7. 

the highest price during the period

the lowest price during the period

 the average market price

  the average trading quantity

 the price change

 price standard deviation

trading quantity standard deviation

the trading quantity change

upper bound of the grid

 lower bound of the grid

the number of upper grids

the number of lower grids

...

... ... ... ...

hidden layerinput layer output layer  

Figure 7. ANN architecture. 

The output layer of the ANN outputs the relevant parameters required to construct 

a grid trading model including upper bound of the grid, lower bound of the grid, the 

number of upper grids, and the number of lower grids. The specific ANN architecture is 

shown in Figure 7. 

Figure 7. ANN architecture.

4. Experimental Results

The data sets used for validation and comparison in this study are Standard & Poor’s
500 (S&P 500), NASDAQ Composite, Dow Jones Industrial Average (DJIA), Eu-ro Stoxx 50,
and Shanghai Composite, a total of five large-cap indices from 2011 to 2022.

4.1. Verification of Flexible Grid Performance with Fixed Parameters

First, the performance of flexible grid is compared with equal-distance grid and equal-
ratio grid based on the same grid number and upper and lower bounds. The results that
the best results are marked in bold can be found in Tables 3–5. The number of grids is
calculated by Equation (20) to be close to the real investment situation and to ensure the
adequacy of the use of funds. According to the upper and lower bound conditions, each
data set is divided into two groups for experiments. The first group uses 1.3 times the initial
price as the upper bound of the grid, and 0.7 times the initial price as the lower bound of
grid; while the second group uses 1.5 times the initial price as the upper bound of the grid,
and 0.5 times the initial price as the lower bound of grid.

Table 3. ROI obtained by flexible grid, equal-distance grid, and equal-ratio grid.

Grid Type Flexible Grid Equal-Distance Equal-Ratio

S&P 500
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

31.692%
43.727%

27.934%
39.556%

22.234%
30.174%

Nasdaq 100
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

53.795%
71.888%

49.261%
66.024%

40.369%
51.180%

Dow Jones Industrial Average
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

21.935%
33.541%

18.332%
29.741%

13.629%
21.648%

Euro Stoxx 50
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.601%
17.499%

−4.122%
12.520%

−7.284%
7.087%

Shanghai Composite
((Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

−33.904%
−12.955%

−38.944%
−19.936%

−38.534%
−18.290%
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Table 4. Accumulated wealth obtained by flexible grid, equal-distance grid, and equal-ratio grid.

Grid Type Flexible Grid Equal-Distance Equal-Ratio

S&P 500
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

13,169
14,373

12,793
13,956

12,223
13,017

Nasdaq 100
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

15,380
17,189

14,926
16,602

14,037
15,118

Dow Jones Industrial Average
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

12,194
13,354

11,833
12,974

11,363
12,165

Euro Stoxx 50
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

10,060
11,750

9588
11,252

9272
10,709

Shanghai Composite
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

6610
8705

6106
8006

6147
8171

Table 5. Sharpe ratio obtained by flexible grid, equal-distance grid, and equal-ratio grid.

Grid Type Flexible Grid Equal-Distance Equal-Ratio

S&P 500
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.118
0.160

0.103
0.145

0.092
0.137

Nasdaq 100
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.187
0.234

0.172
0.219

0.161
0.215

Dow Jones Industrial Average
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.079
0.119

0.065
0.105

0.054
0.095

Euro Stoxx 50
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.002
0.046

−0.011
0.033

−0.021
0.023

Shanghai Composite
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

−0.082
−0.030

−0.095
−0.047

−0.106
−0.053

From the results in Tables 3–5, it can be verified that the flexible grid obviously obtains
the best ROI, accumulated wealth, and Sharpe ratio through trading with the same grid
parameters under 10-year fluctuations of five different composite indices. Overall, flexible
grid appropriately delays the entry and exit timing due to its trading structure, and obtains
a relatively high ROI and Sharpe ratio.

4.2. SSO Parameter Setting

Part of the dataset is then used to select appropriate SSO parameters for all subsequent
experiments.

In the first set of experiments, Cg, Cp, Cw are configured as shown in Table 6, which
the best results are marked in bold. The meaning is to divide the range of random number
ρ into four parts according to 7:1:1:1, and the part with this ratio is assigned to gbest, pbest,
xt+1

i,j and a proposed solution in turn in the experiment to detect what kind of the solution
has more critical influence on producing better quality solutions.
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Table 6. Best and worst solutions under different parameter combinations (Experiment 1).

(Cg,Cp,Cw) Maximum Scale Solution ROI (Max) ROI (Min)

(0.7,0.8,0.9) gbest 69.74% 66.83%

(0.1,0.8,0.9) pbest 69.62% 67.18%

(0.1,0.2,0.9) xt+1
i,j 69.69% 66.01%

(0.1,0.2,0.3) proposed solution 69.41% 66.69%

From Table 6, a better quality solution can be found when gbest is the largest and
robust at the same time. Therefore, the probability of gbest is set to the maximum in the
final parameter configuration.

After it is determined that gbest is set as the maximum probability, the range of random
number ρ is then divided into four parts according to 5:3:1:1. Among them, the probability
of taking gbest as the solution is set to the maximum 0.5 because gbest has been determined
in the previous step as the key factor to generate a good quality solution, and the probability
of 0.3 is assigned to pbest, xt+1

i,j and a new solution in turn. According to the experimental
results, the solution that is the second key factor in producing a better solution, is shown in
Table 7, which the best results are marked in bold.

Table 7. Best and worst solutions under different parameter combinations (Experiment 2).

(Cg,Cp,Cw) Maximum Scale Solution ROI (Max) ROI (Min)

(0.5,0.8,0.9) pbest 69.77% 66.22%

(0.5,0.6,0.9) xt+1
i,j 69.77% 66.91%

(0.5,0.6,0.7) proposed solution 69.86% 67.83%

Table 7 shows that it can produce a better quality solution when the new random
solution is larger, and it is robust at the same time. Therefore, the probability of the new
random solution is set to the next largest in the final parameter configuration.

After it is determined that the new random solution is set as the next largest probability,
the range of random number ρ is then divided into four parts according to 3:3:3:1. The
subsequent steps are analogous to the first two steps, and Table 8 that the best results
are marked in bold is obtained as follows. It can be found that xt+1

i,j and pbest have little
difference in the quality of the solution, thus, both probabilities are set to the minimum.

Table 8. Best and worst solutions under different parameter combinations (Experiment 3).

(Cg,Cp,Cw) Maximum Scale Solution ROI (Max) ROI (Min)

(0.3,0.6,0.7) pbest 69.85% 67.99%

(0.3,0.4,0.7) xt+1
i,j 69.90% 67.81%

4.3. Verification of Flexible Grid Performance with Parameters Selected by SSO

After setting the SSO parameters, the flexible grid, the equal-distance grid, and the
equal-ratio grid are connected to the parameters selected by SSO, respectively. Additionally,
solutions with 10 runs, 20 generations per run, and 100 sets of solutions per generation are
found. Two sets of experiments, which is same as the previous verification of flexible grid
architecture, are also conducted with the upper and lower bounds of different risk levels.
The results that the best results are marked in bold are shown in Tables 9–11.
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Table 9. ROI obtained by flexible grid, equal-distance grid, and equal-ratio grid with SSO parameters.

Grid Type Flexible Grid Equal-Distance Equal-Ratio

S&P 500
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

82.859%
90.269%

66.384%
77.198%

58.394%
60.774%

Nasdaq 100
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

111.649%
127.268%

66.384%
110.179%

82.662%
86.208%

Dow Jones Industrial Average
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

74.509%
80.559%

60.591%
70.063%

51.893%
54.760%

Euro Stoxx 50
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

77.220%
88.844%

56.650%
72.293%

48.365%
55.856%

Shanghai Composite
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

58.389%
80.954%

39.178%
58.934%

33.363%
43.639%

Table 10. Accumulated wealth obtained by flexible grid, equal-distance grid, and equal-ratio grid
with SSO parameters.

Grid Type Flexible Grid Equal-Distance Equal-Ratio

S&P 500
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

18,286
19,027

16,638
17,720

15,839
16,077

Nasdaq 100
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

21,165
22,727

16,638
21,018

18,266
18,621

Dow Jones Industrial Average
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

17,451
18,056

16,059
17,006

15,189
15,476

Euro Stoxx 50
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

17,722
18,884

15,665
17,229

14,837
15,586

Shanghai Composite
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

15,839
18,095

13,918
15,893

13,336
14,364

Table 11. Sharpe ratio obtained by flexible grid, equal-distance grid, and equal-ratio grid with SSO
parameters.

Grid Type Flexible Grid Equal-Distance EQUAL-RATIO

S&P 500
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.439
0.442

0.350
0.391

0.351
0.388

Nasdaq 100
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.498
0.524

0.350
0.464

0.437
0.462

Dow Jones Industrial Average
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.377
0.412

0.310
0.344

0.301
0.341

Euro Stoxx 50
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.300
0.331

0.219
0.265

0.211
0.257

Shanghai Composite
(Gul,Gll) = (P0 × 1.3,P0 × 0.7)
(Gul,Gll) = (P0 × 1.5,P0 × 0.5)

0.189
0.220

0.134
0.179

0.131
0.172
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From the results in Tables 9–11, it can be verified that in the application of SSO to
solve the grid trading parameters, the flexible grid is still the best model in terms of
ROI, accumulated wealth, and Sharpe ratio compared with the equal-distance grid and
equal-ratio grid. In addition, comparing the grid trading results connected with the SSO
parameters and the fixed parameter version, it can be found that the ROI has increased
significantly. The overall ROI results reveal that the flexible grid is the best, the equal-
distance grid is the second, and the equal-ratio grid is the worst.

4.4. Training ANN to Automatically Adjust Flexible Grid Parameters

After confirming the excellent performance of the flexible grid using SSO to search
for trading parameters, the flexible grid and SSO are adopted to record the best trading
parameters of each index in 10 years, and obtain a set of trading parameters every 30 days.
In order to expand the follow-up training and data, the moving pace of the model is set
to 5. In each index, about 500 pieces of parameter data are obtained for the training and
verification of ANN, in which the data of the first nine years is used as the training set and
the data of the last year is used as the validation set.

Because the data of the training set in this study have temporal continuity, the data
are re-randomly ordered before training in the FNN in order to avoid affecting the training
results of the model. In the LSTM neural network, the input training data must be sequen-
tial because the model design, and thus the training data, do not need to be re-ordered
randomly.

The architecture of the FNN and the LSTM neural network has undergone many experi-
ments, and the final architecture and hyper-parameter settings are shown in Tables 12 and 13.

Table 12. FNN hyper-parameters and architecture-related settings.

Item Value Set

Number of input variables 8
Number of hidden layers 3

Number of output variables 4
Number of hidden layer nodes 500

Optimizer adam
Excitation function sigmoid

Loss function mean squared error
Number of generations 300

Batch size 40

Table 13. LSTM neural network hyper-parameters and architecture-related settings.

Item Value Set

Number of input variables 8
Number of hidden layers 3

Number of output variables 4
Number of hidden layer nodes 256, 128, 64

Optimizer adam
Excitation function relu

Loss function mean squared error
Number of generations 300

Batch size 32

The input parameters are eight variables which describe a market situation: the highest
price during the period, the lowest price during the period, the average market price, the
average trading quantity, the price change, the trading quantity change, price standard
deviation, and trading quantity standard deviation. In addition, the output variables are
set to upper bound of the grid, lower bound of the grid, the number of upper grids, and
the number of lower grids for grid trading.
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The number of hidden layers is set to three. The optimizer is set to adam, which has
been common in recent years, with a fast convergence speed and excellent performance in
searching solution. The excitation function uses sigmoid and relu, and the loss function
adopts a mean squared error, which is commonly used in regression problems.

After the neural network training set above, the training and comparison results are
presented in Tables 14 and 15, which the best results are marked in bold. Results of the
mean square error of values for the output layer including upper bound of the grid Gul,
lower bound of the grid Gll, number of upper grids nu, and number of lower grids nl
(shown in Equation (20)) are shown in Table 14. With the exception of the upper and lower
bound of the grid in the Nasdaq 100 index, LSTM has a smaller mean square error. All four
output variables in the other indices have a smaller mean square error; the mean square
errors of the four output variables in other indices are all FNN, which perform better.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (22)

Table 14. Mean square error of values for output layer including upper bound of the grid Gul, lower
bound of the grid Gll, number of upper grids nu, and number of lower grids nl comparison between
FNN and LSTM models.

Neural Network Type FNN LSTM

S&P 500
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

129,510
59,787
207
308

186,366
108,622
252
442

Nasdaq 100
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

4,725,772
1,681,699
133
246

518,181
1,162,381
296
568

Dow Jones Industrial Average
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

6,016,533
2,011,354
164
319

24,446,812
19,594,848
237
402

Euro Stoxx 50
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

105,024
33,988
132
199

334,456
106,422
202
290

Shanghai Composite
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

65,199
33,604
85
214

92,869
26,189
280
459

The coefficient of determination (R square) of the two models, which is an index to
measure the fitness of the regression model and can also be interpreted as the degree of
interpretation of the model, as shown in Table 15 is calculated based on Equation (21). For
example, the meaning of 90.490% in the second row of Table 15 means the coefficient of
determination (R square) of the upper bound of the grid Gul for S&P 500 obtained by LSTM
equals 90.490%, i.e., the fitness of the regression model of upper bound of the grid Gul
for S&P 500 obtained by LSTM equals 90.490% and can also be interpreted as the degree
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of interpretation of upper bound of the grid Gul for S&P 500 obtained by LSTM equals
90.490%. And the best results are marked in bold in Table 15.

R2 = 1− SSres

SStot
=

∑i=1 (yi − fi)
2

∑i=1 (yi − y)2 (23)

Table 15. Comparison of coefficient of determination between FNN and LSTM models.

Neural Network Type FNN LSTM

S&P 500
Upper bound of the grid Gul
Uower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

97.410%
99.586%
94.972%
99.392%

90.490%
90.490%
97.240%
99.469%
94.892%

Nasdaq 100
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

96.415%
97.088%
94.942%
94.737%

98.075%
99.915%
99.635%
98.019%

Dow Jones Industrial Average
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

97.704%
99.771%
99.855%
99.559%

95.970%
93.429%
93.685%
91.285%

Euro Stoxx 50
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

96.183%
99.324%
99.297%
98.405%

94.392%
98.063%
96.858%
99.760%

Shanghai Composite
Upper bound of the grid Gul
Lower bound of the grid Gll
Number of upper grids nu
Number of lower grids nl

97.157%
96.749%
93.165%
99.661%

96.577%
95.545%
93.881%
99.003%

In Table 15, it can be found that except for the Nasdaq 100 index, most of the time,
FNN has a better fit for the four output variables.

Furthermore, the four values of ROI, Maximum Drawdown (MDD), volatility, and
Sharpe ratio are used to examine the performance of the model in this study. In terms of
methods include first Buy and last Sell (Buy and Sell, B&S), first Sell and last Buy (Sell
and Buy, S&B), Grid Trading System Robot (GTSbot) [10], Ichimoku Equilibrium Figure
(IK) [12], Flexible Grid trained with FNN (FG-FNN), Flexible Grid trained with LSTM
(FG-LSTM), equal-distance grid, equal-ratio grid, and flexible grid; a total of nine methods
for comparison.

First, the formula of ROI can refer to Equation (22), which is the most common
indicator of quantitative investment performance in investment sciences. The calculation
of the ratio of investment income to cost usually presents as an annualized return to total
return. The trading costs, including handling fees, are included in the calculation results.
The results that the best results are marked in bold are shown in Table 16.

ROI = (net profit − investment costs) × 100% (24)
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Table 16. Comparison of ROI.

S&P Nasdaq DJI Euro Stoxx Shanghai

B&S 14.392% 1.519% 9.880% 28.340% −15.581%
S&B −14.392% −1.519% −9.880% −28.340% 15.581%

GTSbot 6.408% 4.680% 6.594% 1.191% −0.466%
IWOC 24.111% 23.171% 7.143% 32.087% −18.758%

FG-FNN 11.520% 11.733% 8.849% 12.977% −3.125%
FG-LSTM 4.639% 1.823% 2.940% 7.734% −9.283%

Equal-
distance 5.194% −2.972% 3.480% 10.748% −4.495%

Equal-ratio 4.536% −3.625% 3.276% 10.764% −4.892%
Flexible 5.589% −1.895% 4.270% 11.477% −4.309%

In terms of ROI, the FNN flexible grid achieves the top three returns in each index.
In particular, the FNN flexible grid has the most ability to control the overall loss in the
downward trend of prices.

Second, the comparison is the maximum drawdown, i.e., the amount of income that
has fallen sharply in all periods, which is one of the indicators for evaluating investment
risk. Results that the best results are marked in bold are shown in Table 17.

Table 17. Comparison of MDD.

S&P Nasdaq DJI Euro Stoxx Shanghai

B&S 7.960% 12.570% 7.290% 4.029% 8.529%
S&B 7.491% 10.370% 6.580% 7.313% 3.103%

GTSbot 0.524% 5.335% 1.000% 0.510% 1.126%
IWOC 10.345% 12.421% 8.606% 5.467% 7.640%

FG-FNN 6.455% 5.596% 7.491% 2.034% 4.105%
FG-LSTM 1.580% 49.031% 4.809% 2.966% 3.551%

Equal-
distance 5.252% 8.594% 4.078% 1.513% 4.074%

Equal-ratio 5.243% 10.096% 4.057% 1.529% 4.059%
Flexible 4.737% 8.780% 4.163% 4.144% 4.208%

In terms of the maximum drawdown, it can be found that the method with a larger
return on investment has a relatively higher maximum drawdown, which verifies the
theory of high risk and high return in investment science. There are two reasons for the
performance of the FNN flexible grid on the MDD. The risk is relatively high in the case
of a relatively high return on investment. In addition, the parameters of each period are
calculated by the neural network. If the parameters predicted on one period are particularly
poor, it is likely to cause a large drop in a single period. Whether this MDD condition can
be regarded as a single condition of outliers is yet to be verified by volatility.

In quantitative trading, risk and model stability are assessed through its volatility. The
calculation method refers to Equation (23) and the results that the best results are marked
in bold are shown in Table 18.

Vol = σ[return] (25)

It can be found from Table 18 that the performance of the FNN flexible grid on
volatility is the top three in each index, i.e., the performance of FNN flexible grid is very
stable compared with other methods. It can also be speculated that the poor performance
on the MDD may be a single event, and it can be regarded as a robust investment model in
most cases. The LSTM flexible grid is the best among all models in the S&P and Nasdaq
data sets and is a less risky and more robust investment model.



Electronics 2022, 11, 3259 22 of 24

Table 18. Comparison of volatility.

S&P Nasdaq DJI Euro Stoxx Shanghai

B&S 0.06126 0.07671 0.03568 0.06221 0.01840
S&B 0.06126 0.07671 0.03568 0.06221 0.01840

GTSbot 0.01710 0.03589 0.01795 0.00267 0.00190
IWOC 0.07689 0.08398 0.04564 0.07337 0.03568

FG-FNN 0.01687 0.02076 0.02149 0.01730 0.01414
FG-LSTM 0.01672 0.01637 0.02203 0.01679 0.02030

Equal-
distance 0.02450 0.03579 0.02129 0.01786 0.01590

Equal-ratio 0.02473 0.03629 0.02155 0.01828 0.01629
Flexible 0.02503 0.03665 0.02162 0.01862 0.01624

Finally, in terms of the Sharpe ratio, which is a model performance indicator that
calculates the ratio between investment return and risk, it can also be interpreted as the
reward that can be exchanged for each unit of risk. The calculation method refers to
Equation (24) and the results that the best results are marked in bold are shown in Table 19.

Sharpe = return/σ[return] (26)

Table 19. Comparison of Sharpe ratio.

S&P Nasdaq DJI Euro Stoxx Shanghai

B&S 2.349 0.198 2.769 4.556 −8.466
S&B −2.349 −0.198 −2.769 −4.556 8.466

GTSbot 3.748 1.304 3.673 4.466 −2.446
IWOC 3.136 2.759 1.565 4.373 −5.258

FG-FNN 6.828 5.651 4.119 7.499 −2.210
FG-LSTM 2.774 1.114 1.335 4.606 −4.573

Equal-
distance 2.120 −0.830 1.634 6.017 −2.827

Equal-ratio 1.834 −0.999 1.520 5.887 −3.004
Flexible 2.233 −0.517 1.975 6.165 −2.653

From Table 19, it can be found that the Sharpe ratio of FNN flexible grid is the best
among all methods on the four indices. In the falling market situation, in addition to short
selling, its Sharpe ratio is also the largest. From this, it can be found that the FNN flexible
grid can obtain the highest reward for each unit of risk.

5. Conclusions

In addition to proposing a new grid trading architecture, this study effectively im-
proves the ROI of the original model, improves the drawbacks of premature entry and exit,
and utilizes SSO algorithm and ANN to assist grid trading for parameter selection and
providing the model the ability to adapt to the market.

In terms of model performance, five major market indices are used as verification data,
which cover the United States, Europe, and China. The FNN flexible grid performs very
well in Sharpe ratio. It has excellent investment return rate and model robustness, and can
properly control the balance between risk and return.

This study proves that the technology combined with AI can bring breakthroughs to
the original grid trading model in quantitative trading, and can adapt to various rapidly
changing market situations. In the future, more related extended research is needed so
that the grid trading model can more accurately be closer to human decision making
or even better than human judgment when adjusting parameters to eliminate human
impulses and market emotions, and make rational market trading decisions to obtain better
investment benefits.
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