
Citation: Yang, H.; Hong, J.; Wei, L.;

Gong, X.; Xu, X. Collaborative

Accurate Vehicle Positioning Based

on Global Navigation Satellite

System and Vehicle Network

Communication. Electronics 2022, 11,

3247. https://doi.org/10.3390/

electronics11193247

Academic Editor: Taeshik Shon

Received: 14 September 2022

Accepted: 7 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Collaborative Accurate Vehicle Positioning Based on Global
Navigation Satellite System and Vehicle Network Communication
Haixu Yang 1,2,3 , Jichao Hong 1,2,3,* , Lingjun Wei 4,*, Xun Gong 1 and Xiaoming Xu 2,3

1 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
2 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
4 Department of Waterway Transport and Maritime Management, Beijing Vocational College of Transportation,

Beijing 102600, China
* Correspondence: qdbithong@163.com (J.H.); wljyal66@126.com (L.W.)

Abstract: Intelligence is a direction of development for vehicles and transportation. Accurate vehicle
positioning plays a vital role in intelligent driving and transportation. In the case of obstruction or
too few satellites, the positioning capability of the Global navigation satellite system (GNSS) will
be significantly reduced. To eliminate the effect of unlocalization due to missing GNSS signals, a
collaborative multi-vehicle localization scheme based on GNSS and vehicle networks is proposed.
The vehicle first estimates the location based on GNSS positioning information and then shares this
information with the environmental vehicles through vehicle network communication. The vehicle
further integrates the relative position of the ambient vehicle observed by the radar with the ambient
vehicle position information obtained by communication. A smaller error estimate of the position
of self-vehicle and environmental vehicles is obtained by correcting the positioning of self-vehicle
and environmental vehicles. The proposed method is validated by simulating multi-vehicle motion
scenarios in both lane change and straight-ahead scenarios. The root-mean-square error of the
co-location method is below 0.5 m. The results demonstrate that the combined vehicle network
communication approach has higher accuracy than single GNSS positioning in both scenarios.

Keywords: intelligent vehicles; vehicle positioning; global navigation satellite system; vehicle
network communication; multi-vehicle collaboration

1. Introduction

In recent years, the degree of automation of intelligent vehicles has gradually in-
creased [1,2]. Intelligent vehicles can primarily reduce the influence of human factors and
decrease the occurrence of traffic accidents [3]. Highly accurate positioning is the basis
for intelligent vehicles to achieve path planning and motion trajectory tracking. In the
development of in-vehicle navigation, driver assistance, autonomous driving, intelligent
transportation and other technologies [4], the location of the vehicle is a critical type of in-
formation. GNSS is currently an essential method in vehicle positioning [5,6]. However, the
positioning can be inaccurate or even impossible if there are tunnels and other occlusions.
This single positioning method cannot fully meet the needs of the growing automotive
intelligence in terms of accuracy and reliability. Therefore, it is important to explore new
vehicle localization methods to develop intelligent driving and intelligent transportation.

Researchers made many efforts in vehicle positioning, which contains methods of
multi-sensor fusion, vehicle network communication and artificial intelligence. In fusing
information from multiple sensors, Pankaj et al. [7] proposed an optical camera-based
mobile vehicle localization scheme. Using the street light and camera as transmitter and
receiver, respectively, it is able to achieve a positioning accuracy of less than 1 m. Ioannis
et al. [8] used distance and velocity measurements to deal with localization and target
tracking problems. This approach enabled localization despite the absence of GNSS signals.
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Patrick et al. [9] performed position estimation by installing fixed points on the road and
detecting body bumps and road surface imperfections. Hossain et al. [10] matched and
fused the position information obtained from GNSS, vehicle network communication and
radar. The simulation results showed a significant improvement in positioning accuracy.
Wang et al. [11] proposed an auxiliary vehicle location system. The system consists of three
base stations equipped with multiple inputs and multiple outputs. Accurate localization
can be achieved based on the results of three cross-locations. Tao et al. [12] proposed a
multi-sensor fusion localization strategy for intelligent vehicles using global pose map
optimization and validated it on the ROS platform. Zhang et al. [13,14] proposed a collabo-
rative positioning method based on 3D mapping-assisted GNSS. The technique utilized
measurements from surrounding available GNSS receivers, eliminating systematic errors
while also mitigating random errors. The multi-sensor fusion approach makes the vehicle
more costly, and the sensors are more affected by the environment.

If only the vehicles are individually positioned by sensors, autonomous vehicle po-
sitioning may not be possible in the absence of signals. The development of Telematics
technology allows the use of location data from nearby vehicles to improve or replace
self-location. Nam et al. [15] proposed a cooperative adjacent vehicle localization sys-
tem. The system quickly identifies the location of neighboring vehicles and communicates
that information with neighboring vehicles. Zhu et al. [16] established a GNSS/dead
reckoning/ultra-wide band fusion positioning algorithm with adaptive information allo-
cation coefficients using the Kalman filter, which can improve positioning accuracy and
reliability. Mahmoud et al. [17] used dedicated short-range communications to share data
between vehicles, enabling the positioning of vehicles during GNSS signal outages. Hou
et al. [18] proposed a displacement-based selection method that can reduce the effect of
measurement errors in nearby vehicle information. The status information of nearby vehi-
cles can be used to locate the target vehicle. Buehrer et al. [19] considered the application of
IoT and 5G to co-location, demonstrating its superior coverage and accuracy. Ma et al. [20]
proposed a BeiDou-based joint vehicle-road positioning method using the volumetric
Kalman model to further improve the positioning accuracy. Ansari et al. [21] investigated
the supplementation of dedicated short-range communication and V2V by terrestrial com-
munication systems to examine the positioning performance of vehicles. Tong et al. [22]
used information collection platforms to obtain driving status and roadside information to
obtain the vehicle’s location. The current method still has room for improvement in the
integration of GNSS, vehicle network communication, and vehicle sensors. Positioning
accuracy still needs to be improved.

With the advancement of computer technology, artificial intelligence methods are
increasingly used in vehicle positioning. Kim et al. [23] developed an indoor vehicle
location system using surveillance cameras. Such a system determines the location of a
vehicle by extracting vehicle information from image information. Wan et al. [24] combined
machine learning and edge computing and could obtain high accuracy in vehicle location
estimation. Lee et al. [25] developed a machine learning method applicable to location
prediction using the data generated by the localization algorithm, which improved the
accuracy of location prediction by 10%. Kong et al. [26] proposed a vehicle localization
system based on federated learning. The system makes full use of edge computing and can
provide high-accuracy positioning correction. Gao et al. [27] proposed an error-weighting-
based vehicle localization fusion algorithm. Distance and positioning compound errors are
taken into account for single-vehicle positioning and trilateral positioning. Wang et al. [28]
studied the effects of vehicle location potential features and vehicle association potential
features. A routing algorithm based on vehicle location analysis is proposed to obtain
more accurate vehicle location prediction. Watta et al. [29] proposed an intelligent system
incorporating neural networks and geometric modeling. A neural network trained on V2V
signals to obtain the location of remote vehicles. Figure 1 shows the different methods
of vehicle positioning. Machine learning methods are considered to be black-box models.
There is no way to know the direction of learning inside the model, and the application
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of such methods is still open to question. The collaborative localization method proposed
in this study combines GNSS, vehicle network communication and in-vehicle sensors to
achieve more accurate vehicle positioning.
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Figure 1. Different methods of vehicle positioning.

A collaborative vehicle positioning method using GNSS and vehicle network commu-
nication is proposed in order to overcome the shortcomings of GNSS positioning in terms
of accuracy and reliability. Contributions of this paper are shown in the following aspects:

(1) GNSS and vehicle network communication: Combined positioning using GNSS
and vehicle network communication to improve positioning accuracy and reliability.

(2) Multi-vehicle scenario validation: A multi-vehicle motion scenario was built, and
the positioning was verified under straight-ahead and lane change conditions.

(3) Impact of communication interruption: Verification of positioning accuracy during
communication interruption to check the effectiveness of vehicle network communication
for positioning.

The remainder of this paper is structured as follows: Section 2 describes the vehicle
model and the multi-vehicle motion scenario used for simulation. Section 3 compares the
positioning accuracy in different positioning scenarios, and Section 4 gives the conclusion
of the study.

2. Research Methodology

The proposed methodology uses GNSS and vehicle network communication. To verify
the method’s effectiveness, kinematic modeling of the vehicle is performed. A motion scene
is created in the simulation environment and the positioning error is calculated.

2.1. Component Modules

The proposed multi-vehicle cooperative positioning system consists of three modules:
GNSS, millimeter wave radar and vehicle network communication.
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2.1.1. GNSS

GNSS is a navigation and positioning system that uses radio. It refers to all satellite
navigation systems, such as GPS of the United States, Glonass of Russia, Galileo of Europe
and BeiDou of China. It can provide 3D coordinates, velocity and time information at any
of Earth’s surfaces or near-Earth space. These three types of information are called PVT
(Position Velocity and Time). In this study, absolute position information of the vehicle
can be obtained using GNSS. The received coordinates are earth latitude and longitude
coordinates, which can be converted to local area plane coordinates by calculation.

As shown in Figure 2, any location on the Earth’s surface has a three-dimensional
coordinate. GNSS satellites also have a coordinate. The distance between the satellite and
the positioning target can be expressed in coordinates as

L =
√
(x− x′)2 + (y− y′)2 + (z− z′)2 (1)

where the coordinates of the satellite are known and the target point coordinates are
unknown.
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Figure 2. Satellite positioning principle.

The speed of signal transmission between the satellite and the target point can be
regarded as the light speed. Then the distance between the satellite and the target point
can be expressed as

L =
(
t− t′

)
·c (2)

where t is the satellite time and t′ is the time at the target point. Combining the two
equations, we get

(
t− t′

)
·c =

√
(x− x′)2 + (y− y′)2 + (z− z′)2 (3)

At this point, the coordinate values of the other three satellites are needed to solve the
equation. It takes at least four satellites to determine the location of a target point on Earth.
Depending on the number of signal receivers, positioning can also be divided into absolute
positioning and differential positioning.

2.1.2. Millimeter Wave Radar

The use of millimeter wave radar can obtain the relative position information of nearby
environmental vehicles to the present vehicle. This includes the distance and angle of the
ambient vehicle relative to the vehicle, that is, the position of the ambient vehicle in the
local coordinate system.

Sensors commonly used for environmental awareness in smart vehicles include cam-
eras, Light Detection and Ranging (LIDAR), millimeter-wave radar and ultrasonic radar.
The camera is a component based on the optical principle [30]. When the light passes
through the lens, it is captured by the light sensor and then forms an image. LIDAR
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performs object detection and ranging by emitting laser pulses externally [31]. The laser
will reflect when it reaches the surface of the target to be measured. LIDAR can acquire
parameters such as the reflected signal’s return time and signal strength. The information
allows us to determine the target’s distance, orientation, motion status and other character-
istics. Millimeter wave radar is similar to LIDAR in principle. The difference is that the
signal it emits is changed from laser to electromagnetic wave [32]. It calculates the distance
from the time difference of electromagnetic wave returns and calculates the relative velocity
of the measured target based on the Doppler effect. The principle of ultrasonic radar is
also similar. The signal it generates is ultrasonic [33]. Due to the different principles of the
above sensors, the application scenarios are different. Figure 3 illustrates the characteristics
of several sensors and their application scenarios.
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2.1.3. Vehicle Network Communication

Vehicle network refers to a system network for wireless communication and informa-
tion exchange among vehicles, roads, pedestrians and the Internet based on intra-vehicle
network, inter-vehicle network and in-vehicle mobile Internet, in accordance with agreed
communication protocols and data interaction standards. Vehicle network is an intelligent
three-dimensional architecture, including the data sensing layer, network transmission
layer and platform application layer. The data sensing layer uses sensors to perceive
information and obtain comprehensive information on road conditions. The network trans-
mission layer connects the infrastructure to the platform application layer. It enables the
transfer of information between various subjects. The platform application layer has the
function of management and operation. It is capable of performing tasks such as traffic
management and safety control.

The main units in the vehicle network communication are shown in Figure 4. Vehicle
network communication can be based on dedicated short-range communication (DSRC) or
5G networks to enable the transfer of information between vehicles. This also represents
the two main technical routes of the current vehicle network communication standards,
namely DSRC and cellular vehicle to everything (C-V2X). DSRC has the technical char-
acteristics of exclusive bandwidth and short-range communication. C-V2X highlights



Electronics 2022, 11, 3247 6 of 14

the advantages in capacity, latency, manageability and anti-interference algorithms. In
collaborative positioning, when the GNSS signal is missing, the vehicle with the missing
signal can establish communication with other vehicles with a normal signal through the
vehicle network. Thus, the position of the signal-less vehicle can be determined by the
position of the surrounding vehicles with normal signals.
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2.2. Overall Flow of the Method

The overall workflow of multi-vehicle cooperative positioning is shown in Figure 5.
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The GNSS module obtains absolute vehicle position information with noise [34]. By
designing filters to process the signals, coarse position estimation based on self-vehicle
observation information can be achieved. Vehicle network communication sends this coarse
estimate of position to other vehicles in the vicinity. Combined with the relative position
information detected by millimeter wave radar, multi-vehicle cooperative localization
is enabled.

Four vehicles (A, B, C and D) are connected by a vehicle network. Each vehicle can
position itself via GNSS. Vehicles can communicate with each other via vehicle networks to
share location information with other vehicles. The vehicle can sense the relative position
within a certain distance by millimeter wave radar. Combined with the information, the
vehicle can estimate its own position as well as the position of other vehicles around it. The
interrelationship between the vehicles is shown in Figure 6a.
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2.3. Vehicle Modeling Based on Velocity Motion Model

The velocity motion model contains linear and angular velocities [35]. The control
vector for vehicle motion is:

ut =

(
vt
wt

)
(4)

where vt represents the linear velocity of the vehicle and wt represents the angular velocity
at the moment t. When vt is positive, the vehicle moves forward. When wt is positive, the
vehicle turns counterclockwise.

The state vector of the velocity motion model is:

xt =

xt
yt
θt

 (5)

where xt and yt are the position coordinates in the right-angle coordinate system [36], θt is
the velocity direction. The motion of the vehicle is shown in Figure 6b.

Noise can interfere with signal transmission and cause deviations in the state vector
and control vector. The location information obtained will be inaccurate. In the ideal case
(no noise influence), assume that the initial state vector is (x, y, θ)T , the control vector is
(v, w)T and the state vector after ∆t time is (x′, y′, θ′)T . The state vector can be expressed asx′

y′

θ′

 =

xc +
v
ω sin(θ + ω∆t)

yc − v
ω cos(θ + ω∆t)
θ + ω∆t

 =

x
y
θ

+

− v
ω sin θ + v

ω sin(θ + ω∆t)
v
ω cos θ − v

ω cos(θ + ω∆t)
ω∆t

 (6)

where xc = x− v
ω sin θ, yc = y + v

ω cos θ. (xc, yc)
T is the center of the circle for the motion

in time ∆t. Considering the error between the real motion and ideal motion of the vehicle
and the effect of noise, the real motion model of the vehicle can be expressed asx′

y′

θ′

 =

x
y
θ

+

− v̌
ω̌ sin θ + v̌

ω̌ sin(θ + ω̌∆t)
v̌
ω̌ cos θ − v̌

ω̌ cos(θ + ω̌∆t)
ω̌∆t + γ̌∆t

 (7)

v̌, ω̌ should be the filtered value.

2.4. Estimation of Vehicle Location by Relative Positioning

When there are multiple vehicles in the environment for cooperative localization, one
of the vehicles is selected as the target vehicle for ease of study and accuracy in presentation.
The GNSS signal is filtered to obtain the position estimation result of this vehicle [37]. The
results are sent to nearby vehicles via the vehicle network. At the same time, the vehicle
can detect the position of nearby environmental vehicles relative to the vehicle through
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millimeter wave radar. Through the correspondence between the radar target and the
ambient vehicle, the position of the ambient vehicle can be used to solve for the position of
this vehicle.

The position of this vehicle is obtained from the position and relative distance of the
environment vehicle as

µr
i
t =

(
µi

t,x − di
t cos ϕi

t, µi
t,y − di

t sin ϕi
t

)T
(8)

where µi
t,x and µi

t,y are the coordinates of the environment vehicle and di
t is the distance be-

tween this vehicle and the ambient vehicle. Assume that the error of the radar measurement
at the moment t is

εt,r =
(
εt,rx, εt,ry

)T (9)

The two follow a normal distribution and are uncorrelated with each other. Then
there are

εt,rx ∼ N
(

0,σ2
rx

)
, εt,ry ∼ N

(
0,σ2

ry

)
(10)

The covariance matrix of the radar range can be obtained as

P =

(
σ2

rx 0
0 σ2

ry

)
(11)

2.5. Simulation Contents

To verify the effectiveness of the method, the simulation is performed by building a
multi-vehicle motion scenario. The time duration of each simulation is set to 30 s, and the
step size is 0.1 s.

2.5.1. Linear Motion Simulation

The motion scenario contains two lanes. The width of the lanes is 3.75 m, and there
are five vehicles in each lane. Vehicles travel along the centerline of their respective lanes.
Vehicles located in the fast lane have an initial speed of 50 km/h and a vehicle spacing of 80
m. Vehicles located in the slow lane have an initial speed of 30 km/h and a vehicle spacing
of 50 m, as shown in Figure 7a. After the simulation starts, at 0 < t < 10 s, the first car in
both lanes moves according to the acceleration curve shown in Figure 7b. At t > 10 s, the
first car in both lanes maintains uniform linear motion.
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The eight cars after the first car respond to the speed fluctuations of the preceding car
according to the linear-following model.

..
xr(t + T) = λ

( .
x f (t)−

.
xr(t)

)
(12)
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where
.
xr(t) and

.
x f (t) are the distance between the rear car and the front car along the

direction of the lane to the origin at time t. Take λ = 0.3, T = 1 s. The motion simulation
takes into account the fluctuation of vehicle speed under linear motion and the change of
surrounding environment vehicles with time.

2.5.2. Lane Change Motion Simulation

The motion scenario contains two lanes. The width of the lanes is 3.75 m, and there
are five vehicles in each lane. Vehicles travel along the centerline of their respective lanes.
The initial speed of both lanes is 30 km/h, and the distance between cars No.4 and No.5
and between cars No.6 and No.7 is 100 m. The distance between the front and rear of other
vehicles is 50 m, as shown in Figure 8a.
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After starting the simulation, cars 2 and 9 perform the lane change operation at
3 s < t < 8 s, while the other vehicles maintain uniform linear motion. The lane change
steering angle is shown in Figure 8b. δ(t) is the steering angle at time t. Assuming a
linear two-degree-of-freedom model for the vehicle, with constant longitudinal velocity
and small angular offset in the heading. Then δ(t) function satisfies that the transverse
pendulum angular velocity, lateral velocity and heading angular deflection are zero at the
beginning and end of steering. Simplifying the velocity motion model assumes a zero
lateral deflection angle. Therefore, the angular velocity of the vehicle transverse pendulum
is proportional to the steering angle, and δ(t) can be replaced byω(t).

To determine the parameters K, ∆t1, ∆t2 in this channel change model, the constraints
are listed. The lateral displacement, maximum lateral acceleration and maximum lateral
sharpness are constrained, respectively

yl
u

= lim
t→∞

∫ t

0

∫ τ

0
ω(α)dα dt (13)
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|alateral(t)| < 0.2 g (14)

∣∣ .
alateral(t)

∣∣ < 0.1 g
s

(15)

where yl is the target lateral displacement, u is the vehicle longitudinal velocity,v is the lateral
velocity of the vehicle, g is the acceleration of gravity and alateral is the lateral acceleration

alateral =
.
v− uω ≈ −uω (16)

Substituting into the channel change model, we get

K
(

2∆t1
2 + 3 ∆t1∆t2 + ∆t2

2
)
=

yl
u

(17)

Ku < 0.2 g (18)

Ku
∆t1

<
0.1 g

s
(19)

where yl = 3.75 m, u = 30 km/h, The value of the parameter satisfying the above constraint
is solved as K = 0.12 rad/s, ∆t1 = 1 s, ∆t2 = 0.5 s. The corresponding lane change curve is
shown in Figure 8c. Figure 8d displays Car 2 and Car 9 for lane change simulation.

At 9 s < t < 19 s, the first car in both lanes moves in the same way as Figure 7b:
“uniform speed—uniform deceleration—uniform speed—uniform acceleration—uniform
speed”. The rear eight vehicles move according to a linear heel-chase model.

2.5.3. Module Parameter Setting

General millimeter-wave radar for longitudinal position detection accuracy than lateral
position detection accuracy, the detection range of about 100 to 200 m. This simulation
environment assumes that the radar can detect environmental vehicles within a radius of
100 m, with the vehicle’s location as the center of the circle. The lateral and longitudinal
errors of relative positions satisfy normal distribution with a standard deviation σrx = 0.2 m
and σry = 0.1 m. Data is updated every 0.1 s.

The accuracy of position information provided by satellite positioning is generally
around 10 m, while speed detection accuracy is much higher. The simulation assumes
that GNSS positioning can provide absolute position as well as velocity information of the
vehicle. The lateral, longitudinal and heading angular errors all satisfy normal distribution.
The standard deviations are σzx = σzy = 3.33 m, σzθ = π/180, σzv = 1 m/s. Data is
updated every 0.1 s.

The simulation assumes that the vehicle can receive location information sent from
ambient vehicles within a radius of 100 m, with the vehicle’s location as the center of
the circle. To test the performance of the co-location method in the presence of unstable
communication, it is assumed that the communication fails in the time 20 s < t < 25 s.
Absolute location information of environmental vehicles is not available to all vehicles. At
other times, all vehicles send and receive communication messages every 0.1 s.

3. Results and Discussion

The cooperative positioning and single vehicle positioning are simulated in the lin-
ear motion scenario and lane change motion scenario, respectively. Each scenario was
simulated 100 times. The results of 100 simulations are averaged to eliminate the chance.

Figure 9a,b display the root-mean-square error of the co-location method. The meaning
of the vertical coordinate of the curve is the root mean square of the positioning error of all
vehicles in all simulations at a given time.
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Figure 9c demonstrates the root-mean-square error when a vehicle is positioned
individually. Comparing the two methods shows that the error of cooperative positioning
is significantly smaller than that of single-vehicle positioning. In addition, comparing the
positioning error of the environmental vehicle with the positioning error of this vehicle, it
is significantly larger in the x direction than in the y direction. This can be explained by the
fact that radar has a more significant measurement error in the lateral direction than in the
vertical direction.

Figure 10 shows the root-mean-square error of the two positioning methods during
one lane change simulation (The simulation results for the straight-ahead scenario are
very similar). The vertical coordinate of the curve means the root mean square of the
positioning error of all vehicles at the same time in one simulation. It can be seen that the
co-location is less error-prone and more stable than the individual positioning in the same
lane change simulation.

Table 1 shows the comparison of the positioning error after averaging the two posi-
tioning methods in the time domain. It can be found that co-location has higher positioning
accuracy in the case of communication failure, which is consistent with the results shown
in Figure 9. The co-location error level is kept below 0.5 m overall. The current positioning
accuracy of GNSS for civilian use is basically within 10 m. It can be seen that the collabora-
tive positioning method can significantly improve the positioning accuracy. However, at
the same time, the collaborative approach uses vehicle networks and in-vehicle sensors. In
terms of future real-world applications, more comprehensive considerations are needed.
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Table 1. The average value of the error in the time domain for the two positioning methods.

Method Lane Change Scenario Straight Ahead Scenario

Error (m) Co-Positioning Single Positioning Co-Positioning Single Positioning

Root mean square error in the x-direction 0.20 0.36 0.27 0.38

Root mean square error in y-direction 0.36 0.61 0.34 0.62

Total root mean square error 0.42 0.73 0.44 0.74

4. Conclusions

This paper proposes a collaborative positioning method based on GNSS and vehicle
network communication. The target vehicle first obtains its location information through
GNSS and then transmits the information to the nearby environment vehicles through
vehicle network communication. The target vehicle can correct its position with the envi-
ronmental vehicle information. A multi-vehicle motion scenario was established to verify
this method’s effectiveness. The results show that the multi-vehicle cooperative localization
method is more accurate than the single localization by GNSS. The root-mean-square error
of positioning can be controlled to less than 0.5 m. This study was conducted in a simulation
environment, and the effectiveness of the method was verified by the simulation results.
The limitation of the study is that it still lacks the verification of real vehicles, which is the
direction of our future efforts. With the continuous development of intelligent vehicles,
vehicle position information is an important parameter in the vehicle’s driving status. This
paper explores the role of vehicle network communications in vehicle location. In the near
future, this approach can be further applied to the precise positioning of actual vehicles.
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