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Abstract: Super smart grids (SSGs) are a wide area transmission network that mainly uses renewable
energy resources (RERs), contributing to the reduction of greenhouse gas (GHGs) emissions and
supporting the power infrastructure of multiple countries. The SSGs comprise two-way communica-
tion between the loads and sources of different countries, and these loads can be mostly served with
numerous types of RERs tied with the grids. The RERs will play a pivotal role in the development of
future grids and the generation of electricity. However, the main challenge to tackle in these RERs
is that they are intermittent in nature. Due to intermittency in these RERs, transient stability issues
have become one of the critical research challenges in SSGs. These stability issues are escalated and
become more difficult to handle if a network is vulnerable to an arising of different kinds of faults. To
address these problems, multiple approaches to enhance transient stability already exist in the current
literature. After reviewing the literature, flexible alternating current transmission systems (FACTS)
devices proved more promising in improving transient stability. Among FACTSdevices, UPFC is a
versatile FACTS device, which provides complete stability to power system networks in the form
of series and shunt compensations. Considering this scenario, a hypothetical network for SSGs is
designed in this research work based on the interconnection between two countries, i.e., Denmark
and Norway, to address the transient stability issues in SSGs. The complete probabilistic model of
the system is also designed to enhance the stability of the system. The results clearly showed that
the insertion of UPFC is an effective technique to enhance the transient stability and resilience of
the power system networks as compared to other purposed techniques in the literature. The main
contribution of this paper is that extensive simulation studies employing accurate RERs models are
used to analyze and investigate various problems arising due to the integration of many clusters of
RERs in SSGs.

Keywords: super smart grids; transient stability; power quality enhancement; unified power flow
controller (UPFC); static compensation (STATCOM); transient stability enhancement

1. Introduction

The thought of a super grid is not new. The term itself was accustomed to describing
the rising unification of Britain’s grid within the 1960s. Europe has been uniting its power
infrastructure since the 1950s, and the largest combined grid is the synchronized grid
of continental Europe, transmitting with twenty-four countries. The conceptual plan for
linking renewable energy resources (RERs) with each other is shown in Figure 1. There are
studies and current discussions relating to the creation of a synchronized grid spanning
thirteen time zones that may result from uniting the Union of Co-ordination of Transmission
Electricity (UCTE) grid with the integrated power system interconnecting Russia, Ukraine,
and different countries of the Soviet Union. The work done on the transmission network
for designing such SSGs until now is shown in Figure 2.
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Figure 2. Existing, proposed, and under construction links between countries shown in red, blue,
and green lines, respectively [2].

Such complex systems are undergoing scalability issues because of network com-
plexity and overcrowding of transmission, and therefore, they would like fast, analytical
coordination and management systems. Advocates of schemes comparable to the SSG
claim that such a serious technological upgrade is critical to ensure the sensible operation
and secure advantages of such continental mega grids. Talking about infrastructure, any
country’s economic development is dependent on its electric power infrastructure [1]. The
power infrastructure is of two types:

1. Centralized infrastructure
2. Decentralized infrastructure

In the planning of a centralized (conventional) infrastructure, no planning on micro-
grids development or renewable energy resources (RERs) insertion is performed. Now, in
order to increase the infrastructure in terms of the power of the countries, the centralized
grids, which are conventional ones, are transformed into smart grids. A smart grid (SG) is
a grid that includes advanced sensing, communication, security, and control technologies
that can deliver a more reliable, efficient, sustainable, and cost-effective supply of electric-
ity [2]. SGs rely on clusters of RERs to produce cheaper electricity and to satisfy future load
requirements. The renewable integrated power grids (RIPGS) are formed by the linkage
of these clusters with each other. They are effective in terms of energy production, as
the most important aspect of power system design and operation is the transient-stability
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correction. After a large disruption, transient stability refers to the system’s capacity to
return to a stable state. In other words, following a disturbance, the system should be
steady, and the swings should be dampened as quickly as feasible [3]. The main issue is
that the power quality is disturbed due to the intermittency of the RERs. To meet power
demand in both the AC and DC microgrids, a fault-tolerant controller for an isolated hybrid
AC/DC microgrid is presented in [4]. In order to determine the hybrid AC/DC micro-ideal
grid’s power flow, a cost function and a few operational parameters are minimized. In
addition, a model predictive control approach built to withstand and handle more severe
defects is shown in [5]. There were two fault-tolerant secondary control systems described
for SGs. The research done in [6] takes into account both compensation to lessen the
impacts of secondary control faults as well as flaws in the dynamics of the SG. A central
SMO-based fault-tolerant controller makes up the first approach. The second method
employs a fault-tolerant controller based on SMO for each DG, which would estimate
faults impacting just that DG and only those faults would be compensated [7,8]. Due to
these power disturbances, which are caused by multiple types of faults or abrupt changes
in load, transient instability in the SSG can occur. If this instability is not dealt with in a
timely manner, it can cause power failure, and these faults can be transported to the other
networks. This fault transportation can cause cascading failures, and as a result, a complete
blackout of the interconnected systems will occur. To overcome this issue, probabilistic
modeling of the SSG is performed, and UPFC is inserted near the faulty buses to mitigate
the transients of the system.

Moreover, to manage the futuristic demands in power system networks, smart grids
would be transformed into SSGs, in which different countries’ clusters are interconnected
to manage their demand conditions. In spite of these advantages in terms of fulfillment of
demand conditions, certain critical stability issues will also arise due to the interconnection
of various countries’ clusters with one another. If these stability issues cannot be resolved
within a short period, it will lead to cascading failures, leading to a complete blackout of
the power system network. In this case, UPFC provides a more promising way to provide
stability to this complex network of SSGs infrastructure in a very short span of time as
compared to other FACTS devices. In short, the following are the key contributions of
this paper:

1. Providing transients stability and resilience in a complex network of SSGs within a
short span of time of around 0.1s using a UPFC;

2. Multiple faults analysis can also be performed in SSGs power infrastructure to show
the superiority of UPFC for achieving stability in a very short span of time as compared
to other FACTS devices;

3. Although SSG projects and ideas have received positive reviews, their development
is still a challenging task. Therefore, extensive simulation studies employing accurate
RERs models could be used in this research to analyze and investigate various stability
problems arising from the integration of many clusters of RERs in SSGs. Moreover,
how network operators will resolve these instability issues using a UPFC will also be
a significant part of this research work.

The research paper is organized as follows: Section 2 describes the comprehensive
review of transient stability analysis methods. Techniques for enhancing transient stability
are discussed in Section 3. In Section 4, Algorithms for transient stability enhancement
are reviewed. Methodical modeling of the control system is performed in Section 5 by the
proposed stochastic modeling of UPFC, whereas the cluster infrastructure is explained in
Section 6. The results of the simulations are graphed and explained in Section 7. Healthy
conditions in the SSG networking model are explained in Section 7.1. In Section 7.2 multiple
intervals, line-ground faults are considered, and their impact on the system is studied,
whereas the UPFC impact on the fault to enhance the transient stability is discussed
with graphical representations in Section 7.3. Moreover, the multiple-interval double
line-to-line faults are studied inSection 7.4, and multiple L-L-L-N faults are studied in
Section 7.6, whereas the transients caused by these faults died down and are graphed in
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Sections 7.5 and 7.7. In Section 8, conclusions and future work recommendations on the
research work are made.

2. Transient Stability Analysis Methods

Transient stability analysis is very important for ensuring the stable and up-to-date
system of an SG. In order to get to know the methods of transient stability analysis, three
categories are used. These are artificial intelligence (AI) based on data-driven systems,
direct methods, and simulation methods in the time domain. A comparison showing the
disadvantages and advantages of the methods adopted in transient stability is defined in
Table 1.

Table 1. Methods in transient stability analysis.

Method Function Advantage Drawback

Data-driven

The stability status of
the system is

analyzed by the
transient stability
assessment model

Fast speed for the
calculation is used

and a strong
learning ability

Poor adaptability and
representation to the
topological changes

Direct method

Energy function
implementation to
judge and enhance

the transient stability

The speed of
calculation is high

and enough margin
for the stability

Difficulty in energy
function and the

result calculation is
conservative.

Time-domain
simulation-based

The system’s dynamic
processes are defined

by algebraic and
differential equations

Scalability is good
and accurate results

The accuracy of the
system can be

affected by the results
of the calculation

The main theme of the simulation in the time domain is the solution of differential-
algebraic equations by the implementation of a numerical integration algorithm. It is also
observed that this method is mainly used in the power sector industries. Further, the use
of the unsymmetrical multifunctional technique to address the DAEs that arise during
power system dynamic simulations is observed in [9]. The energy functions are made
by Lyapunov theory in order to assess the stability of transient, and the method used
in it is the direct method. Moreover, a Koopman model is also designed to analyze the
transient stability by the direct method in [10]. The leverage of this algorithm over the time
domain-based system is that after a fault, it does not need any complex simulation in the
time domain, and also, a degree of stability can be provided by it. The extended equal
area criterion (EEAC) method is used to utilize the transient stability of multiple machine
systems in [11]. Moreover, the dynamic state estimators (DSE) and phasor measurement
units (PMUs) are used in the assessment of transient stability to collect the data in the
real-time domain, and the simulation model was presented in [12,13].

A data-driven TSA technique, unlike the time-domain simulation and direct methods
outlined before, is model-free and handles TSA as a pattern identification issue. An
AI-based evaluation model is constructed to depict the input power system operating
characteristics and the system’s stability with respect to the transient state. This technique
provides several advantages such as the benefits of great learning capacity and quick
evaluation speed, which have a positive impact on the performance in the subject of
transient stability for evaluating power systems. A method for solving the first-swing
stability problem utilizing UPFC, as well as a thorough analysis, has been performed in [14].
The benefits of this control method include, first and foremost, the use of the local system
variable, and second is that it will provide greater stable performances with respect to other
methods that are currently in use. A systematic approach relying on a proportional-integral
controller with advanced control and tracking along with the behavior of a steady-state and
a linear quadratic tracker to control the entire flow of load and voltage fluctuations while at
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the same time eliminating harmonics is explained in [15]. A Simulink model in MATLAB is
also discussed. In it, the authors evaluate the UPFC concepts that were established, and it
is concluded that UPFC-relying systems with controllers can effectively manage load flow
and voltage sags/flickers. Moreover, in [16], the characterization of UPFC energy functions
in lieu of Lyapunov energy functions was also examined in order to assess the influence
of UPFCs on the enhancement of transient stability, taking into account the three-phase
line-to-ground failures in power systems over a single period occurrence. In [17], SITPFs
having no FACTS device controllers are assessed for their stability. To clarify the impact
of SITPFs on the operation of wind power plants and transmission lines, it was proposed
to use the power infrastructure and after that the FACTS controllers. FACTS controllers
receive a high rating for improved transient stability.

3. Techniques for Enhancing Transient Stability

Multiple techniques for transient stability enhancement are discussed in the litera-
ture [18–26].

There are two alternative strategies to increase the power quality disruptions caused
by transient stability difficulties. The first technique is to employ FACTS devices, such as
UPFCs, to develop a power angle connection among generators with wind turbines on
the generating side. This will limit rotor speed and position changes caused by multiple
interval three phase faults (MITPFs) or single interval three phase faults (SITPFs) and hence
decrease the power quality difficulties on the receiving side of power grids. Installing a
UPFC over the receiving section of the SG or near the fault occurrence area to stabilize
the system, even in situations with SITPFs or MITPFs, is the second way to handle these
transient stability difficulties for reducing power quality disruptions [27]. Stability in the
transient oscillations is caused by faults, and they are a key source of concern in the power
system. In contrast to popular assumption, temporary stability concerns caused by the
occurrence of faults in an SSG can be a significant form of energy quality issues despite
the prevalent empirical belief that the two problems of power system stability and power
quality are unrelated. Furthermore, factors such as fault conditions affect the transient
stability of a power system containing wind turbines [28]. In the case of a SITPF, on the
receiving side of the SG, for example, there is less variation in the speed and position
of the rotor of a wind turbine, resulting in fewer issues in power quality. However, in
the case of a MITPF, significant power quality issues due to an important fluctuation
in wind turbine rotor speed occur on the receiving side of RIPG stations. The demand
response schematic is shown in [23]. As a system closed-loop control for modeling via a
probabilistic model in a power system, transient stability is enhanced. The power system
will be continually monitored via a closed loop in the form of a smart node and UPFC, and
appropriate corrective action will be performed for the balancing of load flow and stability
of the transients. There are two cases. One is SITPF, in which the smart node improves
the power grid for load flow balancing, and the second is the case of MITPF. In MITPF,
a UPFC is incorporated into the transmission network and is used to fully improve the
power system for balancing load flow in order to mitigate the transients [24]. Multi-agent
systems, incorporation of FACT devices, UPFC, and others are included and discussed in
detail here.

3.1. Multi-Agent-Based Technique

An intelligent multi-agent-based technique for increasing transient stability is pro-
posed in [29] by dynamically analyzing a system’s critical clearance time (CCT) for gen-
erator load variations and varied amounts of wind power penetration at various fault
regions. One of the most serious hazards to contemporary power systems is transient
instability, which may be prevented by appropriately coordinating a system’s protective
relays with their associated CCTs. These are important indicators of transient stability since
they look at whether the system can maintain balanced and regular functioning after a
three-phase fault [30]. Many other techniques are used, such as the agent-based methods
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defined in [31–37]. In [31], the turbine valve is controlled by new strategy points to improve
the transient of the system. Likewise, the technique after the occurrence of fault to control
the turbine is depicted in [32]. Authors in [33] defined the usage of an algorithm that was
multi-agent based for the control of a wind turbine to ensure transient stability. However,
in [34], a multi-agent system technique is devised to decentralize coordinated control in
order to improve system stability.

A technique for dynamic evaluation of critical clearing time in case of sudden genset
variation and the combination of the renewable energy resources with the Genset by the
multi-agent system is discussed in [35]. Its framework consists of local agents (LA) and
global agents (GA), which use an algorithm in order to properly provide coordination with
the protection systems along with their corresponding critical clearing time (CCT). The
agents work continuously to update the information in the system with the continuous
stream of CCT information to promote the online capability and scalability of real-time
agent-based protection device coordination to improve transient stability, with the CCT
computed for the current generator load conditions and wind energy penetration levels
during a fault. The GAs can measure and monitor a system’s current status based on the
physical parameters of its network and then dynamically analyze the CCT as disturbances
occur, while the LAs start negotiating and communicating with one another using the
agent’s communication language to coordinate the system’s protection system by tripping
and auto-reclosing its CBs with their corresponding CCT information to improve the
system’s transient stability. A generic design for SG protection and security solution based
on MAS is shown in Figure 3.
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Figure 3. Generic design for SSG protection and security solution relying on MAS [35].

When disturbances such as three-phase faults or unexpected load shifts occur in an
SG, the equivalent agents collabo1rate to determine the best real-time protection device
coordination to improve the transient stability of the system [36,37]. Figure 4 depicts the
interactions between a MAS and an SG for optimal protective device coordination.
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Individual intelligent agents in the MAS collaborate and interact with one another
to examine a disturbance and take appropriate action, providing a powerful model for
real-time collaboration of protection devices to open and close their breakers using the
respective CCT information to improve the transient stability of a system.

3.2. Incorporation of FACTS Devices

FACTS devices are utilized in a power system network to boost the transmission line’s
capacity for the transfer of power and to improve thermal limitations, voltage stability,
transient stability, and voltage regulation. These devices are an effective median of transient
stability in the system. The transients are a cause of instability in the system, and if the
system is unstable, then it can cause disturbances in the power grids. The power grids are
of utmost importance in any country. The potential in the FACTS devices for the stability
of the system is also studied in [38–45].

Prior to FACTS, these issues were resolved using mechanical switches to connect ca-
pacitors, reactors, or synchronous generators prior to the development of power electronics
switches. However, there are numerous issues with using mechanical switches. It responds
quite slowly, and mechanical switches are susceptible to wear and strain. In order to make
the transmission line more stable and controllable, these methods are not trustworthy.
Power electronics-based FACTS controllers were created following the development of
high-voltage applications-capable power electronics switches such as the thyristor.

The FACTS devices types are:

1. Static compensators (STATCOMs);
2. Unified power flow controllers (UPFCs);
3. Static synchronous series compensators (SSSCs);
4. Thyristor controlled shunt reactor (TCSR).
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These FACTS devices are discussed and studied regarding how they can be incorpo-
rated into the RIPG to address reliability issues in power systems [46–50]. Among these,
UPFC is one of the universal types of FACTS devices that can minimize the effects of power
quality disturbances in an SG [51]. Figure 5 shows the active power comparison of a faulty
bus using a distributed nonlinear robust controller approach with UPFC used to perform
both shunt and series compensation. Here, three-phase line-to-line faults are incorporated
in the SG, and a fault on the bus being supplied power through the solar resource is inserted.
It should be worth noting that it approached the stability time in 0.16 s [52,53].
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3.2.1. Insertion of UPFC

A detailed simulation of the 30-bus system with the UPFC incorporated is discussed
in [54]. Insertion of UPFC in the transmission line is also discussed in [55,56]. Figure 6
shows the UPFC connection with an infinite bus along with a transmission line. This shows
the principle function of UPFC in which two transformers are connected along with the
parallel and series branches, two inverters for shunt, and series compensation controlled
by the given references.
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Reactive power can be absorbed or generated by inverter 2, whereas the function of
inverter 1 is that it supplies real power that is required by other inverters with the help of
a DC link. The UPFC basis structure and its working are discussed in detail in [57]. The
phase angle and magnitude of voltage produced by the inverter are used to regulate the
flow of power in the transmission line, resulting in an increase in transient stability.
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The UPFC can operate in a variety of ways, as stated in [58]. The shunt inverter is
specifically working in such a way that allows controllable current to be injected into the
power line. Regarding the voltage of the line, there are two components of this current: the
actual or direct component, which can be either out of phase or in phase along with the
voltage of the line, and the quadrature or reactive component, which is in quadrature [59].
The need to balance the real power of the series inverter naturally controls the direct
component. Instead, the quadrature component can be individually tuned to any required
level of reference (capacitive or inductive) within an inverter’s capacity to either engage or
create reactive power through the line as appropriate. To understand the series inverter, a
block diagram of it is shown in Figure 7. Regarding the shunt inverter, the two ways to
control the shunt inverter are described in [60–62].
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3.2.2. Utilization of the STATCOMS

Series compensation devices such as shunt compensation devices and thyristor-
controlled series compensator (TCSC) such as the static synchronous compensator (STAT-
COM) increase the stability due to the transient’s margin in power infrastructure, allowing
them to run near their limitations [63,64]. Large power systems, on the other hand, may
require more than one compensator to attain the desired performance. Understanding
the impact of FACTS devices requires a thorough examination of the system’s transient
stability situation. The standard technique for this is the transient energy function (TEF)
approach [65].

Transient stability and voltage regulation are also achieved by coordinating STATCOM
and generator stimulation [66]. The transient stability boost produced by a wide-area
controlled SVC is performed in [67] and was confirmed by hardware in the loop valida-
tion. The transient stability of power systems with induction generators and synchronous
generators is improved when STATCOM is used in conjunction with an energy storage
system [68]. UPFC in comparison to the STATCOMS improves initial swing transient
stability significantly as discussed in [69,70]. A power system including photovoltaics
and wind farms increases its transient stability by using SSSC, TCSC, and STATCOM in
conjunction. In order to understand the specs functionality of the FACTS device, which
relates to the establishment of product specifications, digital simulations, such as transient
stability and dynamic performance, are utilized. IEEE 1031: 2011 [71] presents a method
for preparing a transmission SVC specification using ordinary thyristor knowledge, which
may be utilized in STATCOM and other instruments in part.
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3.2.3. Utilization of the TCSC

The TCSC can be installed in a power system transmission network with an appropri-
ate control structure to increase the system’s transient stability [72–80].

A simplified 14-bus power system with four generation stations interconnected to a
power system using a two-axis model and multiple loads characterized as power loads is
shown in Figure 8. Two FACTS devices, thyristor controlled series compensation (TCSC)
and UPFC, were deployed to improve the management of bus voltage and power flow
via the transmission network. It is a hybrid model of both UPFC and TCSC installation.
Simulations for the network in question as well as the two failures are conducted using
the SIMPOW software. It can run the modal analysis and power flow, generate the ABCD
matrix, and simulate the system’s temporal behavior following faults. This study will
provide a detailed description of different types of disruptions that might occur while
employing UPFC. The simulation findings reveal that after a major disruption, UPFC’s
regular working state could no longer be maintained.
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An evaluation of the effect of applying STATCOM and TCSC separately on transient
stability conditions with the effect of applying both at the same time was conducted. The
optimum probable sites for FACTS devices are discovered in [72] to differ dependent on the
position of the issue and the devices’ operational conditions. These places can be identified
using TS and the FACTS scheme can have an unfavorable influence on the stability of
system stability in some instances. An escalation in FACTS device compensation does not
guarantee a higher stability margin [73]. As a result, assessing the system’s stability is
necessary for better and safer system functioning.

TCSC technique works by injection of a transmission line current in quadrature with
the voltage in series, making it behave as a capacitor of variable series. The injected voltage
in the series phase angle is fixed to be in quadrature with the transmission line current
as a result of this. The real flow of power may be adjusted by adjusting the magnitude
of the voltage injected in series that is in quadrature with the current of the transmission
line [74]. The phase angle of the voltage injected in series is adjusted to manage the reactive
power flow/transmission line side voltage. This was accomplished by introducing a series
of injected voltage component that was in phase with the line current of the transmission
line [75]. Hence, the phase angle and magnitude of the series voltage being injected are
calculated by accumulating the quadrature and components of the in-phase.

The simulation in [76] also reveals that versatile UPFC can successfully manage the
system’s power flow and voltage. A promising research area to incorporate all of the
desired control objectives in a single UPFC device is the development of an overall control



Electronics 2022, 11, 3236 11 of 37

strategy for analyzing the faults. This study provided a detailed description of different
types of disruptions that might occur while employing UPFC. The simulation findings
reveal that after a major disruption, UPFC’s regular working state could no longer be
maintained. The simulation also revealed that the UPFC can successfully manage the
system’s voltage and power flow. A promising research area is the development of an
overall control strategy and fault analysis to incorporate all of the desired control objectives
in a single UPFC device. For improving the power quality of the system, utilizing power
electronics equipment such as FACTS is one of the most crucial things. The reason for this
is that FACTS devices are built on a power electronic idea, and they also include additional
static controllers that may quickly enhance characteristics such as controllability and power
transmission. Furthermore, they can regulate one or more transmission systems of AC
network parameters, as defined by IEEE principles and specifications. It has the capacity
to regulate numerous parameters autonomously, and therefore, it may be described as
a combination of STATCOM and SSSC (static synchronous series compensator). In [77],
the authors proposed and analyzed a novel and unique controller for the UPFC’s series
and shunt converters. The operational system of UPFC presented in the journal clearly
shows that it is capable of controlling the flow of the paper. Furthermore, in [78], the
suggested control method of UPFC demonstrated that system stability may be improved
by simultaneously eliminating sags in voltage, harmonics due to currents, and fluctuation
of voltage. The paper’s simulation findings also show that the provided control system has
a quick dynamic response, strength, and efficiency.

4. Algorithms for Transient Stability Enhancement

Multiple algorithms for transient stability enhancement are discussed in the literature.
It includes a genetic algorithm (GA), particle swarm, current limiting algorithms, and
adaptive input-output feedback linearization control (AIFLC) to enhance the transient
stability caused by the existence of three-phase line-to-ground faults. PS algorithm for
an individual interval three-phase faults is used, and the stability is enhanced using a
UPFC in [79]. Instability due to transients of power systems was discussed in detail by
adopting various control strategies as discussed in [80,81]. The stability evaluation for the
presence of SITPFs in the transmission system without FACTS controllers and with FACTS
controllers was presented to explain the influence of SITPFs on wind turbine effectiveness.
The FACTS controller transient rating for improvement of transient stability concerns
is highlighted in [80]. Another perspective is to evaluate various types of oscillations
caused by the appearance of a three-phase line-to-ground fault in a single period and
compensate for them by utilizing a UPFC, as described. Similarly, using a simple genetic
algorithm (GA) to tune the outputs of a UPFC controller to overcome transient stability
difficulties in the presence of SITPFs is presented in [81]. In addition, the dampening of
oscillations of lower levels in multi-machine power generation systems by utilization of
UPFC was presented in [82] using an adaptive input-output feedback linearization control
(AIFLC) technique with a SITPF. A six-cycle SITPF was used to study the identical issue
of dampening oscillations of lower frequency by utilizing a particle swarm optimization
relying on the controller of UPFC by controlling its output feedback of it. By adding tiny
delays caused by SITPFs, multiple strategies were applied to SGs for mitigating problems of
power quality by utilization of FACTS devices. Probabilistic modeling can enhance accuracy
and reduces future power system instabilities caused by SITPFs or MITPFs. Furthermore,
the suggested technique enables the researcher to select the best setting for a UPFC in a
synchronized network and better control mode of multiple generation resources when a
MITPF occurs.

5. Mathematical Modelling

Stochastic modeling for the UPFC is proposed relying on a periodicity of fault occur-
rence to cater to the transient’s stability issues. A closed-loop control system block diagram
for the SSG modeling is also shown below in Figure 9. The block diagram represents how
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the generation and load profile are subject to variation due to the occurrence of faults. The
RERS are intermittent in nature, due to which the faults occur. The UPFC transmission
network is used to control the backlogged demand. This backlogged demand is the re-
quired demand along with the UPFC inserted to save the system from transients in cases of
multiple-interval faults. The UPFC will serve as a power flow control device, and the RER
is subjected to overloading due to the faults. The power system depends on the generation
and demandsupply.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 37 
 

 

control (AIFLC) technique with a SITPF. A six-cycle SITPF was used to study the identical 

issue of dampening oscillations of lower frequency by utilizing a particle swarm optimi-

zation relying on the controller of UPFC by controlling its output feedback of it. By adding 

tiny delays caused by SITPFs, multiple strategies were applied to SGs for mitigating prob-

lems of power quality by utilization of FACTS devices. Probabilistic modeling can en-

hance accuracy and reduces future power system instabilities caused by SITPFs or MIT-

PFs. Furthermore, the suggested technique enables the researcher to select the best setting 

for a UPFC in a synchronized network and better control mode of multiple generation 

resources when a MITPF occurs. 

5. Mathematical Modelling 

Stochastic modeling for the UPFC is proposed relying on a periodicity of fault occur-

rence to cater to the transient’s stability issues. A closed-loop control system block dia-

gram for the SSG modeling is also shown below in Figure 9. The block diagram represents 

how the generation and load profile are subject to variation due to the occurrence of faults. 

The RERS are intermittent in nature, due to which the faults occur. The UPFC transmis-

sion network is used to control the backlogged demand. This backlogged demand is the 

required demand along with the UPFC inserted to save the system from transients in cases 

of multiple-interval faults. The UPFC will serve as a power flow control device, and the 

RER is subjected to overloading due to the faults. The power system depends on the gen-

eration and demandsupply. 

 

Figure 9. Block diagram of closed-loop control system for UPFC modeling. 

The forecasted generation 𝐺𝑓(𝑡)is the generation that is forecasted on observing the 

forecasted demand𝐷𝑓(𝑡) along with 𝑟0 reserve supply, which in this case is the UPFC 

being used for power flow control and transient stability. 

𝐺𝑓(𝑡) = 𝐷𝑓(𝑡) + 𝑟0 (1) 

There must be a delay in the system being incorporated along with the 𝜆𝑖 , the inter-

val time for the demand to be fulfilled. 

𝐴𝑑 = 𝜆𝑖 (2) 

A consideration of the delay up to 𝑛1 times is considered. 

Figure 9. Block diagram of closed-loop control system for UPFC modeling.

The forecasted generation G f (t) is the generation that is forecasted on observing the
forecasted demand D f (t) along with r0 reserve supply, which in this case is the UPFC being
used for power flow control and transient stability.

G f (t) = D f (t) + r0 (1)

There must be a delay in the system being incorporated along with the λi, the interval
time for the demand to be fulfilled.

Ad = λi (2)

A consideration of the delay up to n1 times is considered.

Ad =
1
n1

n1

∑
i1=1

(λi1) (3)

Now, consider that there will be a difference in the actual demand of the system Da (t)
and forecasted one. The difference is represented by the variation in the system VD(t).
Then, a delay is implemented in (4) for fulfilling the requirement, resulting in (5).

Da(t) = D f (t) + VD(t) (4)

Then, a delay is implemented in (4) for fulfilling the requirement, resulting in (5).

Da(t) =

{[
D f (t)× 1

n1

n1

∑
i1=1

(
λi1
)]

+ VD(t)

}
(5)

Now, considering that the demand is not fulfilled in one step, then a close loop is
incorporated into the system, resulting in (6).

Da(t) =
n

∑
i=1

{[
D f

i (t)×
1
n1

n1

∑
i=1

(
λij
)]

+ VDi (t)

}
(6)
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Here, VD(t) is the randomness in the system that is found by the probabilistic model
of autocorrelation.

VD(t) = E
[

Da(t)D f (t)
]

(7)

Case 1:
We now consider that if the actual demand of the loads is equal to the forecasted

demand of the loads, then the system randomness will approach zero.
If Da(t)→D f (t), the variation in the demand would be VD(t)→ 0, resulting in (8).

G f (t) = D f (t) (8)

Considering the same situation for the generation side, the actual generation is:

Ga(t) = G(t− 1) + G f (t) + VG(t) (9)

For catering generation response pattern in real time, the actual supply Ga (t) is
considered to be synchronized with the previous supply G (t − 1) and Gf (t) along with the
addition of some randomness RG (t).

Ga(t) =
n

∑
i=1

{[
Gi(t− 1)× 1

n1

n1

∑
i=1

(
λij
)]

+

[
G f

i (t)×
1
n1

n1

∑
i=1

(
λij
)]

+ VGi (t)

}
(10)

Case 2:
We now consider that if the actual generation of the sources is equal to the forecasted

generation of the sources, then the system randomness will approach zero. If Ga(t)→G f (t),
the random deviation VG(t)→ 0, resulting in (11).

G f (t) = D f (t) (11)

For that, the control parameter G (t − 1) would be adjusted in such a way that the
(11) occurs. Here, VG(t) is the randomness in the generation of RERS that is found by the
probabilistic model of autocorrelation. Thus,

VG(t) = E
[

Ga(t)G f (t)
]

(12)

The required demand F (t) represents the active power deficit resulting from the
emergence of TPF. It can be written as:

F(t) = Ea(t)− Ga(t) (13)

To obtain the best flow of the load between response and demand, Ea (t) stands for
the expressed demand, which must always be met at a specific time interval. The required
demand F (t) will occur when:

Ea(t) > Ga(t) (14)

As there would be a delay in required demand, i.e., F(t) shown in (13), inserting the
Ad delay in (13), we obtain

F(t) =

[
(Ea

i (t)− Ga
i (t))×

1
n1

n1

∑
i1=1

(
λi1
)]

(15)

Considering that the demand is not fulfilled in one run, then a generalized form of
(15) will be:

F(t) =
n

∑
i=1

{[
(Ea

i (t)− Ga
i (t))×

1
n1

n1

∑
i1=1

(
λi1
)]}

(16)
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Now, we considered there must be a closed-loop delay in the system, which is also
to be incorporated into the system required demand. That demand with a loop delay is
named backlogged demand for our ease and is:

B(t) =
n1

∑
c1=1

(
1

λc1

)
× (Ea(t)− Ga(t)) (17)

The required reserve r (t) is the reserve that is required in case of a fault in the SSG to
compensate for the overloading issue. This reserve is actually UPFC, which will act as a
power flow controlling device here, and it is the result of actual minus the express demand.
It is expressed as:

r(t) = Ga(t)− Ea(t) (18)

Incorporating a delay in (18) and the generalized form of (18) would be:

r(t) =
n

∑
i=1

{[
(Ga

i (t)− Ea
i (t))×

1
n1

n1

∑
i1=1

(
λi1
)]}

(19)

Taking into account Equation (18), different cases are considered.
Case 3:
When Ga(t) > Ea(t),
then the SSGs generation is more than the required demand. Therefore, the UPFC

would be in a steady position. In addition, no power flow control is required.
Case 4:
Now, consideration of the required and an actual reserve is completed and compared.

Therefore, if
ro < r(t) (20)

then the actual generation is to be increased by a UPFC. In this way, by doing this, the F(t)
will be reduced and required, and actual reserves will be as close to one another as possible.
One can carry out this action by adhering to the ramp-up constraint path.

Case 5:
However, if

ro > r(t) (21)

then the actual generation is to be decreased by a UPFC to make the required and actual
reserves as close to one another as possible. You can carry out this action by adhering to
the ramp-down constraint path, whereas the constraints are:

ro ≤ G(t)− G(t− 1) ≤ r(t) (22)

Inserting the value of G(t)− G(t− 1) from (9), we obtain:

ro ≤ G f (t) + VG(t) ≤ r(t) (23)

To maintain constant stability of the backlogged demand, or B (t), in each and every
situation, VG(t) via a UPFC is reduced. To do this, we must synchronize the parameter
ro with r (t) by controlling it in accordance with the ramping up and down requirements
from (20) and (21). Therefore, by reducing the randomness in generation VG(t), (23) can be
written as:

ro ≤ G f (t) ≤ r(t) (24)

An achievement of synchronization can be attained by (1). Therefore, the (24) can be
rewritten as:

ro ≤ D f (t) ≤ r(t) (25)
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In this case, integrated UPFC in a network will offer transient stability and perform
load flow balancing between various clusters of numerous renewable energy resources.
The versatile UPFC will also function as a power buffer to counteract RERs instability.
Therefore, the transients in RERs can be mitigated, and the chances of instability in the
system can be minimized.

6. Designing of Clusters

We took into consideration that the two European nations of Denmark and Norway
would form two clusters of interconnected SGs to test our proposed methodology. The
total distance between these two countries is around 500 KM. Therefore, it is assumed that
the HVAC transmission network would be more feasible in the SSG interconnection rather
than the HVDC network taking into account the breakeven distance as described below in
Figure 10.
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Figure 10. Graphical representation of breakeven distance and compassion of cost and distance of
HVDC and HVAC transmission network.

Two clusters each showing an infrastructure of Denmark and Norway SG are designed
on Simulink MATLAB. Multiple renewable energy resources are incorporated into the
system. The UPFC and three-phase multiple faults are injected into the system. The
VPQ measurement blocks are used to obtain the results from the different buses. The
VPQ measurement subsystem is formed and is shown in Figure 11. Figure 12 shows
the infrastructure of the SSG having a 21-bus IEEE system with the interconnection of
two countries.
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First, we designed the loads, and the parameters for loads are described in Figure 13,
whereas the model of the wind farms as RER sources along with the parameters is shown
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in Figure 14. In addition, the generation sources such as biomass and micro-hydro are de-
signed, and their parameters are defined in Figure 15, respectively. Then, the transmission
network model was designed. Then, the vulnerability of the SSG was evaluated in terms of
transition instability that develops as a result of multiple faults. Also taken into considera-
tion are the overloaded circumstances brought on by some power sources tripping and the
transients that develop as a result of several three-phase faults. Let us say that transient
instability makes an SSG susceptible. The main result of the suggested methodology is a
transient stability increase provided by a UPFC. This will lessen the likelihood of cascading
failures and SSG blackouts. Secondly, the multiple three-phase faults are inserted in the
SSG, which are more severe than the SGs faults due to the complexity and transmission
network issues. Mathematically, modeling of two clusters of SGs and their interconnection
with each other is performed on MATLAB. The case-based scenarios are discussed in the
model. The effect of power flow before and after the faults was analyzed along with the
UPFC insertion and without the UPFC. Multiple faults were considered, and the variation
in the results was also discussed, which elaborates the UPFC importance in SSGs.
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7. Simulations and Results

Several simulations were run using MATLAB as the simulation tool to validate and
assess the analysis. The consequence of more serious three-phase faults, or MITPFs, is
explored in this research, which is built on a more generic system model than the past liter-
ature for transient stability analysis, as detailed in Section 2. The issue under investigation
is novel and distinct from all others. We considered case-based scenarios in the simulation
and gathered the results considering each case using a simulation time of T = 18 s.

7.1. Case 1. System in Normal State and No-Fault Is Introduced

In the first case, we considered that the SSG is operating in a normal state and that no
fault is inserted in the system. The power output in the normal case approaches 1000 MW
on Bus 1 and so on. It takes time to ramp up because the wind turbine used in the
Denmark and Norway infrastructure model is ramping up from 0 to 10 s, as explained in
Figures 16 and 17, respectively.
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7.2. Case 2. System in Instability State, and Multiple L-GFaults Are Introduced

In the second case, we considered that the SSG is operating in a faulty condition and
that multiple L-G faults are inserted in the system. The faults are inserted by an external
control parameter, and it is programmed as:

function fault = fcn(time)

%#codegen

fault = 0;

if (time >= 12 && time <= 12.3)

fault = 1;

end

Two faults are inserted, and each one is controlled externally and can be varied by
observing the effect in the system. The power output in the faulty case approaches 1000 MW
on Bus 1 and so on. However, after the faults at a time of 12 to 12.3 s and 16 to 16.5 s,
transients occur. These transients take around 1.5 s in case of the 0.3s fault and 1.9 s in
the case of the 0.5 s fault time to be steady to the normal position of the system. There are
fluctuations in the system due to the ramp-up time because the wind turbine used in the
Denmark and Norway infrastructure model is ramping up from 0 to 10 s, as explained in
Figures 16 and 17. It can be observed that even though the faults are inserted on Bus 3 and
Bus 1, the effects of the faults can also be seen on Bus 6 to 10. This clearly explains that after
the fault the whole system results in transients. However, the bus that is close to the fault
will experience a severity more than that of the farthest bus, as can be seen in Figures 18–20.
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7.3. Case 3. By Incorporation of UPFC, and Multiple L-GFaults Are Also Inserted

In the third case, we considered that the SSG is operating in a faulty condition and
that multiple L-G faults are inserted in the system.

The power output in the faulty case approaches 1000 MW on Bus 1 and so on. However,
after the faults at a time of 12 to 12.3 s and 16 to 16.5 s, transients are mitigated within a
time span of only 0.1 s. The transients that took 1.5 s in the case of the 0.3s fault and of 1.9 s
in the case of the 0.5 s fault time to be steady now only take 0.1 s to mitigate the transients
of the system. There are fluctuations in the system because it takes ramp-up time because
the wind turbine used in the Denmark and Norway infrastructure model is ramping up
from 0 to 10 s. The output of UPFC in case of faults shows that the power flow control and
the transients are eliminated within the interval of 0.1 s, as shown in Figures 21 and 22 for
Buses 1 to 5, respectively.
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7.4. Case 4. System in Instability State, and Multiple Double L-LFaults Are Introduced

In the fourth case, we considered that the SSG is operating in a faulty condition and
that multiple double L-L faults are inserted in the system.

The power output in the faulty case approaches 1000 MW on Bus 1 and so on. However,
after the faults at a time of 12 to 12.3 s and 16 to 16.5 s, transients occur. These transients
take around 1.5 s in the case of the 0.3s fault and of 1.9 s in the case of the 0.5 s fault time
to be steady to the normal position of the system. There are fluctuations in the system
because it takes ramp-up time because the wind turbine is being used from 0 to 10 s. It can
be observed that even though the faults are inserted on Bus 3 and Bus 1, the effects of the
faults can also be seen on Bus 6 to 10. Here, we inserted double line-to-line faults in the
system to observe their impacts and to see whether UPFC can cater to these faults properly
or not. The faults’ effect resulting in transients can be seen in Figures 23 and 24 on Bus 1 to
5 and Figures 25 and 26 for Bus 6 to 10.
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Figure 23. Multiple double line-to-line (L-L) faults are inserted in the system from 12 to 12.3 s (Bus 1
to Bus 5).
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7.5. Case 5. By Incorporation of UPFC, and Multiple Double L-L Faults Are Also Injected

In the fifth case, we considered that the SSG is operating in a faulty condition and that
multiple double L-L faults are inserted in the system. The power output in the faulty case
approaches 1000 MW on Bus 1 and so on. However, after the faults at a time of 12 to 12.3 s
and 16 to 16.5 s, transients are mitigated within a time span of only 0.1 s. The transients
that took around 1.5 s in the case of the 0.3s fault and of 1.9 s in the case of the 0.5 s fault
time to be steady now take only 0.1 s to mitigate the transients of the system. There are
fluctuations in the system due to the ramp-up time because the wind turbine used in the
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Denmark and Norway infrastructure model is ramping up from 0 to 10 s, as explained
in Figures 23–26. Here, the UPFC takes around 0.2 s to achieve stability in the system as
shown in Figures 27–30, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 27 of 37 
 

 

are fluctuations in the system due to the ramp-up time because the wind turbine used in 

the Denmark and Norway infrastructure model is ramping up from 0 to 10 s, as explained 

in Figure 23–26. Here, the UPFC takes around 0.2 s to achieve stability in the system as 

shown in Figures 27–30, respectively. 

 

Figure 27.Transient stability being provided by UPFC after multiple double faults L-L introduced 

12 to 12.3 s (Bus 1 to Bus 5). 

 

Figure 28. Transient stability being provided by UPFC after multiple double faults L-L introduced 

16 to 16.5 s (Bus 1 to Bus 5). 

Figure 27. Transient stability being provided by UPFC after multiple double faults L-L introduced 12
to 12.3 s (Bus 1 to Bus 5).

Electronics 2022, 11, x FOR PEER REVIEW 27 of 37 
 

 

are fluctuations in the system due to the ramp-up time because the wind turbine used in 

the Denmark and Norway infrastructure model is ramping up from 0 to 10 s, as explained 

in Figure 23–26. Here, the UPFC takes around 0.2 s to achieve stability in the system as 

shown in Figures 27–30, respectively. 

 

Figure 27.Transient stability being provided by UPFC after multiple double faults L-L introduced 

12 to 12.3 s (Bus 1 to Bus 5). 

 

Figure 28. Transient stability being provided by UPFC after multiple double faults L-L introduced 

16 to 16.5 s (Bus 1 to Bus 5). 
Figure 28. Transient stability being provided by UPFC after multiple double faults L-L introduced 16
to 16.5 s (Bus 1 to Bus 5).



Electronics 2022, 11, 3236 28 of 37Electronics 2022, 11, x FOR PEER REVIEW 28 of 37 
 

 

 

Figure 29. Transient stability being provided by UPFC after multiple double faults L-L introduced 

12 to 12.3 s (Bus 6 to Bus 10). 

 

Figure 30. Transient stability being provided by UPFC after multiple double faults L-L introduced 

16 to 16.5 s (Bus 6 to Bus 10). 

Figure 29. Transient stability being provided by UPFC after multiple double faults L-L introduced 12
to 12.3 s (Bus 6 to Bus 10).

Electronics 2022, 11, x FOR PEER REVIEW 28 of 37 
 

 

 

Figure 29. Transient stability being provided by UPFC after multiple double faults L-L introduced 

12 to 12.3 s (Bus 6 to Bus 10). 

 

Figure 30. Transient stability being provided by UPFC after multiple double faults L-L introduced 

16 to 16.5 s (Bus 6 to Bus 10). 
Figure 30. Transient stability being provided by UPFC after multiple double faults L-L introduced 16
to 16.5 s (Bus 6 to Bus 10).



Electronics 2022, 11, 3236 29 of 37

7.6. Case 6. System in Instability State, and Multiple L-L-L-NFaults Are Introduced

In the sixth case, we considered that the SSG is operating in a faulty condition and
that multiple L-L-L-N faults are inserted in the system. The power output in the faulty case
approaches 1000 MW on Bus 1 and so on. However, after the faults at a time of 12 to 12.3 s
and 16 to 16.5 s, transients occur. These transients take around 1.5 s in the case of the 0.3s
fault and of 1.9 s in the case of the 0.5 s fault time to be steady to the normal position of the
system. There are fluctuations in the system because the ramp-up takes time because the
wind turbine is being used from 0 to 10 s. It can be observed that even though the faults are
inserted on Bus 3 and Bus 1, the effects of the faults can also be seen on Bus 6 to 10. Here,
we inserted multiple line-to-line faults in the system, as can be seen in Figures 31–34, to
observe their impacts and to see whether UPFC can cater to these faults properly or not.
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Bus 5).
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7.7. Case 7. By Incorporation of UPFC, and Multiple L-L-L-N Faults Are Also Injected

In the seventh case, we considered that the SSG is operating in a faulty condition and
that multiple L-L-L-N faults are inserted in the system. The power output in the faulty case
approaches 1000 MW on Bus 1 and so on. However, after the faults at a time of 12 to 12.3 s
and 16 to 16.5 s, transients are mitigated within a time span of only 0.1 s. The transients
that took a time of around 1.5 s in the case of the 0.3s fault and 1.9 s in the case of the 0.5 s
fault time to be steady now take only 0.1 s to mitigate the transients of the system. There
are fluctuations in the system because the ramp-up takes time because the wind turbine
used in this model is ramping up from 0 to 10 s. as explained in Figure 20. Here, the UPFC
takes around 0.23 s to achieve stability in the system, as shown in Figure 26.

The results clearly show that the resilience of the SSG is enhanced and that the tran-
sients are catered out timely to save the infrastructure from fault propagation. In the case of
L-G faults, the UPFC achieves stability in 0.1 s. In the case of L-L faults, the UPFC achieves
stability of around 0.2 s, as depicted in Figures 35–38, respectively. The results shown
describe that the UPFC can cater the multiple L-L-L-N faults easily and that the transients
die out soon after the fault as compared to the case without UPFC.



Electronics 2022, 11, 3236 32 of 37Electronics 2022, 11, x FOR PEER REVIEW 32 of 37 
 

 

 

Figure 35. Transient stability being provided by UPFC after multiple L-L-L faults are introduced at 

12 to 12.3 s (Bus 1 to Bus 5). 

 

Figure 36.Transient stability being provided by UPFC after multiple L-L-L faults are introduced at 

16 to 16.5 s (Bus 1 to Bus 5). 
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12 to 12.3 s (Bus 1 to Bus 5).
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16 to 16.5 s (Bus 1 to Bus 5).
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12 to 12.3 s (Bus 6 to Bus 10).
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8. Conclusions and Future Research

This research work addressed the transient stability issues in a hypothetical network
based on the interconnection between two countries Denmark and Norway. The complete
probabilistic model of the system was also designed to enhance the stability of the system.
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The results clearly showed that insertion of UPFC is an effective technique to enhance the
transient stability and resilience of the power system networks as compared to other prosed
techniques in the literature. Although SSGs projects and ideas have received positive
reviews, their development is still a challenging task. Therefore, extensive simulation
studies employing accurate RERs models could be used to analyze and investigate various
problems arising due to the integration of many clusters of RERs in SSGs. UPFC mitigates
the issue of transient instability, which occurs in the faults cases. As the work in the case of
single-interval three-phase faults has already been done in the case of SGs, and the multiple-
interval faults are more severe, an analysis of the multiple-interval faults, including line-
to-line(L-L), line-to-ground (L-G), and line-to-line-to-line (L-L-L), was performed, and the
system instability was analyzed. UPFC was incorporated near the fault bus, and the results
in the power flow were analyzed. UPFC clearly showed that the transient stability of the
SSGs is increased and is attained in a time span of around 0.1 s.

Future extensions of this work include:

1. Upgrading the SSGs in terms of their protection and monitoring using various control
protocols on a periodic basis to increase the network’s reliability;

2. Considering more than two clusters and performing their transmission network
analysis on the DIG silent power factory;

3. Utilizing more than one UPFC and their impact on the SSGs and operating the power
system network and the study on cascading failures due to N-1 contingencies and its
techniques;

4. Additionally, a pre-disturbance systems study will be performed, taking into account
the potential for catastrophic events.
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