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Abstract: Short-term load forecasting (STLF), especially for regional aggregate load forecasting, is
essential in smart grid operation and control. However, the existing CNN-based methods cannot effi-
ciently extract the essential features from the electricity load. The reason is that the basic requirement
of using CNNs is space invariance, which is not satisfied by the actual electricity data. In addition,
the existing models cannot extract the multi-scale input features by representing the tendency of the
electricity load, resulting in a reduction in the forecasting performance. As a solution, this paper
proposes a novel ensemble model, which is a four-stage framework composed of a feature extraction
module, a densely connected residual block (DCRB), a bidirectional long short-term memory layer
(Bi-LSTM), and ensemble thinking. The model first extracts the basic and derived features from raw
data using the feature extraction module. The derived features comprise hourly average temperature
and electricity load features, which can capture huge randomness and trend characteristics in elec-
tricity load. The DCRB can effectively extract the essential features from the above multi-scale input
data compared with CNN-based models. The experiment results show that the proposed method can
provide higher forecasting performance than the existing models, by almost 0.9–3.5%.

Keywords: short-term load forecasting; unshared convolutional neural network; bidirectional long
short-term memory; ensemble thinking

1. Introduction

Accurate load forecasting is vital for the power grid’s operation stability, such as
generating units’ scheduling, safety assessment, and reliability analysis [1,2]. With the
development of the power system and the integration of renewable energy, it is essential to
obtain accurate load forecasting results [3,4].

Load forecasting is categorized into three classes: long-term load forecasting (LTLF),
medium-term load forecasting (MTLF), and short-term load forecasting (STLF) [5]. LTLF
and MTLF are applied for forecasting the electricity load from several weeks to a few
years [6], which are crucial for long-term power generation scheduling and seasonable
electricity load analysis [7]. In comparison, STLF ranges from several minutes to a few
days. It is crucial for the daily operation of the power grid. It is worth noting that most
electricity load series have apparent periodicity.

Nevertheless, the holiday effect and major emergencies also bring random fluctuations
to the electricity load, limiting the forecasting efficiency. Therefore, many researchers have
designed various STLF models to address this restriction. The existing load forecasting
approaches are categorized into statistical and machine-learning-based models. For those
data with fixed patterns, the statistical-learning-based methods can execute quickly and
provide accurate forecasts. Mbamalu et al. [8] proposed the auto-regressive (AR) model
to forecast the electricity load. Moreover, the suboptimal least square method was used
to estimate the model parameters and improve model generalization. Kuang et al. [9]
dealt with the STLF using the adaptive auto-regressive moving average (ARMA) model.
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However, AR and ARMA need the stationary input series, which is counterfactual to the
actual input data. As a solution, Wang et al. [10] adopted the auto-regressive integrated
moving average (ARIMA) in which the integral part transforms the time series, making it
stationary. Hence, it can relieve the problem that the STLF method is slightly strict with the
input series.

Another popular model for STLF is based on machine learning. It usually begins
with an input feature module that can yield hand-crafted features to construct a mapping
between the input data and the output values of the network. In the training process, all
the network’s neurons can learn the complex relationship between inputs and outputs with
constantly updated parameters. The trained network is tested on the dataset of the other
samples to evaluate the generalization capacity. Ceperic et al. [11] first designed a feature
extraction module to generate the model input. Then, the input data were fed into the sup-
port vector machine (SVM) to produce the final forecasting results. Wu et al. [12] adopted
the modified generalized regression neural network for STLF. Moreover, the multi-objective
searching method was also used to achieve satisfactory performance. Chen et al. [13] first
used the similar-day load as their input data. Then, a wavelet neural network was applied
to decompose the input series into different frequency components, which were the input
of separate neural networks to obtain the final output.

Although the above methods can produce competitive forecasting performance, re-
searchers need more accurate results. The electricity load data present complicated random
patterns, and they are challenging to fit precisely [14]. As a solution, deep learning is a
powerful method for the forecasted task, as it has the advantage of nonlinear approximation
capability [15–17].

Recently, numerous works based on deep learning have studied STLF. Deng et al. [18]
concluded that it is hard to forecast the electricity load precisely. Moreover, a convolutional
neural network (CNN) was used to produce competitive results. Dong et al. [19] adopted
the K-means algorithm to cluster a large dataset into a few subsets. Then, they were fed
into a CNN to obtain the final forecasting result. However, the STLF models based on
CNNs still have some limitations. Specifically, the basic requirement of adopting CNNs
is space invariance [20], which cannot be satisfied by the actual load data (we detail this
problem in Section 3 of this work). Another commonly used method is the long short-term
memory network (LSTM). Tan et al. [21] developed an ensemble network that can integrate
multiple LSTMs to forecast the electricity load. Liu et al. [22] indicated that the forecasting
model based on those LSTM networks could obtain more accurate forecasting performance
than artificial neural networks (ANNs) and ARIMA. However, these studies usually pay
attention to extracting the features from different LSTM networks, and the generalization
capacity of deep learning has not been fully exploited. Table 1 shows a comparison between
the proposed model and previous works in various aspects, including input features and
forecasting horizon.

Table 1. Comparison of the proposed model with related papers in the literature.

References Model Input Variables Horizon

[8] AR Electricity load, temperature 7 days ahead
[9] ARMA Time, electricity load 1 day ahead

[11] SVM Season, Temperature, and
electricity load 1 h ahead

[12] GRNN Electricity load 1 day ahead

[13] WNN Time, wind speed, and
electricity load 1 day ahead

[19] K-means, CNN Electricity load 7 days ahead
[21] LSTM Time, electricity load 1 day ahead

Proposed model UCNN, Bi-LSTM Season, time, electricity load,
and temperature 1 day ahead
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Overall, the generalization capacity of deep neural networks (DNNs) boosts as the net-
work depth increases. Nevertheless, overfitting and gradient disappearance usually exist
and significantly affect DNN performance as the scale of the DNN increases. Two methods
have been applied to relieve this limitation: improving the layer itself and modifying the
structure of the DNN. A common approach for the first method is the bidirectional long
short-term memory network (Bi-LSTM) [23]. Compared with LSTM, Bi-LSTM can train
the network parameters in different directions, boosting the performance of time series
learning. Toubeau et al. [24] demonstrated that Bi-LSTM networks could yield significantly
improved results compared with LSTM networks. The second method is based on residual
learning, which transforms the structure of the DNN by adding shortcut connections [25].
In addition, different residual learning variants have been proposed and achieved high
performance [26,27]. Thus, the proposed model adopts hourly electricity load and tempera-
ture to forecast the electricity load on the following day. Specifically, the contributions of
this study are summarized as follows:

1. We designed a densely connected residual block (DCRB) based on an unshared convolu-
tional layer (UCL), which can effectively relieve over-fitting and gradient disappearance;

2. We proposed a novel ensemble method for deterministic electricity load forecasting.
The model includes a one-dimensional unshared convolutional neural network (1D-
UCNN) and a bidirectional long short-term memory layer (Bi-LSTM). In addition,
the generalization ability of the proposed model was verified by testing it on two
benchmark datasets.

The rest of the paper is organized as follows: Section 2 introduces the overall frame-
work of the proposed ensemble model, which consists of a feature extraction module, a
densely connected residual block (DCRB), Bi-LSTM, and the ensemble structure. Section 3
shows the experiment results and demonstrates the performance comparison of the pro-
posed method on two public datasets from North America and New England. Finally, the
conclusions and future research direction are drawn in Section 4.

2. Method
2.1. Overall Framework

In this paper, we designed a flexible framework to forecast the short-term electricity
load, as shown in Figure 1. In addition, its backbone is based on a DCRB and Bi-LSTM layer.
At first, the input data are preprocessed to obtain the basic and derived features by the virtue
of the feature extraction module. Specifically, the derived features comprise the average
electricity features and temperatures. The temperature features are first concatenated and
sent as input to two separate fully connected layers, with the second layer representing
FCL1. The model also concatenates the calendar features and connects them with two
fully connected layers. The second layer represents FCL2. Moreover, the model continues
concatenating FCL1, FCL2, the actual temperature, and the electrical loads over one day.
They are further connected with a separate fully connected layer denoted as FCL3, which
is concatenated with other electricity load features. Then, the DCRB extracts the essential
features from the above input data. The following Bi-LSTM layer can further capture
the hidden temporal pattern. The forecasting value of one snapshot by a dense layer
with is obtained with the linear activation function. In addition, the proposed model can
construct multiple snapshots and ensemble them through ensemble thinking. The proposed
framework produces the final forecasting result after averaging the snapshots’ outputs.
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2.2. Feature Extraction

Input features are essential in accurate electricity forecasting performance [6]. Hence,
in this study, we divided the input data into the basic and derived features, which are
represented by Basic(h) and Derived(h), respectively; h is calculated hourly, and the reason
is that we studied hourly load. Specifically, Basic(h) and Derived(h) can be listed as follows:

Ehour
h (h-1), . . . , Ehour

h (h-24)
Eday

h (h-24), . . . , Eday
h (h-168)

Eweek
h (h-168), . . . , Eweek

h (h-672)
Emonth

h (h-672), Emonth
h (h-1344), Emonth

h (h-2016)
Tday

h (h-24), . . . , Tday
h (h-168)

Tweek
h (h-168), . . . , Tweek

h (h-672)
Tmonth

h (h-672), Tmonth
h (h-1344), Tmonth

h (h-2016)
Season(h), Weekday(h), Holiday(h)


(1)

[
Eday

M (h), Eweek
M (h), Emonth

M (h)
Tday

M (h), Tweek
M (h), Tmonth

M (h), Th

]
(2)

The basic features consist of electricity load, temperature, season, and calendar in-
formation. In addition, the derived features are obtained by calculating the basic ones.
More precisely, the derived features include a series of average values concerning the load
and temperature. These two types of input features are crucial for STLF. As shown in
Table 2, the basic load features, such as Ehour

h , Eday
h , Ewek

h , and Emonth
h , are added to cap-

ture the long/short-term trends of the load series. Furthermore, the basic temperature
features, such as Th, Tday

h , Twek
h , and Tmonth

h , can reflect the effect of the long/term-term
temperature change trend on the load. The seasonal feature, Season(h), is added to track
certain seasonal regularity in the load series. The calendar features, such as Weekday(h)
and Holiday(h), can make it easier for the proposed method to capture the weekday effect
and the dynamic characteristics influenced by holidays. The derived features, such as Eday

M ,

Eweek
M , Emonth

M , Tday
M , Tweek

M , and Tmonth
M , are added to further capture the random fluctuation

of long-/short-term trends in the load series and the effect of the temperature change on
the electricity load.
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Table 2. Input data for the load forecast of the hth hour.

Symbol Size Description of the Inputs

Ehour
h 24 Electricity values within 24 h before the hth hour

Eday
h

7 Electricity values of the hth hour of every day within a week

Eweek
h 4 Electricity values of the hth hour of days 7, 14, 21, and 28 before the

forecasted day

Emonth
h 3 Electricity values of the hth hour of days 28, 56, and 84 before the

forecasted day
Eday

M
1 The average value of Eday

h
Eweek

M 1 The average value of Eweek
h

Emonth
M 1 The average value of Emonth

h
Th 1 The actual temperature of the hth hour

Tday
h

7 Temperatures of the hth hour of every day within a week

Tweek
h 4 Temperatures of the hth hour of days 7, 14, 21, and 28 before the

forecasted day

Tmonth
h 3 Temperatures of the hth hour of days 28, 56, and 84 before the

forecasted day
Tday

M
1 The average value of Tday

h
Tweek

M 1 The average value of Tweek
h

Tmonth
M 1 The average value of Tmonth

h
Season 4 One-hot encoding for season

Weekday 2 One-hot encoding for weekday/weekend
Holiday 2 One-hot encoding for holiday

2.3. Densely Connected Residual Block

Previous studies usually adopted FCN and one-dimensional convolutional neural
network (1D-CNN)-based deep learning models to forecast the short-term electricity
load [15,28]. Nevertheless, these methods have some limitations. Specifically, FCN usually
suffers from over-fitting and gradient disappearance with many parameters. In addition,
1D-CNNs demand that the space of input data be invariant, but the electricity load data are
virtually space-variant. We introduce this problem in Section 3.

Therefore, in this paper, we proposed a densely connected residual block (DCRB)
by introducing the residual fashion into a one-dimensional unshared convolutional layer,
as shown in Figure 2. The proposed DCRB can address the above issues. Unlike FCN,
over-fitting and gradient disappearance are unlikely to occur due to its fewer parameters.
Compared with 1D-CNNs, its convolution kernel parameters with respect to the various
positions of input feature mapping are not shared. The reason is that 1D-UCNN does not
require space invariance for input data. This section further introduces the implementation
details of the DCRB. The training dataset is given as follows:

D = { xi, yi}
n
t=i (3)

where xi denotes the ith training data, and yi is the corresponding value. The output of the
model Θ (xi) converges to yi after several training iterations. Θ (·) denotes the 1D-UCNN
model. As shown in Figure 3, the region contained in the blue border denotes a feature map.
Moreover, the squares represent the convolution kernels, which slide across the feature
map to extract essential features. The three convolution kernels are marked in various
colors, and they denote the different weight parameters. The feature extraction process of
the lth hidden layer is expressed as follows:

ol
t = ψ(hl−1

t ) (4)

where hl−1
t stands for the tth convolution area at (l − 1)th layer, ol

t represents the convo-
lutional output, and ψ(·) is the unshared convolution operator. Moreover, the outputs
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corresponding to the various convolutional areas are concatenated as new features, which
are separated as different convolutional areas for the following convolution operation.
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It is worth noting that the 1D-UCNN layer is introduced into the residual architecture
to strengthen the generalization ability of the network. Specifically, the gradient information
could back-propagate by adding the shortcut connections. Specifically, the lth hidden layer’s
output is formulated as follows:

ol
t = ψ(hl−1

t ) + hl−1
t (5)

Then, the DCRB structure is established as shown in Figure 3. It is vital a component of
the proposed model. The DCRB can effectively capture essential information from the
electricity load series through a densely residual fashion.

2.4. Bidirectional Long Short-Term Memory (Bi-LSTM)

Though the traditional STLF models, such as ARIMA and ANN, can learn the time
series data, their forecasting performance is not excellent. The reason is that they do not
fully consider the long-term temporal dependence in the time series data. As a solution, an
LSTM model is used to overcome the above limitation [29–31].

Specifically, the LSTM unit is composed of four essential components, which can
make it easier to learn the long-dependence features. In addition, its computing process is
formulated as follows:

gt = σ (U(g)xt + W(g)ht−1 + bg) (6)

ft = σ (U( f )xt + W( f )ht−1 + b f ) (7)

qt = σ (U(q)xt + W(q)ht−1 + bq) (8)
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s̃ = tanh (U(c)xt + W(q)ht−1 + bq) (9)

st = ft ◦ st−1 + gt ◦ s̃ (10)

ht = gt ◦ tanh(st) (11)

where gt denotes the gate for receiving the input data. ft denotes the forget gate, and it
determines the amount of information that can be discarded. qt denotes the output gate,
which determines how much information should be transmitted to the output layer. s̃
is the self-recurrent unit similar to a recurrent neural network (RNN). st is an internal
memory unit of each LSTM cell, which is composed of two parts. Specifically, the first term
represents the calculation result of the previous state st−1 and forget gate ft. The second
term is obtained by calculating state s̃ and input gate gt. ht is the hidden state of the LSTM.

The disadvantage of the LSTM is that it can only learn the previous information of the
time series data. As a solution, a Bi-LSTM model is proposed to deal with the sequence
data in different directions through a forward layer and a backward layer. Specifically, the
functions of the Bi-LSTM layers are formulated as follows:

→
h t = σ (

→
U

(g)→
x t +

→
W

(g)→
h t−1 +

→
b g) (12)

→
f t = σ (

→
U

( f )→
x t +

→
W

( f )→
h t−1 +

→
b f ) (13)

→
q t = σ (

→
U

(q)→
x t +

→
W

(q)→
h t−1 +

→
b q) (14)

→
s̃ = tanh (

→
U

(c)→
x tt +

→
W

(c)→
h t−1 +

→
b c) (15)

→
st =

→
ft ◦

→
s t−1 +

→
lt ◦

→
s̃ (16)

→
h t =

→
q t ◦ tanh(

→
st) (17)

←
h t = σ (

←
U

(g)←
x t +

←
W

(g)←
h t−1 +

←
b g) (18)

←
f t = σ (

←
U

( f )←
x t +

←
W

( f )←
h t−1 +

←
b f ) (19)

←
q t = σ (

←
U

(q)←
x t +

←
W

(q)←
h t−1 +

←
b q) (20)

←
s̃ = tanh (

←
U

(c)←
x t +

←
W

(c)←
h t−1 +

←
b c) (21)

←
s t =

←
ft ◦

←
s t−1 +

←
l t ◦

←
s̃ (22)

←
h t =

←
q t ◦ tanh (

←
s t) (23)

ht =
→
h t ◦

←
h t (24)

where the oppositely oriented arrows mean the forward and backward propagation of
the data, respectively. Meanwhile, ht denotes the status of the Bi-LSTM at time t, which is

obtained by connecting the forward propagation output
→
h t and the backward propagation

output
←
h t. Hence, the Bi-LSTM can learn the essential information from past and future

time series data and obtain the final output.

2.5. Ensemble Structure

The machine learning field widely accepts that ensemble models can provide more
accurate forecasting results than single ones [32,33]. Thus, the adopted ensemble thinking
in this paper can be divided into two stages. Several snapshot models are firstly saved
during the training process of an independent model. Specifically, we adopted the adaptive
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moment estimation (Adam) [34] to optimize the independent model. Hence, the model
can adjust the learning rate during the various training stages. Then, several snapshots are
saved following the proposed approach in [35].

Next, several independent models are further trained, which are the basis for inte-
grating the precise models. Following [36], the parameters are reinitialized to obtain a
few independent models. Thus, in this paper, we considered the number of snapshots
saved during a training period and independent models as hyperparameters. Specifically,
Section 3 details its confirmation process. The final output of the model is the average value
of all the snapshots.

3. Experiment Results
3.1. Test Settings

This study shows the one-day-ahead electricity load forecasting on two public datasets
from New England and North America. Both datasets comprise hourly historical loads
and temperatures. The historical data were divided into a training set, a validation set,
and a test set. Specifically, the training set was applied to update the model parameters.
The validation set confirmed the best hyperparameters. The data were normalized as the
preprocessing step in this paper. The electricity load data and the temperature data were
normalized in the range of [0, 1], which could speed up the convergence of the model. The
MAPE values of the existing models and the proposed model were obtained in a day, week,
month, and year for a fair comparison. It is worth noting that the forecasting results of the
compared methods were directly from related studies. In addition, the experiments were
implemented on a laptop with an Intel core i7-4500U processor. Keras 2.3.0 backend in the
Python 3.6 environment was applied for all the experiments.

3.2. Results of the North American Dataset

The proposed framework was first applied to a public dataset from North American
Utility, including 57 months. In addition, the dataset was divided into three subsets with a
split ratio of 0.6/0.1/0.3. Specifically, the period was from 1 January 1988 to 12 October
1992. The data from 1 January 1988 to 31 December 1990 were for training, and the data
from 1 January 1991 to 12 October 1992 were for testing. The validation set ranged from 1
January 1990 to 31 December 1990.

First, we tested the influence of different hyperparameters on forecasting accuracy.
Concretely, the tuned hyperparameters were determined by the number of independent
models and snapshots saved in a single training process. The performance comparison with
the different number of snapshots is shown in Figure 4. It can be observed that the proposed
ensemble framework provided the lowest forecasting error when the four snapshots were
saved, respectively, during the training process of the three independent models.

For further evaluation of forecasting performance, we compared the proposed frame-
work with WT-NN [37], WT-EA-NN [38], ESN [39], and MCLM [40]. Moreover, we also
evaluated the influence of the possible errors in forecasting temperatures over the gen-
eralization performance of the model, as shown in Table 3. Concretely, this case added
Gaussian noise with a mean of 0 ◦F and a standard deviation of 1 ◦F to the actual tempera-
ture for a fair comparison with the benchmark models. Then, the comparative analysis of
the state-of-the-art models and the proposed model was carried out as follows:

WT-NN [37] and WT-EA-NN [38] are hybrid models based on wavelet transform (WT).
The WT-NN [37] model comprises WT and neural networks (NNs). Different from WT-
NN [37], WT-NN-EA [38] method firstly decomposes the hourly electricity load data into
different frequency components using the wavelet transform (WT). Then, they are fed into
a composite framework consisting of NNs and an evolutionary algorithm (EA) to produce
the forecasting result. As shown in Table 3, the proposed method performed 25.8% and 3.9%
better in the actual temperature case than WT-NN [37] and WT-EA-NN [38], respectively.
When considering the noise temperature, its forecasting performance improved by 29.2%.
Therefore, the proposed model is more competitive in the field of STLF.



Electronics 2022, 11, 3242 9 of 16

Electronics 2022, 11, x FOR PEER REVIEW 9 of 17 
 

 

First, we tested the influence of different hyperparameters on forecasting accuracy. 

Concretely, the tuned hyperparameters were determined by the number of independent 

models and snapshots saved in a single training process. The performance comparison 

with the different number of snapshots is shown in Figure 4. It can be observed that the 

proposed ensemble framework provided the lowest forecasting error when the four snap-

shots were saved, respectively, during the training process of the three independent mod-

els. 

  

(a) (b) 

  
(c) (d) 

Figure 4. The performance comparison with different hyperparameters on the North American da-

taset: (a) mean absolute percentage error (MAPE); (b) mean absolute error (MAE); (c) root-mean-

squared error (RMSE); (d) mean-squared error (MSE). 

For further evaluation of forecasting performance, we compared the proposed frame-

work with WT-NN [37], WT-EA-NN [38], ESN [39], and MCLM [40]. Moreover, we also 

evaluated the influence of the possible errors in forecasting temperatures over the gener-

alization performance of the model, as shown in Table 3. Concretely, this case added 

Gaussian noise with a mean of 0 °F and a standard deviation of 1 °F to the actual temper-

ature for a fair comparison with the benchmark models. Then, the comparative analysis 

of the state-of-the-art models and the proposed model was carried out as follows: 

WT-NN [37] and WT-EA-NN [38] are hybrid models based on wavelet transform 

(WT). The WT-NN [37] model comprises WT and neural networks (NNs). Different from 

WT-NN [37], WT-NN-EA [38] method firstly decomposes the hourly electricity load data 

into different frequency components using the wavelet transform (WT). Then, they are 

fed into a composite framework consisting of NNs and an evolutionary algorithm (EA) to 

produce the forecasting result. As shown in Table 3, the proposed method performed 

25.8% and 3.9% better in the actual temperature case than WT-NN [37] and WT-EA-NN 

[38], respectively. When considering the noise temperature, its forecasting performance 

improved by 29.2%. Therefore, the proposed model is more competitive in the field of 

STLF. 

ESN [39] denotes the echo state network (ESN), which is one of the RNNs used to 

forecast the electricity load. Its input variables are based on basic features, such as 

Figure 4. The performance comparison with different hyperparameters on the North American
dataset: (a) mean absolute percentage error (MAPE); (b) mean absolute error (MAE); (c) root-mean-
squared error (RMSE); (d) mean-squared error (MSE).

Table 3. Performance comparison of MAPEs on the data of North American dataset during 1991
and 1992.

Model Actual Temperature Noisy Temperature

WT-NN [37] 2.64 2.84
WT-EA-NN [38] 2.04 -

ESN [39] 2.37 2.53
MCLM [40] 2.17 2.25

Proposed model 1.96 2.01

ESN [39] denotes the echo state network (ESN), which is one of the RNNs used
to forecast the electricity load. Its input variables are based on basic features, such as
electricity load, temperature, season, and calendar information. Compared with ESN [39],
the forecasting accuracy of the proposed method improved by 17.2% for actual temperature
conditions and 20.5% for noise temperature conditions. Such improved performance shows
that the Bi-LSTM used in the proposed method is a more efficient component to capture
the dynamic characteristics of the electricity load series.

In addition, MCLM [40] method adopts multiple CNNs and LSTMs for STLF. With
the actual temperature case, the proposed method surpassed the MCLM [40] by 9.6% on
the index of MAPE. Moreover, the forecasting accuracy improved by 10.7% in the noisy
temperature data. The experimental results show that the proposed method based on
1D-UCNN outperformed the CNN-based method, and the proposed framework was more
flexible for temperature variation.

We further compared the forecasting results of the proposed method with other deep
learning methods, such as WT-EA-NN [38], MRN-LSTM [41], and MRN-GRU [41]. MRN-
LSTM [41] first adopts the load and temperature features as the input data of multiple
fully connected layers. Then, the preliminary forecasted value is fed to the LSTM layer to
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obtain the final output. MRN-GRU [41] is carried out by combing multiple fully connected
layers and a GRU layer. The forecasting results are shown in Figures 5 and 6. At 1 a.m., the
electricity loads concerning the previous 24 h of the method were the actual data. Thus, the
proposed method produced the best forecasting results. At 7 a.m., the forecasting deviation
reached the maximum, and the MAPE was 2.21. In addition, the proposed model could
achieve more accurate one-day forecasting results, compared with the other models, for
most months.
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3.3. Results of the New England Dataset

In the second experiment, we used the New England dataset to test the generalization
ability of the proposed framework. Specifically, the dataset comprised the hourly electricity
loads and temperature data from 1 March 2003 to 31 December 2014. In addition, for this
experiment, adopted the same hyperparameters tuned with the North American dataset to
train the STLF model for a fair comparison with the benchmark models. The New England
dataset was divided into two subsets with a split ratio of 0.75/0.25 for case 1 and 0.6/0.4 for
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case 2. The first case was adopted to test the forecasting results from 1 January 2006 to 31
December 2006, and the period of the training set was from 1 March 2003 to 31 December
2005. The training set of the second case was from 1 January 2003 to 31 December 2009, and
the testing set was from 1 January 2010 to 31 December 2011.

In the first case, we compared the proposed model with SNN [13] and SIWNN [13].
SNN [13] is implemented using a single neural network, which adopts the calendar infor-
mation, electricity load, and temperature data as the input. In comparison, SIWNN [13]
selects a similar day load as the input. Separate neural networks extract the load feature
processed by wavelet decomposition. As shown in Figure 7, the proposed model could
produce lower forecasting errors than the other models in most months over one year.
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The second case provided a comparison between the generalization ability of the
proposed method and those of the state-of-the-art models mentioned in [41–43], as shown
in Table 4. A CNN was selected for the basic comparison, which is because it is a common
module of the deep learning method. Specifically, the CNN had a convolutional layer and
four fully connected layers. The number of convolutional filters was eight, and the size of
the convolutional kernel was one. ErrCorr-RBF [42] is an offline network based on the radial
basis function (RBF). The RBF is applied to fit the actual electricity load data during the
training process of an error correction (ErrCorr) algorithm, reducing the forecasting error.
MErrCorr-RBF [43] further integrates the input data pruning process in the learning stage,
which can help the model produce more accurate forecasting results. In addition, MRN [41]
denotes a modified residual network (MRN) where the added shortcuts and residual blocks
boost the model generalization. As shown in Table 4, the proposed model could obtain
the most accurate forecasting results. For instance, the proposed framework achieved
1.50% and 1.78% for the years 2010 and 2011, respectively. In comparison, the forecasting
performance of the existing models was much worse. Specifically, the MAPE values corre-
sponding to ErrCorr-RBF [42], MErrCorr-RBF [43], and MRN [41] were 1.80%, 1.75%, and
1.50% for the year 2010 and 2.02%, 1.98%, and 1.80% for the year 2011, respectively. Note
that the proposed model, which is based on one-dimensional unshared convolution, could
provide more accurate forecasting performance than the classic convolution-based method.
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Table 4. Performance comparison of MAPEs on the data of New England dataset during 2010
and 2011.

Model 2010 2011

CNN 3.78 3.93
ErrCorr-RBF [42] 1.80 2.02

MErrCorr-RBF [43] 1.75 1.98
MRN [41] 1.50 1.80

Proposed model 1.49 1.78

The generalization ability of the methods based on the CNN was worse, and the
reason is that classic convolutional kernels require the input data to be space-invariant [20].
However, the electricity load data are virtually space-variant. Specifically, Figure 8 presents
how the input data batch for STLF was constructed as a matrix. The data of each row denote
the timestamp. The data of the column comprise multi-scale load features, temperature,
and calendar information. For the same timestamp, the various categories of the input
feature provide different information, which is named feature imbalance. Additionally,
the data concerning the various timestamp comprise different information, which could
have various impacts on the model generalization. This is known as time imbalance.
The imbalance between the input data of different categories and timestamps results
in an imbalanced condition between rows and columns, which means space variance.
Obviously, the electricity load data cannot be satisfied with the requirement of classic
convolutional kernels. Thus, the proposed model could outperform the classic convolution-
based ones without the requirement of space invariance. Then, we evaluated the forecasting
performance of the proposed method using the MAPE performance index of each day
within a week, as indicated in Figure 9. The visual comparison demonstrates that ensemble
thinking can boost the generalization performance of the method.

As we adopted the actual temperature data as the model input, the forecasting results
show the estimated upper bound of the forecasting performance. It is essential to analyze
the forecasting accuracy of the proposed model when the forecasted temperature was
adopted, and whether ensemble thinking can help the model produce more robust results in
noisy temperature conditions. Thus, we adopted the method of modifying the temperature
data proposed in [36] and designed three cases to verify the generalization ability of
the proposed method. We repeated the experiments 5 times and obtained the means of
increased MAPE and computation time.
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The increased MAPEs concerning the year 2010 in noise temperature conditions are
indicated in Figure 8. Specifically, we compared the generalization ability of the proposed
ensemble method (which consists of thirteen snapshot models) with a single snapshot
trained with 1300 epochs. As shown in Figure 10, ensemble thinking could obviously
reduce the increase in MAPE value. Specifically, the increased MAPE value was 0.027% in
case 1. In addition, the smallest increased MAPE value for case 1 was 0.05%. In addition,
the average computation time for the proposed ensemble method was 18.77 s, and it was
slightly worse than the proposed model without ensemble thinking, with a mean value
of 12.94 s, as shown in Table 5. The reason is that the proposed ensemble model needs
to construct multiple snapshots and ensemble them. Despite having a single model with
less computation time, the forecasting accuracy of the proposed ensemble model was
better, especially in case 3. Thus, the experiment results show that the proposed method
still obtained accurate forecasting results in noisy temperature conditions, and ensemble
thinking could improve model generalization.
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Table 5. Comparison of computation time concerning the proposed model with ensemble thinking
and the proposed model without ensemble thinking.

Case With Ensemble Without Ensemble

Case 1 18.78 s 12.93 s
Case 2 18.80 s 12.91 s
Case 3 18.75 s 12.98 s

4. Conclusions

Load forecasting plays an essential role in the management of power systems, and it
can relieve the limitations caused by the lack of electricity. In this paper, we designed a
novel ensemble model with multiple snapshots to forecast the short-term electricity load.
Each snapshot comprised multiple separate fully connected layers, a DCRB, and a Bi-LSTM
layer. In addition, the experimental results indicate that the proposed method had higher
forecasting accuracy than the existing models, and the maximum improvement was up
to 3.5% in MAPE. In future work, different deep learning methods will be investigated to
leverage their forecasting advantages. In addition, simulations on optimizing the Bi-LSTM
neural network parameters will be performed to construct a more accurate model. We also
plan to analyze the different factors affecting the electricity load to better learn the time
series load data.

Author Contributions: Investigation, W.C. and H.Z.; methodology, W.C.; validation, W.C.; writing—
original draft preparation, W.C.; writing—review and editing, H.Z. and G.H.; supervision, G.H. and
L.L. All authors have read and agreed to the published version of the manuscript.

Funding: Fujian Key Lab for Automotive Electronics and Electric Drive, Fujian University of Technol-
ogy, 350118, China. This work is supported in part by a project of the Fujian University of Technology,
No. GY-Z19066.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were used in this paper. These data can be
found here: https://www.iso-ne.com/isoexpress/web/reports/pricing/ (accessed on 21 May 2022).

Conflicts of Interest: The authors declare that no conflict of interest exists in this study.

Abbreviations

Acronyms
LTLF Long-term load forecasting
MTLF Medium-term load forecasting
STLF Short-term load forecasting
AR Auto-regressive
ARMA Auto-regressive moving average
ARIMA Auto-regressive integrated moving average
SVM Support vector machine
GRNN Generalized regression neural network
WNN Wavelet neural network
CNN Convolutional neural network
LSTM Long short-term memory network
ANN Artificial neural network
Bi-LSTM Bidirectional long short-term memory network
MAPE Mean absolute percentage error
MAE Mean absolute error
MSE Mean-squared error
RMSE Root-mean-squared error

https://www.iso-ne.com/isoexpress/web/reports/pricing/
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DCRB Densely connected residual block
ESN Echo state network
Nomenclature
xi Training data
yi Forecasted value
Θ 1D-UCNN model
h Convolution area
o Convolutional output
Ψ Unshared convolution operator
g Input data
f Forget gate
q Output gate
∼
s Self-recurrent unit
s Internal memory unit of each LSTM cell
→
h t Forward propagation output
←
h t Backward propagation output
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