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Abstract: A brain–computer interface (BCI) based on steady-state visual evoked potential (SSVEP)
has achieved remarkable performance in the field of automatic driving. Prolonged SSVEP stimuli
can cause driver fatigue and reduce the efficiency of interaction. In this paper, a multi-modal hybrid
asynchronous BCI system combining eye-tracking and EEG signals is proposed for dynamic threaten-
ing pedestrian identification in driving. Stimuli arrows of different frequencies and directions are
randomly superimposed on pedestrian targets. Subjects scan the stimuli according to the direction of
arrows until the threatening pedestrian is selected. The thresholds determined by offline experiments
are used to distinguish between working and idle states of the asynchronous online experiments.
Subjects need to judge and select potentially threatening pedestrians in online experiments according
to their own subjective experience. The three proposed decisions filter out the results with low
confidence and effectively improve the selection accuracy of hybrid BCI. The experimental results of
six subjects show that the proposed hybrid asynchronous BCI system achieves better performance
compared with a single SSVEP-BCI, with an average selection time of 1.33 s, an average selection
accuracy of 95.83%, and an average information transfer rate (ITR) of 67.50 bits/min. These results
indicate that our hybrid asynchronous BCI has great application potential in dynamic threatening
pedestrian identification in driving.

Keywords: brain–computer interface (BCI); steady-state visual evoked potential (SSVEP);
electroencephalography (EEG); threatening pedestrians; eye-tracking

1. Introduction

In recent years, the brain–computer interface (BCI) has become a research hotspot in
the field of artificial intelligence, aiming at building communication between the human
brain and external devices. Electroencephalography (EEG), reflecting brain activity, is the
common signal source of BCI applications. As a non-invasive and low-cost signal, EEG has
shown high levels of reliability [1,2]. As a new interactive mode, BCI has been widely used
in the fields of medical assistance [3] automobile driving [4], robot control [5], etc.

As a complex BCI application, there is a direct control pathway between the brain and
the vehicle in Brain-Controlled Vehicles (BCV). At present, the BCI paradigms adopted by
BCV systems are mainly P300 [6], motor imagery (MI) [7], and steady-state visual evoked
potential (SSVEP) [8]. P300, which is always evoked by a visual stimulus with poor real-
time performance, can only be used for the control of static targets, such as switches, wipers,
etc. The real-time performance of MI is also poor, and the degrees of freedom available is
limited (generally less than four), which makes it impossible to complete the overall driving
task. SSVEP, which is an electrophysiological response to a repetitive visual stimulus, has a
high information transfer rate (ITR) and good real-time performance. When subjects focus
their attention on a stimulus, the corresponding frequency appears in the representation of
the EEG signals recorded mainly in occipital regions [9]. Studies [10,11] have shown that the
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human cerebral cortex will produce SSVEP characteristic components at the fundamental
or multiplicative frequency of the target stimuli when exposed to a fixed-frequency visual
stimulus. The target stimuli can be identified by detecting the dominant frequency of
SSVEP. Based on its high applicability, simplicity, and high accuracy, BCI adopting SSVEP
is conducive to the selection of threat targets in the process of automatic driving. However,
it is easy to cause fatigue by long visual flicker.

With the maturity of eye-tracking technology and the continuous improvement of
human requirements for interaction comfort, interaction based on eye-tracking has attracted
more and more attention. In contrast to EEG, interaction based on eye-tracking is more
natural, which can further reduce fatigue. In addition, eye-tracking interaction learning is
inexpensive, and most users can operate it without special training [12]. However, there are
still some drawbacks to eye-tracking. Some eye movements are not guided by volitional
attention. If the system does not distinguish between these eye movements, it is likely to
misunderstand human intentions and cause false triggering, which is called the “Midas
Touch” problem [13]. In addition, eye-tracking technology is not completely reliable. In
addition, some random instability factors can cause system errors. Several eye-movement
interactions have been applied to text spelling [14] and robot control [15].

A hybrid BCI system is generally composed of one BCI and another system (which
might be another BCI) and can perform better than a conventional BCI [16]. Some
studies [17] adopt hybrid systems to recognize characters, combining EEG and EOG. In
addition, eye-tracking, which is a popular technology in the field of computer vision, has
been gradually adopted to combine with BCI to control games [18], robotic arms [19], and
drones [20].

At present, the significant improvement of computer information fusion capability is
constantly promoting the development of automatic driving. Autonomous driving is grad-
ually moving from specific scenarios (such as highways, experimental parks) to complex
urban traffic. Urban traffic conditions are relatively complex, with many dynamic pedes-
trian targets and variable trajectories. In such a complex road situation, the environment
perception approach based on computer vision technology cannot predict a threatening
pedestrian target quickly and accurately. Driver intention is integrated into the vehicle’s
environment perception through BCI, which can help to improve the comfort and safety
of driving.

In this work, a multi-modal hybrid BCI combining SSVEP with eye-tracking is pro-
posed for the selection of potentially threatening pedestrians. The arrows in different
directions are randomly superimposed on pedestrian targets. SSVEP is evoked by the
stimuli of the corresponding frequency while subjects scan the threatening pedestrian
target according to the direction of arrows. I-VT filter is applied to process eye-movement
tracks, and canonical correlation analysis (CCA) is adopted to detect EEG signals. The
combination of eye-tracking and EEG can not only be used to distinguish between working
and idle states, but also shorten target selection time and improve accuracy. The experi-
mental results of six subjects show that the proposed hybrid asynchronous BCI system of
eye-tracking and SSVEP achieves better performance compared with a single SSVEP-BCI,
with an average selection time of 1.33 s, an average selection accuracy of 95.83%, and an
average information transfer rate of 67.50 bits/min.

The remainder of this paper is presented as follows: Section 2 introduces a hybrid
BCI system, target detection and tracking, graphical stimuli interface, participants, signal
acquisition and preprocessing. Section 3 presents the process of experiments, evaluation
metrics, and the results of experiments. Section 4 is the discussion of the hybrid BCI system,
and Section 5 summarizes the main work of this paper.

2. Materials and Methods

Figure 1 shows the overall framework for threatening pedestrian identification. Yolov5
is introduced to detect pedestrian targets, and DeepSORT is used to track pedestrians.
SSVEP stimuli of different frequencies are superimposed on the obtained pedestrian coor-
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dinates. Subjects scan pedestrians according to the direction of superimposed arrowhead
stimuli. The three decisions effectively reduce the false positives and improve the reliability
of threatening pedestrian identification.

Electronics 2022, 11, 3171  3  of  12 
 

 

2. Materials and Methods 

Figure  1  shows  the  overall  framework  for  threatening  pedestrian  identification. 

Yolov5 is introduced to detect pedestrian targets, and DeepSORT is used to track pedes‐

trians. SSVEP stimuli of different frequencies are superimposed on the obtained pedes‐

trian coordinates. Subjects scan pedestrians according to the direction of superimposed 

arrowhead stimuli. The three decisions effectively reduce the false positives and improve 

the reliability of threatening pedestrian identification. 

 

Figure 1. Hybrid asynchronous BCI system for dynamic pedestrian detection. 

2.1. System Description 

The purpose of this study is to evaluate the performance of a multi‐modal BCI that 

combines eye‐tracking and SSVEP for pedestrian tracking and selection. First, the ZED2 

camera  collects  real‐time  video  of  driving  foreground  road  conditions  and  performs 

multi‐target detection and tracking. The coordinates and IDs of the pedestrians are trans‐

mitted  to  the  remote computer  through  the LAN. Second,  flashing arrows of different 

stimuli appear on the targets after receiving data, and follow their movements. The arrows 

point to a random distribution. After calibrating the eye tracker, participants gaze at the 

stimulation interface. The eye tracker and the EEG acquisition instrument begin to collect 

the corresponding signals at the same time. The flow of online signal processing is shown 

Figure 1. Hybrid asynchronous BCI system for dynamic pedestrian detection.

2.1. System Description

The purpose of this study is to evaluate the performance of a multi-modal BCI that
combines eye-tracking and SSVEP for pedestrian tracking and selection. First, the ZED2
camera collects real-time video of driving foreground road conditions and performs multi-
target detection and tracking. The coordinates and IDs of the pedestrians are transmitted
to the remote computer through the LAN. Second, flashing arrows of different stimuli
appear on the targets after receiving data, and follow their movements. The arrows
point to a random distribution. After calibrating the eye tracker, participants gaze at the
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stimulation interface. The eye tracker and the EEG acquisition instrument begin to collect
the corresponding signals at the same time. The flow of online signal processing is shown
in Figure 1. The sampling frequency of the eye tracker is 60 Hz. In the processing of
eye-movement data, I-VT filter is introduced to process visual trajectories. Decision I:
When the confidence of the trajectory change over 60 consecutive sampling points exceeds
70%, the result {r1, r2 . . . } of eye-tracking is output. In the processing of EEG signals, the
canonical correlation analysis (CCA) algorithm performs feature extraction on 1000 ms of
EEG data and outputs the maximum correlation coefficient (ρ). Decision II: Output the
result {s1} of EEG selection when ρ exceeds the pre-set threshold. Decision III: Output
selection target when {r1, r2 . . . } ∩ {s1} 6= ∅. Otherwise, no result output is considered an
idle state. Slide the window forward 200 ms to acquire eye-tracking data and EEG data for
the next 1 s and process until the target result is output.

2.2. Target Detection and Tracking

Detecting and tracking pedestrians in the driving environment can reduce the cogni-
tive load of drivers to a certain extent, and assist the vehicle intelligence system in making
decisions, which plays a very important role in improving the safety of intelligent vehicles,
and is a hot research topic in intelligent driving and computer vision.

In recent years, with the development of big data and the improvement of computer
performance, deep learning has been widely applied in the field of computer vision and
has achieved good performance. As a representative target-detection algorithm at the
present stage, YOLO algorithms have excellent performance in both detection speed and
accuracy, which can achieve end-to-end training. YOLO takes the whole image as the
input of the network, and directly outputs the coordinates and IDs of the objects after
inference. Compared with other algorithms, yolov5s [21] has higher detection accuracy,
faster detection speed, and lower consumption of computation, which can better meet the
real-time requirements and be easier to apply in the actual systems. However, detecting
the position of pedestrians is not enough. Each object must be tracked before being chosen.

Pedestrian detection determines the position and ID of the object in a particular frame,
and pedestrian tracking locks the target in consecutive frames. Most application scenarios
involve the tracking of multi-targets. DeepSORT [22] extracts the appearance characteristics
of targets, and adopts recursive Kalman filtering and frame-by-frame correlation [23] to
match the trajectory of multi-objects, which can effectively reduce the number of target IDs
transitions. In this study, we use yolov5 and DeepSORT to process the driving foreground
video, which realizes multi-object detection and tracking accurately and quickly, and
obtains the position coordinates and IDs of pedestrians in real time.

2.3. Graphical Stimuli Interface

According to the object positions and IDs obtained by the object-detection and tracking
module, flicker stimuli of different frequencies are superimposed on each pedestrian in
Figure 2, and participants can achieve their selection by staring at stimuli. The length of
arrows that flash alternately in black and white is 60 pixels. The frequency list is set to meet a
variable number of pedestrians. Studies [24] have shown that a frequency band of 8~15 Hz
can induce a relatively strong SSVEP response. Moreover, each frequency should satisfy
that there is no overlap between the fundamental frequency and the frequency doubling.
The interval between frequencies is set as large as possible to ensure the distinguishability
of signals. Considering the above factors, the frequency list is set to 6.10 Hz, 8.18 Hz,
15.87 Hz, 12.85 Hz, 10.50 Hz, 8.97 Hz, 13.78 Hz, 9.98 Hz, 11.23 Hz, 7.08 Hz, 14.99 Hz, and
11.88 Hz. The frequencies of the superimposed stimuli are sequentially selected from the
frequency list according to the coding order of each pedestrian ID. During the experiment,
participants find the threatening target and follow his movement until the flicker of the
target stack stops and turn yellow.
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Figure 2. Stimuli presentation interface of hybrid BCI system on trial 6 of a block. (a) Arrows
in different directions are randomly superimposed on pedestrians according to the frequency list
corresponding to the ID order; (b) Subjects select the threatening object, and the arrow stops flashing
and turns yellow.

2.4. Participants

Six healthy subjects (22–25 years; four men, two women) with an average age of
23.2 years were recruited from the campus and participated in the study. No one was left-
handed. In addition, each subject reported no history of any psychiatric deficits. Following
the Declaration of Helsinki, all subjects signed a letter of commitment after receiving a
detailed description of the procedure.

2.5. Signal Acquisition and Processing

As shown in Figure 3, the eye-movement data were collected by Tobii Pro Nano at a
frequency of 60 Hz and an operating distance of 80 cm. Subjects were required to calibrate
their eye trackers before participating in experiments. An LCD screen (LEGION Y27gq-25,
1920 × 1080 pixels) was used to present stimuli with a refresh rate of 240 Hz.
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A 64-channel extended international 10/20 system was used to record the EEG signals
in this experiment. Figure 4 shows the placement of 9 electrodes for EEG collection, which
were placed in Pz, PO7, PO3, POz, PO4, PO8, O1, Oz and O2. The reference electrode
was placed behind the right ear, and the ground electrode was placed on the forehead.
Before data acquisition with BrainAmp DC amplifier (Brain Products GmbH, Germany),
the impedance of each electrode was reduced to less than 10 kΩ. The sampling frequency
was 200 Hz and was filtered by a 4–35 Hz bandpass and notch at 50 Hz. BCI2000 [25]
served as the control platform to collect EEG signals, the PyGame [26], a Python expansion
package, presented the stimuli interface, and MATLAB was responsible for real-time signal
processing. The display interface and the control platform were connected through the
TCP/IP protocol.
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placed on the forehead.

Canonical correlation analysis (CCA) [27] was applied to extract features of prepro-
cessed EEG signals, which fuses multi-channel data and identifies the target by calculating
the correlation coefficient between multi-channel EEG signal and stimuli frequency. The
target was the option corresponding to the maximum SSVEP response score. Periodic
stimuli were represented as square-wave periodic signals that could be decomposed into
Fourier harmonic series:

Yf (t) =



sin(2π f t)
cos(2π f t)

sin(2π ∗ 2 f t)
cos(2π ∗ 2 f t)

· · ·
sin(2π ∗ N f t)
cos(2π ∗ N f t)


, t =

1
S

,
2
S

, · · · ,
L
S
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where N is the number of harmonics, t is the current time, L is the number of sampling
points of the original signals, and S is the sampling rate of EEG. CCA is a multivariate
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statistical analysis method, which calculates the maximum correlation coefficient (ρ) of the
linear combination of variables (x = XTWx, y = YTWy) in two data sets (X, Y), to reflect the
correlation of the two groups of signals. The calculation formula for ρ is as follows:

ρ(x, y) = maxωx ,ωy

E
[
xTy

]√
E[xTx]E[yTy]

= maxωx ,ωy

E
[
ωT

x XYTω
]

y√
E[ωT

x XXTωx]E
[
ωT

y YYTωy

] , (2)

The velocity threshold recognition (I-VT) filter is a popular speed-based eye-tracking
method [28], which realizes the classification of eye tracks by analyzing the speed of eye
movement. As shown in Formula (3), the eye-movement velocity can be obtained by the
ratio of the distance between the two sampling points to the corresponding sampling time.
Speed is commonly expressed in visual degrees per second (◦/s). When the speed is higher
than the set threshold, the sample associated with the speed is determined to be a saccade,
and below the threshold is fixation.

vx =
x2 − x1

t2 − t1
, vy =

y2 − y1

t2 − t1
, (3)

where vx represents the velocity in the x direction, vy represents the velocity in the y
direction, and (x1, y1) is the coordinate of the eyeball’s position at the moment of t1.
Similarly, (x2, y2) is the coordinate of the eyeball position at t2 moment.

3. Results
3.1. Evaluation Metrics

The performance of hybrid BCI selection is evaluated by accuracy and information
transfer rate (ITR). In addition, ITR is calculated as follows (bits per minute):

ITR =

(
log2 N + P log2 P + (1− P) log2

(
1−P
N−1

))
∗ 60

T
, (4)

T = ts + tb, (5)

where N represents the total number of targets, P is the target selection accuracy, and T
represents the time of target selection, including the stimuli flicker time of the target (ts) and
flicker interval time (tb). It can be seen that the ITR is not only related to the classification
accuracy, but also related to the number of selected targets.

3.2. Performance of the Offline Experiment

The threshold is set for the output of the SSVEP to distinguish between idle and
working states in online experiments. If the maximum correlation coefficient is higher than
the threshold, it is considered to be the working state; otherwise, it is considered to be the
idle state. The goal is that the results are not output when the subjects are not staring at
the target. In one trial of the offline experiment, participants tend to select threatening
pedestrians by staring at flickering stimuli blocks according to cues. Each trial consists
of an interval time of 2 s and a stimuli time of 4 s. Each participant participates in the
experiment with 2 blocks, and each block contains 10 trials. After a block, participants are
given a 5-min break.

Since the SSVEP responses of the participants are individually different, a specific
threshold is set for each participant. Ten correct choices of each subject in the offline
experiment are randomly selected to calculate the SSVEP response score, and the minimum
value is taken as the threshold. As shown in Figure 5, the SSVEP response scores of S5 in
10 correct selection tasks are 0.6387, 0.5647, 0.7696, 0.7065, 0.5630, 0.6896, 0.7323, 0.5981,
0.4541, and 0.6721, respectively. In addition, the minimum response score (0.45) is set as the
threshold for Subject 5. The SSVEP response scores of the 6 subjects in the random correct
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selection tasks for ten times are shown in Table 1, and the statistical thresholds are 0.56,
0.62, 0.51, 0.47, 0.45, and 0.39, respectively.
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Figure 5. The SSVEP response scores of S5 for selecting correctly for 10 trials. Multi-colored lines
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Table 1. SSVEP response threshold of 6 subjects.

Subject S1 S2 S3 S4 S5 S6

Threshold 0.56 0.62 0.51 0.47 0.45 0.39

3.3. Performance of Asynchronous Online Experiment

Thresholds obtained from offline experiments are used for online experiments. In the
online experiment, the subjects choose threatening pedestrians according to their subjective
cognition instead of prompts. There is no time limit for the subjects to complete the
experiment. The system continuously outputs control commands to realize the relative real-
time selection of threatening pedestrians. The other settings are the same as those for offline
experiments. EEG collection and eye-tracking acquisition are performed simultaneously. At
the beginning of the experiment, the subjects saccade the stimuli according to the direction
of arrows until the color of the stimuli flicker turns yellow and lasts for 0.5 s. If there is a
result output, the subjects proceed to the next trial.

Figure 6 shows the change in sight of the subject scanning arrows in the hybrid BCI
system. In the one-second time window of the selected target, one of the coordinates of the
saccade points remains basically unchanged, and the absolute value of the other coordinate
change is about equal to the length of the arrows (60 pixels).

SSVEP-BCI is introduced to verify the effectiveness and availability of the hybrid BCI
structure. In Table 2, several evaluation metrics such as the accuracy, target selection time,
and ITR are shown to evaluate the performance of two models in which six subjects select
dynamic threatening pedestrians. Hybrid BCI achieves a higher selection accuracy (95.83%),
shorter selection time (1.33 s), and higher ITR (67.5 bits/min). Compared to SSVEP-BCI,
the selection time is shortened by 0.69 s, the accuracy is improved by 5%, and the ITR is
increased by 25.2 bits/min. Subject 2 performs perfectly in both SSVEP-BCI and hybrid BCI,
with a selection accuracy of 100%. It is worth mentioning that Subject 2 selects threatening
pedestrians within 1 s, and the ITR reaches 92.88 bits/min in hybrid BCI. Subject 5 performs
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poorly in SSVEP-BCI with an accuracy of 80% and an ITR of 25.71 bits/min. By combining
eye tracks with EEG data, the accuracy of target selection is significantly improved to
90% and the selection time is shortened from 2.3 s to 1.6 s. These results show that in the
hybrid SSVEP architecture, the selection time and accuracy of subjects selecting dynamic
threatening pedestrians meet the requirements of online experimental tasks. The advantage
of hybrid BCI lies in the addition of eye tracks, which effectively avoids the wrong results
caused by inattention. At the same time, the multi-modal fusion of eye movements and
EEG enables subjects to make choices in a shorter time. The single eye-tracking system is
not stable, and the phenomenon of “Midas Touch” often occurs. In actual traffic scenarios,
the wrong choice of threatening targets will lead to traffic accidents caused by the inaccurate
operation of self-driving vehicles. The stability and robustness of the hybrid BCI can ensure
that the drivers can make the judgment and choose the threatening targets quickly and
accurately in assisted driving.
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Table 2. Results of asynchronous online selection of threatening pedestrians by SSVEP-BCI and
hybrid BCI.

Subject
SSVEP Hybrid

Mean Time (s) Accuracy (%) ITR (bits/min) Mean Time (s) Accuracy (%) ITR (bits/min)

S1 1.9 + 0.5 95 48.39 1.2 + 0.5 95 68.31
S2 1.8 + 0.5 100 60.57 1.0 + 0.5 100 92.88
S3 2.0 + 0.5 95 46.45 1.3 + 0.5 100 77.39
S4 1.9 + 0.5 90 41.32 1.4 + 0.5 95 61.12
S5 2.3 + 0.5 80 25.71 1.6 + 0.5 90 47.23
S6 2.2 + 0.5 85 31.38 1.5 + 0.5 95 58.07

Mean 2.02 + 0.5 90.83 42.30 1.33 + 0.5 95.83 67.50
Std 0.18 6.72 11.43 0.20 3.44 14.62

4. Discussion

In complex road environments, pedestrians have a great impact on the safety of vehicle
driving. The threat to driving safety is usually only a few pedestrians with special locations
or trajectories. However, they significantly interfere with the driving route, and even
directly determine whether the vehicle can pass safely. Therefore, marking potential threats
from many pedestrian targets and feedbacking the location information of these pedestrians
to the computer can help vehicles make safer decisions in subsequent control.

This paper proposes a hybrid BCI paradigm for threatening pedestrian selection based
on object detection and tracking. The object-detection and tracking method based on deep
learning obtains the coordinates and IDs of pedestrian targets, providing initial information
for hybrid BCI. This study takes the traffic scenes as the background and combines com-
puter vision with hybrid BCI, aiming at the judgment of dynamic threatening pedestrians.
Participants need to judge and select pedestrians who pose a threat to driving safety ac-
cording to their own subjective experience. Six subjects participated in offline experiments
and asynchronous online experiments. The thresholds determined by offline experiments
are used to distinguish between the working and idle states of the online experiments. In
asynchronous online experiments, the average selection time is 1.33 s, average accuracy
reaches 95.83%, and an average ITR reaches 67.5 bits/min. These results show that hybrid
BCI has great application potential in dynamic threatening pedestrian selection.

5. Conclusions

This paper designs a hybrid BCI that combines eye-tracking and EEG for threatening
pedestrian recognition in the driving environment. The experimental results of six subjects
show that hybrid BCI achieves better performance compared with a single SSVEP-BCI, with
an average selection time of 1.33 s, an average selection accuracy of 95.83%, and an average
information transfer rate (ITR) of 67.50 bits/min. The three proposed decisions filter out the
results with low confidence, which effectively improves the selection accuracy of hybrid
BCI. The driver’s understanding of the environment is fed back to the machine, and human–
machine collaborative driving is realized to a certain extent. Compared with methods that
rely solely on computer vision, this method has more advanced environmental semantic
understanding ability and is safer and more reliable in driving. The system has been
verified online in several specific experimental scenarios, but its applicability needs to be
further enhanced in scenarios where multiple threatening pedestrians exist or threatening
pedestrians suddenly appear. In future work, we will develop more rapid and accurate
signal-processing methods to analyze SSVEP, and combine Bayesian probability to decide
on threatening pedestrians in different scenarios.
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