
Citation: Liu, J.; Cong, R.; Wang, X.;

Zhou, Y. Link-Aware Frame Selection

for Efficient License Plate

Recognition in Dynamic Edge

Networks. Electronics 2022, 11, 3186.

https://doi.org/10.3390/

electronics11193186

Academic Editor: Yu-Chen Hu

Received: 5 September 2022

Accepted: 27 September 2022

Published: 4 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Link-Aware Frame Selection for Efficient License Plate
Recognition in Dynamic Edge Networks
Jiaxin Liu 1 , Rong Cong 2,* , Xiong Wang 2 and Yaxin Zhou 3

1 School of Resources and Environment, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

3 School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

* Correspondence: congrong@std.uestc.edu.cn

Abstract: With the booming development of Internet of Things (IoT) and computer vision technology,
running vision-based applications on IoT devices becomes an overwhelming tide. In vision-based
applications, the Automatic License Plate Recognition (ALPR) is one of the fundamental services for
smart-city applications such as traffic control, auto-drive and safety monitoring. However, existing
works about ALPR usually assume that IoT devices have sufficient power to transmit the whole
captured stream to edge servers via stable network links. Considering the limited resources of IoT
devices and high-dynamic wireless links, this assumption is not suitable for realizing an efficient
ALPR service on low-power IoT devices in real wireless edge networks. In this paper, we propose a
link-aware frame selection scheme for ALPR service in dynamic edge networks aiming to reduce
the transmission energy consumption of IoT devices. Specifically, we tend to select a few key
frames instead of the whole stream and transmit them under good links. We propose a two-layer
recognition frame selection algorithm to optimize the frame selection by exploiting both the video
content variation and real-time link quality. The extensive results show that, by carefully selecting
the offloaded frames to edge servers, our algorithm can significantly reduce the energy consumption
of devices by 46.71% and achieve 97.95% recognition accuracy in the high-dynamic wireless link of
the edge network.

Keywords: frame selection; internet-of-things; automatic license plate recognition; edge computing

1. Introduction

Recent years have witnessed the rapid development of the Internet-of-Things (IoT), a
network connecting various devices over the Internet, where most connected devices can
collect environmental data by embedded sensors and analyze the data by themselves [1,2].
In a smart city, operators usually deploy camera-equipped IoT devices in streets, crossroads
and parks to collect relevant videos for complex computation applications, such as traffic
controlling and smart parking [3]. ALPR [4] is an important service for smart traffic and
controlling [5].

A significant feature in IoT is the cross-integration with existing technologies such as
Computer Vision (CV), Natural Language Process (NLP), etc. With the rapid development
and the popularity of IoT, there are more and more CV based applications being deployed
on IoT devices in different scenarios such as face recognition in access control system, object
detection in traffic system, etc. Currently, executing the CV-based services (such as ALPR)
on low-power IoT devices is becoming a trending topic [6].

Traditional ALPR systems reply cloud servers for data processing. While cloud servers
have sufficient computing power, they are too distant from IoT devices to provide a low-
latency link and high quality services. In this context, edge computing [7] has emerged

Electronics 2022, 11, 3186. https://doi.org/10.3390/electronics11193186 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193186
https://doi.org/10.3390/electronics11193186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4700-6058
https://orcid.org/0000-0002-1058-0593
https://doi.org/10.3390/electronics11193186
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193186?type=check_update&version=3

Electronics 2022, 11, 3186 2 of 20

and is widely used. It is equivalent to deploying a small computing and data center
close to the data source, which can temporarily store and analyze data, and then transmit
them back to the cloud server as needed, greatly reducing the amount of transmitted data
and relieving the pressure on the bandwidth of the central server. Compared to cloud-
based ALPR, the edge-based ALPR has some unique features. (1) Much less round-trip
time. The transmission process in edge computing is simplified from multi-hop backbone
network communications to one-hop wireless communications, which can reduce the
round-trip time from second level to millisecond level [8]. (2) One-hop wireless communi-
cation, which makes edge-based ALPR service more sensitive to the link variations than
cloud-edge ALPR.

Most existing works about ALPR usually assume that IoT devices have sufficient
power to transmit the whole captured streams to edge servers under stable network
link. This assumption has two limitations. First, sending the whole stream to a remote
server would consume considerable energy, which is unacceptable for low-power devices.
Meanwhile, in most scenarios, a car will appear in multiple frames continuously [9] and thus
it is not necessary to execute license plate recognition for all these frames. Second, wireless
links in edge networks usually vary frequently and dramatically due to the interference of
other signals and dynamic environments [10].

To address these problems, we propose a link-aware frame selection mechanism for
automatic license plate recognition in dynamic edge networks, which particularly considers
both the wireless network dynamics and the video content variation to select the appropri-
ate frames offloaded to edge servers. Although such an idea is expected to significantly
reduce the energy consumption of devices while guaranteeing the recognition accuracy.

• The impact of dynamic wireless link on ALPR performance relies on the offloading
results, while the frame selection needs to be determined before the offloading process.

• Key frame selection. Wireless link dynamics and video content difference are two-
dimension information, the set of recognition frames needs to be carefully selected
with a joint consideration of these two variables.

To address these challenges, we propose a link-aware frame selection scheme with the
following two innovations. First, we propose a novel and measurable metric, Normalized
Key Frame Index (NKFI), to indicate the impact of wireless links on ALPR performance.
With NKFI, the process of frame selection can be associated with real-time wireless link
quality. Second, we design a two-layer recognition frame selection algorithm, which
jointly considers both the wireless link quality and video content using the two metrics,
Normalized Key Frame Index (NKFI) and Effective Frame Sampling Interval (EFSI).

The contributions of our work are summarized as follows.

• We propose a link-aware frame selection scheme for Automatic license plate recog-
nition service in dynamic edge networks. Distinct from most existing works, the
proposed scheme suggests to offload a few key frames under the high-quality wireless
links instead of the whole captured stream. In this way, the energy consumption
for data transmission can be significantly reduced without losing much recognition
accuracy for the ALPR service.

• We devise two lightweight yet measurable metrics, Normalized Key Frame Index
(NKFI) and Effective Frame Sampling Interval (EFSI), to indicate the process of frame
selection. Based on these metrics, we design a two-layer recognition frame selection al-
gorithm, which jointly considers the real-time link quality and video content variation.

• We conduct extensive experiments to evaluate the performance of proposed scheme.
The results show that, compared with existing works about ALPR, our scheme can
significantly reduce the energy consumption of devices by 46.71% and achieve 97.95%
recognition accuracy in the high-dynamic wireless link of edge network.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Section 3 describes the link-aware ALPR framework in edge computing. Section 4 presents
the proposed two-layer recognition frame selection algorithm. Section 5 presents the

Electronics 2022, 11, 3186 3 of 20

evaluation results. Finally, Section 6 concludes the performance improvement of our work
in this paper.

2. Related Work

In this section, we review the existing work and discuss their limitations. More
specifically, Section 2.1 discusses the ALPR schemes from the perspective of computer
vision. Section 2.2 summarizes the existing works about frame selection. Section 2.3
discusses the edge computing technology and justifies the position of our proposed method
in edge computing.

2.1. Automatic License Plate Recognition

Existing ALPR systems can be mainly divided into two categories. The first category
is based on traditional digital image processing (DIP) technology to optimize recognition
accuracy. The second category is mostly end-to-end recognition framework systems based
on deep learning. The traditional DIP-ALPR system usually includes four steps: Image
Acquisition, License Plate Extraction [11], License Plate Segmentation [12] and Charac-
ter Recognition. The performance of an ALPR system relies on the robustness of each
individual step.

With the rise of Deep Learning (DL) techniques, the accuracy of many pattern recog-
nition tasks was greatly improved. Target detection algorithms based on DL such as
RCNN [13], Fast R-CNN [14], Faster R-CNN [15], SSD [16], and YOLO [17,18] series have
emerged one after another. Consequently, the ALPR system based on DL grows rapidly. It
simplifies the work into three steps: Vehicle Detection, License Plate Detection, and Op-
tical Character Recognition (OCR) [19]. Many methods [20–22] achieve state-of-the-art
performance in efficiency and accuracy.

However, DIP-ALPR and DL-ALPR either are based on image data or directly process
video stream frame by frame. They often ignore the dynamic information between frames
in the video such as “movement” information, which can be represented by the difference
between frames. The small difference reflects slow “movement” and the large difference
reflects fast “movement”. In this context, the second layer of our proposed two-layer
scheme analyzes the “movement” information between frames by inter-frame difference. It
achieves less overhead and offers adjustable parameters.

The work about ALPR can be further classified into two classes, one for cloud com-
puting and the another one for edge computing. The existing works about cloud-based
ALPR [23,24] usually aim at optimizing the recognition accuracy by complex yet efficient
neural networks. For example, P. Kaur et al. [24] proposed a novel ALPR system based on
a Convolutional Neural Networks (CNNs) for recognition, which can be used on a variety
of vehicles and low-light conditions and achieve 98.13% overall accuracy.

Existing works about edge-based ALPR [25,26], considering the limited resources of
edge servers, usually focus on the design of lightweight ALPR models [25] and offloading
strategies of ALPR streams [26]. For example, Tham, M. L. et al. [25] proposed a lightweight
and accurate IoT-based ALPR solution using deep learning. However, its frames per second
(FPS) is only 2.6 and license plate optical character recognition (OCR) accuracy is only
78.23%. That means that the improvement of directly deploying deep learning models
on IoT devices or improving them for IoT devices is limited, mainly due to the limited
computing power of IoT devices. Therefore, our proposed method assigns high-load
tasks to the edge server to complete, and the front-end IoT devices only need to select the
tasks to be offloaded to the edge server through our proposed two-layer selection scheme.
Yi, S. et al. [26] proposed a system built on top of an edge computing platform, which
offloads computation between IoT devices and edge server. It achieves about 1.3–1.4 times
faster response. Our proposed method puts more attention on saving energy of IoT devices
and takes the varying link qualities into consideration. Our approach significantly reduces
the energy cost while guaranteeing the recognition accuracy.

Electronics 2022, 11, 3186 4 of 20

2.2. Key Frame Extraction Techniques

The key frame is the representative frame in the series of video frames. It can compre-
hensively reflect the main content of a video shot or even a whole video. As mentioned in
Section 2.1, the first stage in ALPR is the license plate detection or extraction. The input for
this stage is an image or a video. The output for this stage is then used for license plate
location. This stage is very important as the result of the license plate recognition success
rate is highly dependent on the image or the video frame. So for our edge-ALPR system,
the quality of key frame extraction directly affects the recognition accuracy of the system.

Table 1 shows the categorizes, key ideas and limitations of the existing classic key
frame extraction approaches. In summary, these existing efforts described above have
limitations in terms of computational overhead or indication of changes. In contrast, our
two-layer frame selection scheme advances in more complex scenarios.

Table 1. The existing four classic categories approaches for key frame extraction.

Category (Based on) Key Idea Limitations

Video shot [27]
Divides the video stream into several shots

and then extracts the first frame, the middle

frame and the last frame as key frames.

(1) The number of key frames is limited as a

fixed value.

(2) Complexity of content in the current video

shot is not considered.

(3) The motion content cannot be efficiently

described.

Motion analysis [28]
Calculates the movement of a shot by

analyzing the optical flow, selects the local

minimum in the movement as key frames.

(1) High calculation overhead.

(2) Poor robustness for content changes by

dynamic accumulation.

Video content [29]
Extracts key frames based on the change of

color, texture and other visual information

of each frame.

(1) Unstable in scenarios when meet frequent

camera or mass of content motion.

(2) Cannot indicate the changes quantitatively.

Clustering [30]
Clusters into several clusters, and selects

key frame from every cluster.

(1) High calculation overhead.

(2) The number of cluster needs to be

predefined.

2.3. Edge Computing

Edge computing, a distributed information technology (IT) architecture for computing
on location where data are collected, enables IoT data to be gathered and processed at the
edge instead of sending the data back to a data center or cloud. It occurs at or near the
physical location of either the user or the data source.

One of the primary issues in edge computing is task offloading [31]. Task offloading
is the process by which the edge server distributes a particular amount of computational
resources to these uploaded apps in order to reduce latency or energy consumption and
deliver a better user experience [32]. Typically, the decision about whether to offload is the
first and most important step in computing offloads and resource allocations. Following the
decision to offload, the next thing to address is how much and what should be offloaded.
Our proposed method is in the position of the offload decision. On the one hand, in our
proposed two-layer link-aware scheme, the first layer answers the question of how much
should be offloaded at most, and the second link-aware layer answers which ones should
be offloaded based on the video content and dynamic link quality. On the other hand, our
proposed two-layer scheme can not only adapt to dynamic link changes in the one-hop
“client-server” structure, but also save energy.

Electronics 2022, 11, 3186 5 of 20

3. Edge-ALPR System Framework

We divide our work into three stages: video stream input, license plate detection and
character recognition. The first stage is on IoT device. The second and third stage are on
edge server.

• Video Stream Input. We explore the “movement” information between frames by inter-
frame difference. We propose two lightweight yet measurable metrics: Effective Frame
Sampling Interval (EFSI) and Normalized Key Frame Index (NKFI) to determine how
many frames we should select and which frames to be selected as key frames. We
propose a new link-aware frame selection scheme to select the appropriate video
frame. Then, we transmit the key frames to the edge server.

• License Plate (LP) Detection. We first train and deploy the YOLOv3 [33] model,
focusing on improving the vehicle detection speed. The network training dataset is
a manually annotated dataset based on CCPD [34] (Chinese City Parking Dataset,
ECCV). We then use RetinaFace [35] to perform transfer learning to realize license
plate detection, four-corner positioning, license plate correction and alignment. Finally
we extract the license plate area as the input to character recognition.

• Character Recognition. We deploy an end-to-end convolutional neural network LPR-
Net [36] without preliminary character segmentation. The network training dataset is
a manually annotated dataset based on CCPD. We first perform image decolorization
on the recognized color image of the license plate region. Then we input the processed
grayscale image into the end-to-end deep learning network LPR-Net.

The entire framework of our edge-ALPR system is shown in Figure 1:

Figure 1. The System Framework of our edge-ALPR system.

3.1. LP Detection

The vehicle is one of the basic objects in many classical detection and recognition
datasets, such as ImageNet [37] and COCO dataset [38]. So we decide not to train the
detector from scratch, but to utilize known models that meet our requirements. On the one
hand, we expect a high recall rate as far as possible to accurately capture all the vehicle
object in the scene. On the other hand, we hope to increase the detection speed and accuracy,
while reducing the size of the model to facilitate deployment. Based on these considerations,
we use two kinds of deep learning network YOLOv3 [33] and RetinaFace [35] for vehicle
detection and license plate area detection. Instead of changing or optimizing the network
structure, we just use the network as a black box, merging output related to vehicles and
ignoring other categories. The network training dataset is a manually annotated dataset
based on CCPD.

Electronics 2022, 11, 3186 6 of 20

The YOLOv3 algorithm uses the network structure of DarkNet-53 [39] to extract
the features of the vehicle information in the image, and uses the multi-scale detection
method to detect the targets in the image. The image in the dataset is normalized to
the size of 416× 416 and sent into the network structure of the algorithm to detect the
vehicle information. A large number of residual network structures with 1× 1 and 3× 3
convolution kernels are adopted in the DarkNet-53 network structure, referring to Figure 2.

Figure 2. Schematic diagram of residual network of YOLOv3 algorithm.

The residual function of the residual network structure is:

F(x) = H(x)− x (1)

where F(x) represents the residual function of the residual network structure, H(x) repre-
sents the output value of the residual network structure, and x represents the input value
of the residual network structure.

The input image of the network structure of the YOLOv3 algorithm is downsampled
by a convolution layer with a step size of 2 for five times, and a total of five scales of
characteristic images are obtained, which are 208× 208, 104× 104, 52× 52, 26× 26 and
13 × 13, respectively. The YOLOv3 algorithm inputs the feature graphs on the scales
of 13× 13, 26× 26, 52× 52 into the detection network for multi-scale detection. In the
YOLOv3 algorithm, nine groups of anchor frames are evenly distributed on three scales
of the detection network, and each anchor point of each scale is assigned three groups
of anchor frames, resulting in a total of 10,647 anchor frames. YOLOv3 algorithm uses
the Adam optimizer, which first uses regression to predict the category, confidence and
prediction box of anchor frame, and then uses NMS algorithm to select the final prediction
box according to the score of each prediction box. Finally, according to the relationship
between the feature map and the original image, the prediction box is mapped to the
original image to complete the location of the vehicle information in the image.

The formula for calculating confidence is:

C = Pr(object) × I (2)

Pr(object) =

{
0, no target
1, target

(3)

where C indicates confidence; Pr(object) indicates the probability that a target is detected
in the prediction box; I represents the intersection ratio between the prediction box and the
truth box area.

The formula for calculating the score of the target in the prediction box in the NMS
algorithm is:

S = C × Pr(vehicle | object) (4)

where S represents the score of the prediction box; Pr(logo | object) represents the condi-
tional probability of the vehicle category.

RetinaFace [35] is a robust one-stage face detector with high speed and accuracy for
small target recognition. When using MobilenetV1-0.25 as the backbone network, the model

Electronics 2022, 11, 3186 7 of 20

size is only 1.7 M, and it can achieve real-time detection. RetinaFace can also train other
datasets on demand to achieve migration learning for other target recognition, so here we
directly use a license plate correction and license plate detection model implemented using
RetinaFace for migration learning.

3.2. Character Recognition

In this stage, we mainly use a combination of optical conventional image optimization
methods and deep learning networks to recognize license plates. We first perform image
decolorization on the recognized color image of the license plate region. Then we input the
processed grayscale image into the end-to-end deep learning network LPR-Net [36], which
finally achieves efficient and accurate license plate recognition and outputs the results.

Image decolorization refers to the conversion of color images to grayscale images, as
Figure 3 shows. Image decolorization can simplify image information to save memory
without affecting recognition accuracy. A color image has three components: red, green
and blue. If red, green and blue are set to the same value, the image will become a gray
image. The gray value is represented by a number between 0 and 255, which represents the
gray depth between white and black. If there are only two gray values in an image, 0 and
255, we generally call it binarization.

Figure 3. Comparison before and after the process of the image decolorization. (left) hu A.
(right) hu A.

Generally, the captured license plate images are acquired by digital camera shooting,
so the images before pre-processing are color images. A color image, also known as an
RGB image, uses three components R, G and B, to represent the color of a pixel. R, G and
B represent red, green and blue, respectively, and any color can be synthesized by these
three basic colors. Therefore, for a color image of size M×N, storing the image requires a
three-dimensional array of M×N× 3. The color image contains a large amount of color
information, which not only has a high cost in storage but also slows down processing
speed. Because each pixel of the image has three different color components of R, G and B,
recognition does not use much of this information.

Therefore, before further processing, we convert the color image into a grayscale image
to reduce memory cost. In the RGB model, if R = G = B, the color represents a grayscale
color, where the value of R = G = B is called the grayscale value. A grayscale image is an
image that has only intensity information, but no color information. To store a grayscale
image, only a two-dimensional matrix is needed, and each element of the matrix represents
the grayscale value of the pixel at the corresponding position. The pixel color of a color
image is RGB(R, G, B), and the pixel color of a grayscale image is RGB(r, r, r).

We use the weighted average method for image decolorization, referring to Formula (5)

r = R = G = B =
(R×WR + G×WG + B×WB)

3
(5)

where WR, WG and WB are the weights of R, G and B respectively.
Studies [40] have shown that the human eye has the highest sensitivity to green, the

second highest sensitivity to red, and the lowest sensitivity to blue. Therefore, we use the
combination of weights (WR = 0.299, WG = 0.587, WB = 0.114) that best matches the
visual effect of the human eye to obtain the most reasonable grayscale image converted
from the color image. Then we input the processed grayscale image into the end-to-end
deep learning network LPR-Net.

LPR-Net [36] is an end-to-end Chinese license plate recognition method. LPR-Net is
an efficient neural network with high recognition accuracy on challenging Chinese license

Electronics 2022, 11, 3186 8 of 20

plates dataset and can be trained end-to-end without considering specific details. LPR-Net
is the first real-time license plate recognition system that does not employ RNNs [41]. It out-
performs MSER-based and Color-based methods in terms of both recognition accuracy and
robustness in complex environments. The structure of the backbone network is described
in Table 2.

Table 2. Back-bone network architecture [36] of the end-to-end deep learning network LPR-Net.

Layer Type Parameters

Input 94 × 24 pixels image

Convolution #64 3 × 3 stride 1

MaxPooling #64 3 × 3 stride 1

Small basic block #128 3 × 3 stride 1

MaxPooling #64 3 × 3 stride (2, 1)

Small basic block #256 3 × 3 stride 1

Small basic block #256 3 × 3 stride 1

MaxPooling #64 3 × 3 stride (2, 1)

Dropout 0.5 ratio

Convolution #256 4 × 1 stride 1

Dropout 0.5 ratio

Convolution # class_number 1 × 13 stride 1

The backbone network acquires the images containing license plate as input and computes
the spatial distribution of a large number of features. Wide convolution (1× 13 convolution
kernel) utilizes the local character context thus replacing the LSTM-based RNN network [41].
The output of the backbone sub-network can be considered as a sequence representing the
possibility of the corresponding character, which has a length equal to the width of the
input image. Since the output of the decoder is not aligned with the length of the target
character sequence, the CTC Loss (Connectionist Temporal Classification Loss) function is
employed for end-to-end training of the segmentation. CTC Loss function is a widely used
method to deal with the misalignment of the input and output sequences.

LPR-Net consists of lightweight convolutional neural networks, so it can be trained using
an end-to-end approach. It achieves an accuracy of 95% for Chinese license plate recognition.

4. Design
4.1. Overview

Image a scene where an ordinary camera used for road monitoring has 30 m to 60 m
HD-shooting-distance and 30 frame rate. When a car with a speed of 60 km/h passes
the camera, it takes about 2 s to pass through the camera’s HD-shooting-area, and the
camera has already captured about 60 frames for the same object. Given a sequence
of frames F =

{
fi, . . . , fi+(n−1)

}
, then obviously the subset Fj =

{
f j, . . . , f j+59

}
where

(j = i, i + 1, . . . , i + n− 60) may contain the same object for all frames, which means we
detect one object 60 times at most when we do object detection frame by frame. It is heavy
and redundant for low-power IoT devices.

To reduce the workload on the edge as much as possible, the selected key frames
should capture as much movement as possible, and not have much redundancy between
each other. So there are two key problems:

1. How many frames to select?
2. Which frames to select?

Electronics 2022, 11, 3186 9 of 20

Meanwhile, another problem is that wireless links in edge networks usually vary
frequently and dramatically due to the interference of other signals and dynamic environments.

To address these problems, we propose a two-layer link-aware frame selection scheme,
which particularly considers both the wireless network dynamics and the video content
variation to select the appropriate frames offloaded to edge servers. It is mainly consist of
two core metrics: Effective Frame Sampling Interval (EFSI) and Normalized Key Frame
Index (NKFI). Algorithm 1 shows the process of the first layer selection. Algorithm 2 shows
the process of the link-aware layer selection. Figure 4 shows the flowchart of our proposed
two-layer algorithm.

Figure 4. The Flowchart of the proposed algorithm.

Algorithm 1 The First Layer Algorithm of our Scheme

Input: Vmax: Max speed of car (km/h); FPS: Frame number per second of video;
D: Camera HD-shooting distance; k: The ratio of detection failure each frame;
Array: video stream data;

Output: f rame: The first layer selection result.
1: Vmax ← Vmax/3.6
2: Scoe ← 1/log 1

k
1000

3: max_sampling_interval ← FPS · D
Vmax

4: ESFI ← bScoe ·max_sampling_intervalc
5: i← 0
6: while i ≤ len(Array) do
7: f rame← Array[i]
8: i← i + EFSI
9: end while

10: return f rame

Electronics 2022, 11, 3186 10 of 20

Algorithm 2 The Link-aware Layer Algorithm of our Scheme

Input: f rame: The first layer selection result.
β: Weight value; p: Threshold for NKFIi;
PRR: Packet Reception Ratio;

Output: KFS: Key-frame-sequence.
1: curr_ f rame, prev_ f rame← None
2: i, j← 0
3: while i ≤ len(f rame) do
4: curr_ f rame← f rame[i]
5: i ++
6: if curr_ f rame and prev_ f rame then
7: di f f ←| curr_ f rame− prev_ f rame |
8: Calculate T0, µ1, µ2, a1, a2, Th . According to Fomulas (11)–(13)
9: di f f ← Threshold(di f f , Th, 255) . Binarization

10: kernel ← GetStructuringElement(cv2.MORPH_RECT, (7, 7))
11: di f f ← Erode(di f f , kernel) . Erode
12: di f f ← Dilate(di f f , kernel) . Dilate
13: f rames.append(Frame(j, ∑ ∑(di f f))
14: j ++
15: end if
16: prev_ f rame← curr_ f rame
17: end while
18: f rames.sort(key ≡ ”di f f ”, reverse ≡ True) . sort in descending order
19: max_di f f ← f rames[0].di f f
20: i← 0
21: for i ≡ 0→ range(len(f rames[:])) do
22: f rames[i].di f f ← f rames[i].di f f /max_di f f
23: NKFI[i]← f rames[i].di f f · β + (1− β) · PRR
24: if NKFI[i] > p then
25: KFS.append(f rames[i])
26: end if
27: end for
28: return KFS

4.2. Metrics and Algorithm Statement

Effective Frame Sampling Interval (EFSI). We find that in most cases we only need
a few frames to accurately identify the same one object. So we define the Effective Frame
Sampling Interval (EFSI) metric as follows:

EFSI = bScoe · FPS · D
Vmax

c (6)

max_sampling_interval = FPS · D
Vmax

(7)

where Scoe indicates sampling coefficient between 0 to 1; FPS indicates the number of
frames per second; D indicates the minimum of the camera’s HD-shooting-distance; Vmax
represents the max speed allowed on the road and needs to be transferred from km/h
to m/s; We sort out some common application scenarios and corresponding parameters
as Table 3:

We call FPS · D
Vmax

the max_sampling_interval, because it represents the minimum
number of frames of the same object target in the video frame sequence. For instance,
for a car with 120 km/h speed on highway, 24 FPS, D of the camera is 30 m, then
max_sampling_interval is 21, which means this car shows up 21 times in the video frame
sequence. Moreover, if we let EFSI equal to max_sampling_interval, the frame-sampling-
sequence will have only one frame containing this car.

Electronics 2022, 11, 3186 11 of 20

Table 3. Some common application scenarios and corresponding parameters.

Scenarios V (km/h) FPS D (/m)

Highway 60–120 24–60 30–60
Urban 30–60 24–60 30–60
Street 0–25 24–60 30–60

Parking lot entrance 0–10 24–60 3–6

However, letting EFSI simply equal to max_sampling_interval is risky, because that
there is a chance the object cannot be detected in the only frame due to occlusion. So, we
define the sampling coefficient Scoe, referring to the Formula (8):

Scoe =
1

log 1
k

1000
(8)

where k is an independent constant between 0 to 1 indicating the probability of detection
failure of each frame. Based on our experiments, k = 1/10 can satisfy the scenarios we list.
Scoe guarantees the overall ratio of detection failure in all selected frames containing the
same one object could be less than 1/1000.

Normalized Key Frame Index (NKFI). According the Formula (6), we get the frame-
sampling-sequence. We use a lightweight inter- f rame di f f erence function to calculate the
“movement” between two frames (Figures 5 and 6). We define Normalized Key Frame
Index (NKFI) as the weighted average of the inter-frame difference and the wireless link
quality metric packet reception rate (PRR).

Figure 5. Difference between frames, the white area shows fast movement and the black area shows
slow movement.

Figure 6. Diagram of Inter-frame difference and the corresponding symbolic expression.

First, we convert the frame to grayscale and compute the absolute difference of pixel
values di,j(x, y) for every pixel (x,y) between frame i and frame j, and consider it significant
if it exceeds a threshold Th:

di,j(x, y) =
∣∣fi(x, y)− fj(x, y)

∣∣ (9)

Electronics 2022, 11, 3186 12 of 20

ti,j(x, y) =

{
1, di,j(x, y) >Th
0, otherwise

(10)

However, if the threshold Th is too high, the moving target region will be seriously
fragmented. and if the threshold Th is too low, a lot of noise will be introduced. Therefore,
we use a dynamic threshold by calculating the gray value of the current image:

(a) Obtain the minimum and maximum gray values in the image, and take the average
value as the initial threshold T0.

(b) Divide the image into the target part and the background part by threshold T0.
Obtain the average gray values µ1 and µ2 and the gray probability a1 and a2 of two parts.

µ1 =
∑fi,j(x,y)<T0

fi,j(x, y)

∑fi,j(x,y)<T0
N

, µ2 =
∑fi,j(x,y)>T0

fi,j(x, y)

∑fi,j(x,y)>T0
N

(11)

a1 =
∑fi,j(x,y)<T0

fi,j(x, y)

∑ fi,j(x, y)
, a2 =

∑fi,j(x,y)>T0
fi,j(x, y)

∑ fi,j(x, y)
(12)

(c) Dynamic threshold Th can be calculated as:

Th = a1 · a2 · (µ1 + µ2) (13)

We then use morphological operations such as erode and dilate to eliminate the white
noise caused by camera jitter and wind blowing leaves. We compute the frame difference
ti,j between frame i and frame j and normalize it as:

ti,j = ∑
x,y

ti,j(x, y), ti,j > 0 (14)

t′i,j =
ti,j

max
i,j

{
ti,j
} (15)

We take PRR [42] (Packet Reception Ratio) as the indicator to reflect the current link
quality. It is computed as the ratio of the number of successfully received packets to the
number of transmitted packets. Setting β(0 < β < 1), we define NKFI and append the
frame that NKFIi > p (base on our experiment, we pick p = 0.35) into the final key
frame sequence.

NKFIi = β · t′i,i+1 + (1− β) · PRR (16)

where PRR indicates the wireless link quality, between 0 to 1: the higher, the more stable.

5. Evaluation

Based on a series of simulations, this section sets up five independent cases and
compares the performance with each other to analyze the effectiveness and efficiency of
our proposal in different application scenarios.

5.1. Evaluation Setup

The workflow of edge-based ALPR system is shown as Figure 7. Our proposed
algorithm runs on the IoT device to select the frames that meet the constraints of our
two-layer scheme. The detection part by deep learning runs on the edge server to detect
the license plate area and recognize it. The IoT device first captures video through a camera
and runs our proposed two-layer algorithm to select frames that satisfy the conditions,
which are then compressed and offloaded to the nearest edge server by wireless network.
The edge server obtains and decompresses the image sequence for vehicle detection, license
plate detection and license plate recognition, and outputs the results. Finally, the edge
server returns recognition results back to IoT devices to display.

Electronics 2022, 11, 3186 13 of 20

Figure 7. The workflow of edge-based ALPR system. Our proposed algorithms runs on the red
rectangle part on IoT device.

The operating system of the simulation experiment is Ubuntu18.04.6 LTS, and used
package are CUDA11.6, Pytorch1.12.1, OpenCV4.6.0. We use an android phone with a
13 million pixel camera as the IoT device, and a laptop with a NVIDIA GTX1650 as the
edge server. Considering that in most practical situations, the camera has a certain height
and angle from the ground, which naturally avoids some miscapture. So we use a tilt of
45 degrees to capture video stream data to avoid overlap as much as possible. The test data
are a series of 20-s videos by mobile phone, 1080p, 30 FPS, with 600 frames of each video.
For instance, as Figure 8 shows, video 1 has, in total, 21 cars passing through, including
14 blue license plates and 7 green license plates.

Figure 8. A series of test videos with different scenarios and different car number.

Our proposed algorithm has two features: On the one hand, it adds the selection
of sampling and the “movement” information between frames; On the other hand, it
utilizes both information of link quality and inter-frame difference to determine key frames.
Therefore, we specifically analyze the effect of these two features on the performance
improvement separately.

We set up five independent cases to test and analyze the performance improvement of
our scheme. The Accuracy(/%) is defined as the number of recognition success frames di-
vided by the number of frames with full license plate number. The Extraction_quality(/%)
is defined as the number of frames with full license plate number divided by total number
of frames. The Energy_loss(/%) is defined as average energy overhead divided by the
overhead of CASE 1. The average energy overhead is represented by the average energy
consumption in the process of transmitting key frames to the edge server.

1. Frame by frame, no frame selection;
2. Only the first layer selection (i.e., equally spaced sampling);
3. Only the link-aware layer selection (i.e., inter-frame difference frame by frame);

Electronics 2022, 11, 3186 14 of 20

4. Two-layer selection, but β = 0 (link-unaware);
5. Two-layer selection, and β = PRR (link-aware);

CASE 1: IoT device sends video data to server without frame selection.
CASE 2: Set parameters according to mobile phone configuration and actual conditions.

For instance, one group parameter for urban road could be: Vmax = 60 km/h = 16.6 m/s,
FPS = 30, D = 10 m, k = 1/10. It means when a car passes camera shooting area (10 m)
with max speed (60 km/h) allowed, we record it for at least 18 frames in video sequence
and extract 1 frame as key frame every 6 continuous frames in video sequence. We sample
and extract at least 3 frames containing one same car for the next detection and recognition.

CASE 3: Calculate the “movement” information frame by frame in whole video and
output the key frame sequence.

CASE 4: Set the same parameters as CASE 2. We first use the first layer to sample
frames that are effective enough to be detected. We then calculate its significance by metric
NKFI (but β = 0). In this case, it is a link-unaware frame selection scheme.

CASE 5: Set the same parameters as CASE 2 and β = PRR. In this case, it is our
link-aware frame selection scheme. Final output is the key frame sequence according to
Algorithm 2.

5.2. Performance Improvement Analysis
5.2.1. Comparison of Accuracy and Extraction_quality

Figure 9 shows the comparison of CASE 1, CASE 2 and CASE 5. The performance
of Accuracy and Extraction_quality in each video is considered as independent and only
influenced by its own scenario and environment conditions. Among them, video 1 has
regular density of traffic on urban road and good weather condition; Videos 2–4 has sparse
density of traffic on urban road and good weather condition; Video 5 have sparse density of
traffic on urban road and poor weather condition. Video 6 has crowded traffic and raining
weather condition on urban road, which is the most complex scenario in our experiment.
Videos 7–10 contain different scenarios such as street, school, hospital and parking lot,
rather than the urban roads in videos 1–6.

For each video, we simulate 20 times to take average result to compare and analyze,
as shown in Table 4.

Figure 9a shows the Accuracy of CASE 1, CASE 2 and CASE 5 in different scenar-
ios. Figure 9b shows the Extraction_quality of CASE 1, CASE 2 and CASE 5 in different
scenarios. As shown in Figure 9a, CASE 5’s accuracy is consistently higher than CASE 1
and CASE 2. This is mainly because the ratio of frames that can not be successfully recog-
nized decreases by culling frames with low NKFI, which mainly are foreground-occluded
frames, overlapping frames, etc. CASE 1’s accuracy is 94.93% on average and up to 95.12%.
CASE 2’s accuracy is 96.21% on average and up to 96.31%. CASE 5’s accuracy is 97.95%
on average and up to 98.31%. The accuracy improvement of the CASE 5 algorithm over
CASE 1 is 3.18% on average and up to 3.45%. The accuracy improvement of the CASE 5
algorithm over CASE 2 is 1.81% on average and up to 2.00%. Especially in video 6, which
has crowded traffic and bad weather condition, CASE 1 has the worst behavior. However,
CASE 5 extracts all cars out and avoids the influence of dim weather light, achieving 97.65%
accuracy. As shown in Figure 9b, CASE 5’s extraction quality is also consistently higher
than CASE 1 and CASE 2. In addition, CASE 5 achieves better stability than CASE 1 and
CASE 2, which is 83.37% on average an up to 84.40%. CASE 2 has the worst behavior about
extraction quality, which is 58.84% on average and low to 56.29%. It means that CASE 2
picks up much more frames (close to 1.69 times) than the minimum workload we wish. It
is mainly because it doesn’t have adaptive ability with traffic flow. For instance, when the
traffic flow is sparse or even there are no vehicles for a period of time, it is also sampling at
equal intervals, causing unnecessary waste. CASE 1’s (frame by frame) “extraction” quality
is 73.34% on average and up to 77.2%. The extraction quality improvement of CASE 5
algorithm over CASE 1 reaches an average of 13.68% and 21.15% at most. The extraction

Electronics 2022, 11, 3186 15 of 20

quality improvement of CASE 5 algorithm over CASE 2 reaches an average of 41.69% and
48.49% at most.

Table 4. 20 times simulation results for one video in CASE 5 and average result.

ID Key Frame
Number

Total Time
(/s)

Single
Time (/ms)

All Cars?
(YES/NO)

Full Car
Frames

Success
Frames

Accuracy
(/%)

Extraction
Quality

(/%)

1 63 50.67 804 YES 55 54 98.18 87.30
2 80 53.33 666 YES 68 66 97.05 85.00
3 61 48.05 787 YES 53 52 98.11 86.88
4 66 48.61 736 YES 55 54 98.18 83.33
5 75 52.08 694 YES 64 62 96.87 85.33
6 83 55.85 673 YES 69 66 95.65 83.13
7 69 51.01 739 YES 57 56 98.24 82.60
8 80 55.44 693 YES 68 66 97.05 85.00
9 61 49.15 805 YES 53 52 98.11 86.88

10 81 56.32 695 YES 69 66 95.65 85.18
11 83 55.47 668 YES 69 66 95.65 83.13
12 67 50.19 749 YES 56 55 98.21 83.58
13 65 52.07 801 YES 54 53 98.14 83.07
14 71 51.29 722 YES 59 58 98.30 83.09
15 83 56.07 675 YES 69 66 95.65 83.13
16 80 54.62 682 YES 68 66 97.05 85.00
17 63 48.17 764 YES 53 52 98.11 84.12
18 78 55.95 717 YES 67 66 98.50 85.89
19 70 51.31 733 YES 58 57 98.27 82.85
20 81 55.88 689 YES 68 66 97.05 83.95

Average 73 52.5765 724.6 YES 61.6 59.95 97.401 84.422

We can conclude that: (1) From the difference between CASE 5 and CASE 2, our
practice of setting the link-aware layer can improve the accuracy performance by about
1.81% to 2.00%, achieving 97.95% accuracy on average and 98.31% at most. (2) From the
difference between CASE 5 and CASE 2, our practice of setting the link-aware layer can
improve the extraction quality performance by about 41.69% on average and 48.49% at
most. (3) From the difference between CASE 1 and CASE 2, our practice of setting the
first layer can improve the accuracy performance by about 1.3% on average, but degrades
extraction quality performance by about 19.77% on average due to poor adaptive ability
with traffic flow.

(a) Accuracy(/%) (b) Extraction_quality(/%)

Figure 9. Comparison of CASE 1, CASE 2 and CASE 5. (a) Variation in Accuracy rate with different
test video; (b) Variation in Extraction_quality rate with different test video.

Electronics 2022, 11, 3186 16 of 20

Figure 10 shows the comparison of CASE 1, CASE 3 and CASE 5. Figure 10a shows
the Accuracy of CASE 1, CASE 3 and CASE 5 in different scenarios. Figure 10b shows
the Extraction_quality of CASE 1, CASE 3 and CASE 5 in different scenarios. As shown
in Figure 10a, CASE 5’s accuracy is consistently higher than CASE 1 and CASE 3. CASE
3’s accuracy is 95.92% on average and up to 96.33%. The accuracy improvement of CASE
5 over CASE 3 is 2.11% on average and up to 2.81%. As shown in Figure 10b, CASE 5’s
extraction quality is mostly higher than CASE 3, except video 6, due to its crowded traffic.
The key idea of CASE 3 is calculating the “movement” information frame by frame in whole
video by inter-frame difference but not sampling first. This helps CASE 3 capture more
“movement” information and discard the “static” frame as much as possible. So it let CASE
3 keep more frame number of full detection with license plate in total number and get
higher extraction quality in scenario with crowded traffic. In addition, for videos 2–4 and
video 7 which have sparse density of traffic, CASE 5’s extraction quality is close to CASE 3.
Similarly, it is mainly caused by the sparse traffic in videos 2–4 and video 7. Though CASE
3 has better behavior than CASE 5 in some specific scenarios about extraction quality, CASE
3’s “extraction” quality is 81.20% on average and up to 87.01%. The extraction quality
improvement of CASE 5 algorithm over CASE 3 reaches an average of 2.67% and 7.16% at
most. The extraction quality improvement of CASE 3 algorithm over CASE 1 reaches an
average of 10.72% and 16.11% at most.

We can conclude that: (1) From the difference between CASE 5 and CASE 3, our
practice of setting the first layer can improve the accuracy performance by about 2.11% to
2.81%, achieving 97.95% accuracy on average and 98.31% at most. (2) From the difference
between CASE 5 and CASE 3, our practice of setting the first layer can smooth the extraction
quality performance. Just for extraction quality, CASE 3 may have better behaviors in some
scenarios with crowded traffic. (3) From the difference between CASE 3 and CASE 1,
setting the link-aware layer improves the extraction quality performance by about 10.72%
on average and 16.11% at most.

(a) Accuracy(/%) (b) Extraction_quality(/%)

Figure 10. Comparison of CASE 1, CASE 3 and CASE 5. (a) Variation in Accuracy rate with different
test video; (b) Variation in Extraction_quality rate with different test video.

Figure 11 shows the comparison of CASE 1, CASE 4 and CASE 5. Figure 11a shows
the Accuracy of CASE 1, CASE 4 and CASE 5 in different scenarios. Figure 11b shows the
Extraction_quality of CASE 1, CASE 4 and CASE 5 in different scenarios. As shown in
Figure 11a, CASE 5’s accuracy is consistently higher than CASE 1 and CASE 4. CASE 4’s
accuracy is 96.07% on average and up to 96.31%. The accuracy improvement of the CASE 5
algorithm over CASE 4 is 1.95% on average and up to 2.14%. Both of CASE 4 and CASE 5
have stable accuracy performance over 96% in our experiments. As shown in Figure 11b,
CASE 5’s extraction quality is mostly higher than CASE 4. CASE 4’s “extraction” quality
is 81.87% on average and up to 83.11%. The extraction quality improvement of CASE 5
algorithm over CASE 1 reaches an average of 13.68% and 21.15% at most. The extraction

Electronics 2022, 11, 3186 17 of 20

quality improvement of CASE 5 algorithm over CASE 4 reaches an average of 1.83% and
3.45% at most. The extraction quality improvement of CASE 4 algorithm over CASE 1
reaches an average of 11.63% and 18.63% at most. CASE 4’s extraction quality is closer to
CASE 5 and smoother than CASE 3. It is mainly caused by the metric EFSI as mentioned
before. CASE 4 mainly uses both EFSI and NKFI metrics to extract key frame, but β = 0.

We can conclude that: (1) From the difference between CASE 5 and CASE 4, consid-
ering the link quality influence can improve the accuracy performance by about 1.95%
to 2.14%, achieving 97.95% on average and 98.31% at most. (2) For extraction quality
performance, considering link quality influences it slightly on average.

(a) Accuracy(/%) (b) Extraction_quality(/%)

Figure 11. Comparison of CASE 1, CASE 4 and CASE 5. (a) Variation in Accuracy rate with different
test video; (b) Variation in Extraction_quality rate with different test video.

5.2.2. Comparison of Energy_loss

Figure 12 compares the Energy_loss(%) of the five cases: CASE 1, CASE 2, CASE 5,
CASE 3 and CASE 4. The Energy_loss(%) is defined as test average overload divided by
CASE 1 overload. The Energy_loss ratio is a normalized performance metric that reflects
overhead (i.e., the sum of energy usage of IoT device) compared with CASE 1 for the same
task. As shown in Figure 12 (Displayed in logarithmic form), CASE 2’s Energy_loss is lowest
of the five cases and CASE 3 consumes the most energy. CASE 2’s average Energy_loss is
30.61%. CASE 5’s average Energy_loss is 53.29%. CASE 3’s average Energy_loss is 293.75%.
CASE 4’s average Energy_loss is 52.63%. The Energy_loss improvement of the CASE 2 over
CASE 1 is 69.39%. According to Figure 9b, though CASE 2 has the lowest overhead, it
has the worst extraction quality. The Energy_loss improvement of the CASE 5 over CASE
1 is 46.71%, and CASE 5 has the best behavior of accuracy and extraction quality. The
Energy_loss improvement of the CASE 3 over CASE 1 is −193.75%, which means CASE 3’s
overhead is almost three times CASE 1’s. Although CASE 3 has great behavior of accuracy
and extraction quality, the corresponding cost is too high. The Energy_loss improvement of
the CASE 4 over CASE 1 is 47.37%, close to CASE 5’s behavior. It’s mainly because the only
difference between CASE 5 and CASE 4 is β, making little impact on the time complexity
of the algorithm.

We can conclude that: CASE 5 shows great performance in Energy_loss, which saves
46.71% energy compared with CASE 1. In addition, based on comparison of Accuracy
and Extraction_quality, CASE 5 consistently outperforms CASE 1, CASE 2, CASE 3 and
CASE 4. Thus, CASE 5 is a good method to extract key frame sequence of video stream in
edge ALPR system based on low-power IoT device.

Electronics 2022, 11, 3186 18 of 20

Figure 12. Energy_loss(%) comparison of CASE 1–5.

6. Conclusions

In this paper, we propose a two-layer link-aware frame selection scheme for ALPR
service in the dynamic wireless links of edge networks. The distinctive feature of our
scheme is that we exploit both the video content variation and real-time link quality. We
set up five independent experiment cases and analyze the performance improvement
of each layer of our scheme. The extensive experimental results show that our scheme
exhibits superior performance of Accuracy, Extraction_quality and Energy_loss in different
scenarios. Compared with no frame selection, our scheme can significantly reduce the
energy consumption of devices by 46.71% and achieve 97.95% recognition accuracy in the
high-dynamic wireless link of edge network.

Author Contributions: Methodology, J.L.; Resources, Y.Z.; Validation, J.L. and X.W.; Writing—
original draft, J.L. and Y.Z.; Writing—review & editing, R.C. and X.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
61972074) and the National Key Research and Development Program of China (No. 2020YFE0200500).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet

Things J. 2021, 8, 11891–11915. [CrossRef]
2. Shu, C.; Zhao, Z.; Min, G.; Hu, J.; Zhang, J. Deploying network functions for multiaccess edge-IoT with deep reinforcement

learning. IEEE Internet Things J. 2020, 7, 9507–9516. [CrossRef]
3. Agarwal, Y.; Ratnani, P.; Shah, U.; Jain, P. IoT based smart parking system. In Proceedings of the 2021 5th International Conference

on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 464–470.
4. Du, S.; Ibrahim, M.; Shehata, M.; Badawy, W. Automatic license plate recognition (ALPR): A state-of-the-art review. IEEE Trans.

Circuits Syst. Video Technol. 2012, 23, 311–325. [CrossRef]
5. Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.A.; Dang, T.N.; Hong, C.S. Edge-computing-enabled smart cities: A comprehensive

survey. IEEE Internet Things J. 2020, 7, 10200–10232. [CrossRef]
6. Rohith, M.; Sunil, A.; Mohana . Comparative Analysis of Edge Computing and Edge Devices: Key Technology in IoT and

Computer Vision Applications. In Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information,
Communication & Technology (RTEICT), Bangalore, India, 27–28 August 2021; pp. 722–727.

7. Cong, R.; Zhao, Z.; Min, G.; Feng, C.; Jiang, Y. EdgeGO: A Mobile Resource-Sharing Framework for 6G Edge Computing in
Massive IoT Systems. IEEE Internet Things J. 2022, 9, 14521–14529. [CrossRef]

8. Liu, L.; Zhao, M.; Yu, M.; Jan, M.A.; Lan, D.; Taherkordi, A. Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks. IEEE Trans. Intell. Transp. Syst. 2022, 2022, 1–14. [CrossRef]

9. Zhang, Q.; Yu, Z.; Shi, W.; Zhong, H. Demo Abstract: EVAPS: Edge Video Analysis for Public Safety. In Proceedings of the 2016
IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 121–122. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3063686
http://dx.doi.org/10.1109/JIOT.2020.2987011
http://dx.doi.org/10.1109/TCSVT.2012.2203741
http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1109/JIOT.2021.3065357
http://dx.doi.org/10.1109/TITS.2022.3142566
http://dx.doi.org/10.1109/SEC.2016.30

Electronics 2022, 11, 3186 19 of 20

10. Fu, X.; Fortino, G.; Pace, P.; Aloi, G.; Li, W. Environment-fusion multipath routing protocol for wireless sensor networks. Inf.
Fusion 2020, 53, 4–19. [CrossRef]

11. Soora, N.R.; Puli, S.R.; Sunkari, V. Object Recognition using Novel Geometrical Feature Extraction Techniques. In Proceedings of
the 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES),
Chennai, India, 24–25 September 2021; pp. 1–6. [CrossRef]

12. Yan, X.; Wang, C.; Hao, D.; Chen, M. License Plate Detection Using Bayesian Method Based on Edge Features. In Proceedings of
the 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP), Zhuhai, China, 8–10 January 2021;
pp. 205–211. [CrossRef]

13. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

14. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2016; pp. 21–37.

17. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

18. Laroca, R.; Severo, E.; Zanlorensi, L.A.; Oliveira, L.S.; Gonçalves, G.R.; Schwartz, W.R.; Menotti, D. A Robust Real-Time Automatic
License Plate Recognition Based on the YOLO Detector. In Proceedings of the 2018 International Joint Conference on Neural
Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–10. [CrossRef]

19. Nguyen, T.T.H.; Jatowt, A.; Coustaty, M.; Doucet, A. Survey of post-ocr processing approaches. ACM Comput. Surv. (CSUR) 2021,
54, 1–37. [CrossRef]

20. Silva, S.M.; Jung, C.R. Real-time license plate detection and recognition using deep convolutional neural networks. J. Vis. Commun.
Image Represent. 2020, 71, 102773. [CrossRef]

21. Montazzolli, S.; Jung, C. Real-Time Brazilian License Plate Detection and Recognition Using Deep Convolutional Neural
Networks. In Proceedings of the 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Niteroi, Brazil,
17–20 October 2017; pp. 55–62. [CrossRef]

22. Wang, Q.; Lu, X.; Zhang, C.; Yuan, Y.; Li, X. LSV-LP: Large-Scale Video-Based License Plate Detection and Recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 2022. [CrossRef] [PubMed]

23. Kim, T.; Kang, C.; Kim, Y.; Yang, S. AI Camera: Real-time License Plate Number Recognition on Device. In Proceedings of the
2022 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7–9 January 2022; pp. 1–6.

24. Kaur, P.; Kumar, V.; Kaur, P.; Rana, R.; Jindal, G. Convolutional Neural Network based Novel Automatic Recognition System for
License Plates. In Proceedings of the 2021 2nd International Conference on Computational Methods in Science & Technology
(ICCMST), Mohali, India, 17–18 December 2021; pp. 168–173.

25. Tham, M.L.; Tan, W.K. IoT Based License Plate Recognition System Using Deep Learning and OpenVINO. In Proceedings of the
2021 4th International Conference on Sensors, Signal and Image Processing, Nanjing, China, 15–17 October 2021; pp. 7–14.

26. Yi, S.; Hao, Z.; Zhang, Q.; Zhang, Q.; Shi, W.; Li, Q. LAVEA: Latency-Aware Video Analytics on Edge Computing Platform; Association
for Computing Machinery: New York, NY, USA, 2017. [CrossRef]

27. Yuan, Y.; Lu, Z.; Yang, Z.; Jian, M.; Wu, L.; Li, Z.; Liu, X. Key frame extraction based on global motion statistics for team-sport
videos. Multimed. Syst. 2022, 28, 387–401. [CrossRef]

28. Wang, J.; Zeng, C.; Wang, Z.; Jiang, K. An improved smart key frame extraction algorithm for vehicle target recognition. Comput.
Electr. Eng. 2022, 97, 107540. [CrossRef]

29. Ahmad, H.; Khan, H.U.; Ali, S.; Rahman, S.; Wahid, F.; Khattak, H. Effective video summarization approach based on visual
attention. Comput. Mater. Contin. 2022, 71, 1427–1442.

30. Ejaz, N.; Tariq, T.B.; Baik, S.W. Adaptive key frame extraction for video summarization using an aggregation mechanism. J. Vis.
Commun. Image Represent. 2012, 23, 1031–1040. [CrossRef]

31. Shen, J.; Li, Y.; Zhang, Y.; Zhou, F.; Feng, L.; Yang, Y. A Survey on Task Offloading in Edge Computing for Smart Grid. In
Proceedings of the 11th International Conference on Computer Engineering and Networks, Hechi, China, 21–25 October 2021;
pp. 13–20.

32. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

33. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
34. Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H. Towards End-to-End License Plate Detection and Recognition: A Large Dataset

and Baseline. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 255–271.

35. Deng, J.; Guo, J.; Yuxiang, Z.; Yu, J.; Kotsia, I.; Zafeiriou, S. RetinaFace: Single-stage Dense Face Localisation in the Wild. arXiv
2019, arXiv:1905.00641.

http://dx.doi.org/10.1016/j.inffus.2019.06.001
http://dx.doi.org/10.1109/ICSES52305.2021.9633971
http://dx.doi.org/10.1109/CSP51677.2021.9357598
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/IJCNN.2018.8489629
http://dx.doi.org/10.1145/3453476
http://dx.doi.org/10.1016/j.jvcir.2020.102773
http://dx.doi.org/10.1109/SIBGRAPI.2017.14
http://dx.doi.org/10.1109/TPAMI.2022.3153691
http://www.ncbi.nlm.nih.gov/pubmed/35196230
http://dx.doi.org/10.1145/3132211.3134459
http://dx.doi.org/10.1007/s00530-021-00777-7
http://dx.doi.org/10.1016/j.compeleceng.2021.107540
http://dx.doi.org/10.1016/j.jvcir.2012.06.013
http://dx.doi.org/10.1109/JIOT.2016.2579198

Electronics 2022, 11, 3186 20 of 20

36. Wang, D.; Tian, Y.; Geng, W.; Zhao, L.; Gong, C. LPR-Net: Recognizing Chinese license plate in complex environments. Pattern
Recognit. Lett. 2020, 130, 148–156. [CrossRef]

37. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

38. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

39. Redmon, J. Darknet: Open Source Neural Networks in C. 2013–2016. Available online: http://pjreddie.com/darknet/ (accessed
on 15 August 2022).

40. Yu, J.; Li, F.; Lv, X. Contrast preserving decolorization based on the weighted normalized L1 norm. Multimed. Tools Appl. 2021,
80, 31753–31782. [CrossRef]

41. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

42. Baccour, N.; Koubâa, A.; Mottola, L.; Zúñiga, M.A.; Youssef, H.; Boano, C.A.; Alves, M. Radio link quality estimation in wireless
sensor networks: A survey. ACM Trans. Sens. Netw. (TOSN) 2012, 8, 1–33. [CrossRef]

http://dx.doi.org/10.1016/j.patrec.2018.09.026
http://pjreddie.com/darknet/
http://dx.doi.org/10.1007/s11042-021-11172-9
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1145/2240116.2240123

	Introduction
	Related Work
	Automatic License Plate Recognition
	Key Frame Extraction Techniques
	Edge Computing

	Edge-ALPR System Framework
	LP Detection
	Character Recognition

	Design
	Overview
	Metrics and Algorithm Statement

	Evaluation
	Evaluation Setup
	Performance Improvement Analysis
	Comparison of Accuracy and Extraction_quality
	Comparison of Energy_loss

	Conclusions
	References

