
Citation: Khanum, A.; Lee, C.-Y.;

Yang, C.-S. Deep-Learning-Based

Network for Lane Following

in Autonomous Vehicles. Electronics

2022, 11, 3084. https://doi.org/

10.3390/electronics11193084

Academic Editor: Felipe Jiménez

Received: 29 July 2022

Accepted: 23 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Deep-Learning-Based Network for Lane Following
in Autonomous Vehicles
Abida Khanum 1, Chao-Yang Lee 2,* and Chu-Sing Yang 1

1 Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road,
Tainan City 701, Taiwan

2 Department of Aeronautical Engineering, National Formosa University, No. 64, Wunhua Rd.,
Huwei Township, Yunlin Country 632, Taiwan

* Correspondence: chaoyang@nfu.edu.tw

Abstract: The research field of autonomous self-driving vehicles has recently become increasingly
popular. In addition, motion-planning technology is essential for autonomous vehicles because
it mitigates the prevailing on-road obstacles. Herein, a deep-learning-network-based architecture
that was integrated with VGG16 and the gated recurrent unit (GRU) was applied for lane-following
on roads. The normalized input image was fed to the three-layer VGG16 output layer as a pattern and
the GRU output layer as the last layer. Next, the processed data were fed to the two fully connected
layers, with a dropout layer added in between each layer. Afterward, to evaluate the deep-learning-
network-based model, the steering angle and speed from the control task were predicted as output
parameters. Experiments were conducted using the a dataset from the Udacity simulator and a
real dataset. The results show that the proposed framework remarkably predicted steering angles
in different directions. Furthermore, the proposed approach achieved higher mean square errors
of 0.0230 and 0.0936 and and inference times of 3–4 and 3 ms. We also implemented our proposed
framework on the NVIDIA Jetson embedded platform (Jetson Nano 4 GB) and compared it with
the GPU’s computational time. The results revealed that the embedded system took 45–46 s to execute
a single epoch in order to predict the steering angle. The results show that the proposed framework
generates fruitful and accurate motion planning for lane-following in autonomous driving.

Keywords: deep learning; gated recurrent units; VGG16; lane following; decision making

1. Introduction

Recently, self-driving autonomous cars and vehicles have become a new research
field within the field of artificial intelligence, and this is expected to evolve soon. Self-
driving technology is expected to significantly impact the automotive industry, and it
ensures safe driving practices by automatically controlling vehicles. Thus, it reduces
road accidents and economic damage and is a safer alternative to human drivers. An
autonomous vehicle (AV) is a driverless car or one with non-human communication.
Autonomous driving has six different levels: zero, little, half, conditional, high, and full
automation (Figure 1). Li et al. [1] presented an active traffic lane management method
for intelligent connected vehicles for optimal urban driving. The performance could be
optimized to improve the traffic capacity in urban areas, lane management, and traffic
congestion on freeways. Simmons et al. [2] presented a lane-following model based on a
DNN and CNN; the objective was to improve accuracy and loss. The method assigned
the information of the surrounding cars as the input and predicted the motion control
task. Wu et al. [3] developed a model that predicted and analyzed heavy traffic conditions
using LSTM. They evaluated their proposal using the publicly available NGSIM US-101
to improve the performance in terms of the root mean square error (RMSE).
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Figure 1. Six levels of AVs: Monitoring by a human driver (Top) comprising three subparts—no
automation, driver assistance, and half automation—and an automated driving system (Bottom)
comprising three subparts—conditional, high, and full automation.

Regardless of the evolution of traditional autonomous driving systems, many limi-
tations still exist that prevent the development of full AVs. Herein, we introduce a deep-
learning-based method for lane following. The proposed approach is called the VGG–gated
recurrent unit (VGG-GRU). It is based on an understanding of the planning of the lane
following and the control of the steering angle with speed to continuously hold the au-
tonomous car in the middle of the path during a simulated driving situation and real
scenarios. The proposed VGG-GRU does not use any integrations of different models
to predict the steering angle with speed multiple controls, and it reduces the computation
times of different prediction controls, which can be predicted simultaneously in both real
and simulated scenarios. To calculate the improvement in the performance of VGG-GRU,
the loss, root means square error (RMSE), parameters, and inference time are used.

For human-like driving, Xia et al. [4] proposed the Human-Like Lane-Changing Inten-
tion Understanding Model (HLCIUM) to understand the lane changes made by vehicles
according to human perception. The proposed method was fed into the framework after
preprocessing using VGG16 transfer learning to extract information, and the remaining
part of the proposed method was based on the output of the VGG16 layer. The final
result of the output of the VGG16 transfer learning layer was used to connect the hidden
GRU layer, and the output of the GRU layer was connected with the full layer to calcu-
late the pattern. Finally, the decision-making control comprised the steering angle and
speed. Therefore, the model training and simulations were conducted by using tracks
on the Udacity platform and the real dataset of Lincoln’s car. An on-road stumbling
block was captured by three cameras—left, center, and right—and four attributes were
used: the steering angle, throttle, brake, and speed. The real dataset was captured with
a single camera, and four attributes were used: the steering angle, throttle, brake, and
speed. However, herein, we used raw images of environments as well as the steering angle
and speed to train the proposed framework. The images were sequentially fed into three
layers, with the VGG16 output layer as a pattern and the GRU output layer as the last
layer. Next, the processed data were fed to two fully connected layers, with a dropout
layer added between each layer. Afterward, to evaluate the deep-learning-network-based
model, the steering angle and speed were predicted from the control task as the output
for lane following during autonomous driving. The main purpose of the deep learning
network of an AV is to build an autonomous car with good lane following and to improve
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the performance metrics, such as the mean square error (MSE), root mean square error
(RMSE), inference time, and number of parameters, in comparison with those of other
deeper networks. To ensure the performance of autonomous driving, the computing time
of the deep learning algorithm was assessed so that the model in could be implemented
in real time. However, the proposed framework was run on an embedded system to test
the model in real time in order to achieve better performance in terms of the runtime
for a lower power consumption. Herein, we compare the runtime when using a GPU and
an embedded system. The execution predicted the runtime needed to calculate a single
epoch. The proposed VGG-GRU should be able to control the steering angle to maintain
the lane following of the AV in order to safely drive without crashing or leaving the road
(Figure 2).

Figure 2. Overview of the proposed framework.

The key contributions of this article are as follows:

1. A human-like decision-making motion planning approach (i.e., lane-following) that
uses the VGG16-GRU algorithm was proposed. We used a simulated driving dataset
and a real dataset to test our proposed method.

2. An analysis of the result of the proposed VGG16-GRU model was carried out with two
processing networks—an embedded system and a GPU—in order to analyze the power
consumption.

3. We compared the VGG16-GRU framework proposed herein with other proposed
networks to demonstrate its better performance.
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4. A detailed analysis of the results is provided in terms of four performance measures:
MSE, RMSE, time, and the number of parameters.

The remainder of the study is as follows: Section 2 addresses the background of the study.
Next, Section 3 details the methodology, and Section 4 describes the simulation and experimental
results. Finally, Section 5 concludes and presents directions for future research.

2. Related Work

In the field of self-driving vehicles, most existing studies focused on decision making
in motion planning based on controlling the vehicle without leaving the road. However,
this research reviews many algorithms in order to achieve better accuracy and reduce
the time for the improvement of autonomous driving performance. Larsson et al. [5]
presented a study on the prosocial analysis of multiple AVs using a predictive optimization
algorithm. They evaluated the algorithm on both low- and high-quality traffic simulators,
thereby improving the performance in terms of efficiency and safety. Wang et al. [6] used
a feed-forward neural network and GRU for a deep-neural-network-based car-following
model in order to improve the performance in terms of accuracy using the NGSIM (Next-
Generation Simulation) dataset. Table 1 shows the critical ideas of existing studies, their
methods, and the models that they proposed in the area of AVs.

Table 1. Table summarizing the existing studies in terms of their datasets, critical ideas, and methods
for comparison with the proposed framework.

Ref. Dataset Critical Idea Method

[7] Udacity
To improve control

accuracy of the
steering angle

CNN+LSTM+FC

[8] TORCS

Multi-state model
for performing

higher-precision lane
keeping

3DCNN-LSTM

[9] Real data

Motion prediction
method for multilane

turns at an
intersection

LSTM-RNN

[10] TuSimple

Lane detection by
using multiple frames

with a hybrid
architecture

CNN-RNN

[11] Comma.ai AV control based
on visual attention CNN-RNN

[12] Simulator

DRL method used
for obstacle

avoidance in an
urban environment

DQN

[13] NGSIM
Human-like decisions

in lane change
maneuvers

LSTM-CRF

[14] Lyft
Deep-learning-based
trajectory prediction

for AVs
Resnet Model

Proposed Simulator & Real

Deep-learning
network for lane

following with testing
in an embedding

system

VGG-GRU

Sokipriala et al. [15] proposed a deep-transfer-learning method for the reduction of
training time, improvement of accuracy, and estimation of the control command steering.
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Their study integrated VGG16 and long short-term memory (LSTM), where VGG16 ex-
tracted features from the real-world Udacity dataset, and these were fed into the LSTM
network to predict the steering angle in real time. Kortli et al. [16] approached real-
time lane position perception with a CNN (convolutional neural network) as an encoder–
decoder and LSTM trained on different dynamic and complex road states from a pub-
lic dataset. Their results showed better performances, with a recall of 97.54% and F1-
score of 97.42%. Chen et al. [17] presented motion planning with fuzzy logic for an AV
using a reinforcement learning algorithm, namely, deep Q-learning. Different motion
tasks (e.g., with the steering wheel and accelerator) had better performance and safety
than that attained with other approaches. Hao et al. [18] presented a multimodal multi-
task learning software and hardware codesign as a differentiable optimization problem
to improve the performance and reduce power consumption. Azam et al. [19] proposed
a neural-network-based controller using a path-tracking method for the controller (e.g.,
path tracking, longitudinal control, and behavioral cloning). The objective was to make
valid predictions and show better scores for the performance metrics. Curiel et al. [20]
proposed a method of estimating the steering angle of AVs based on a CNN architecture.
They used datasets of real vehicles, which included the steering wheel, throttle, and brake
in images. The results of their study revealed a low-cost and high-performance autonomous
vehicle. Sumanth et al. [21] proposed a novel framework based on transfer learning with
the VGG16 architecture. In their study, the sensor information was fed to VGG16 for learn-
ing and to predict the steering angle. Lee et al. [22] developed a system combining path
prediction with a convolutional neural network (PP-CNN) in order to evaluate the real-time
performance for a lane change. Li et al. [23] introduced an intention inference method
based on LSTM and GRU with the aim of achieving a better inference than those attained
with existing approaches. Zhou et al. [24] proposed a multitask framework for detect-
ing objects and lanes using an embedded system to improve the runtime performance
in autonomous driving. Hu et al. [25] presented a deep cascaded neural network method
that integrated VGG and long short-term memory to predict multiple control tasks, such
as steering, braking, and accelerating.

3. Methodology

This section presents the architecture, which integrates three different patterns—namely,
the VGG16, the GRU, and fully connected layers—to predict the steering angle by using
deep learning methods. Initially, different networks were considered, including VGG16
and the GRU. For the feature extraction, we used VGG16, which is shown in Figure 3b,
as the initial method, the output of which is fed to the GRU to extract further information
from the image data. Then, the last fully connected layer outputs the predicted steering
angle (e.g., Ld, Cd, Rd) with the speed for the motion planning control tasks. Yadav et al.
[26] introduced a pretraining method in order to predict the steering angle and achieved
better results. Jiang et al. [27] introduced an end-to-end learning-network-based model
with the VGG16 for transfer learning, which was integrated with the LSTM framework to ex-
tract information for predicting the output. The model showed better performance in terms
of accuracy in less training time. Anwar et al. [28] focused on a transfer-learning-based
method to reduce the computational training size of a deep neural network for autonomous
navigation. Zheng et al. [29] demonstrated that a transferable learning feature reduces
the global position separation between different networks by using a deep neural network
(DNN), such as Faster R-CNN or YOLOV2.

A gated recurrent unit (GRU) is a type of recurrent neural network (RNN) that was
presented by Cho et al. [30] in 2014. It consists of two gates, as shown in Figure 3c: the reset
gate Rt and the update Zt units; there is a state candidate hidden layer, and the current cell
is denoted by H̃t. The equations of the GRU for controlling the mechanism of each gate are
as follows:

Rt = σ(Wrst−1 + Urxt + br). (1)

Zt = σ(Wzst−1 + Uzxt + bz). (2)
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H̃t = Φ(W(rt ◦ st−1) + Wxt + b). (3)

Ht = Zt ◦ st−1 + (1− zt) ◦ H̃t. (4)

where Wz, Wr, and W denote the weight matrices and Uz, Ur, and U are the previous time’s
weight matrices. In addition, bz, br, and b are biases and σ denotes the sigmoid.

3.1. Overview of the Proposed System

The proposed framework was used in a self-driving vehicle system for lane-following
decision making in order to control the steering direction (e.g., left turn (LT), right turn (RT),
and lane keeping (Lk)) with speed. The overall framework is divided into six parts: the
input, transfer layer (VGG), dense layer, GRU, fully connected layer, and control direction
(Figure 3a).

Figure 3. Overall proposed framework: (a) three parts: input, the proposed model (VGG-GRU),
and the control of the steering angle and speed. (b) The overview of the simple VGG16 (GRU).
(c) The structure of the gated recurrent units (GRUs).

3.1.1. Input Layer

Herein, Udacity and real self-driving vehicles were used to gather the datasets.
The Udacity dataset was captured with three directional cameras (left, center, and right)
with four variables, namely, the steering, throttle, brake, and speed. The Udacity dataset
contained the data for both tracks. The Lincoln self-driving car dataset was captured from a
single-direction camera with four variables, namely, steering, throttle, brake, and speed.
The samples were split with a ratio of 80:20 (Table 2). The actual resolution of the images was
160× 260× 3 dpi. The stored datasets were processed before training the proposed frame-
work. During the preprocessing step, the original images were cropped to remove extra
parts, such as trees, the sea, and the sky. However, the resized input shape was 80× 80× 3,
and this was used as the input for the framework. RGB is not the best mapping for visual
perception. However, the YUV color space is better for coding and reduces the bandwidth
in comparison with RGB, as shown in Figure 4, which shows both the Lack dataset and the
Mountain dataset. The real image format was in BGR, so we converted them into RGB and
cropped the extra parts. The resized shape was 80× 80× 3, and this was used as the input
for the proposed model.
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Figure 4. The YUV format of images from two datasets: the Mountain dataset (left) and the Lack
dataset (right).

Table 2. Descriptions of the Udacity dataset and the real dataset.

Data Samples Training Testing Size

Lack 25,162 20,129 5033 1.2 GB
Mountain 18,366 14,692 3674 512.4 MB

Real 10,011 8008 2003 7.8 GB
Spilt 100 80 20 -

Every image was matched with the steering angle, which was normalized in the range
of −1.5 to 1.5, where −1.5, 1.5, and 0 fell to the left, right, and center, respectively; these are
expressed in Equation (5) for the steering angle:

Direction =


Le f t angle, i f x < 0

center angle, i f x = 0

Right angle, i f x > 0.

(5)

Herein, the trained model used the raw image input to predict the output with a VGG-GRU
network to keep a lane-following AV on the road. The training dataset contained the input images
and the labeled output of the steering direction to keep the vehicle on its path. The image data
were fed into the framework after preprocessing with the method for extracting information,
which is denoted by I. The remainder of the proposed method is based on the VGG16-GRU and
the control of the steering direction. The input layer I is expressed in Equation (6).

Iv = I1, I2, I3, · · · , In (6)

3.1.2. Proposed System

A diagram of the proposed system for controlling the steering angle and speed of au-
tonomous driving was planned. The VGG16 architecture comprised two layers, with conv
use, 33 kernels, and 22 strides. The depth of the first layer was 24, 32, 48, and then the last
convolutional layers comprised a 3× 3 kernel, and 1× 1 strides each. The depth of each
last layer was 64 or 128. Afterward, it was integrated with two GRU layers, and a fully
connected was the last layer of the framework. The output was the control of tasks such
as the steering angle and speed.

The image data were fed into framework after preprocessing with VGG16 transfer
learning for the extraction of information, which is denoted by Iv, and the remaining part
of the proposed method was based on the output of the VGG16 layer, which is denoted by
Vo and is expressed in Equation (7).

V0 = V1, V2, V3 · · ·Vn. (7)

The features extracted from the previous continuous input, which are represented
by Vo and l(g), were used. Then, the last output of the network (represented by g(o)) was
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connected to the FC layer (represented by l(o)) and then to the output layer (0t); the outputs
of these layers were the steering angle and speed.

3.1.3. Output

The final output (FC) to D = d1, d2, d3 · · · dn was used to compute the control tasks
of the pattern. The outputs were treated as the decision to keep the vehicle in its lane.
However, the particulars of each GRU included the individual input gate, reset gate, update
gate, and output gate, The sequence layer contained two GRUs that connected the steering
angle and speed with the FC layers. Next, the control tasks were predicted. The process
of the proposed architecture is expressed as:

D(output) : d(LTs, RTs, S) (8)

where D represents the final outputs of the proposed architecture.
With the VGG-GRU framework, the learning method for the steering angle and speed

for the prediction of decisions is summarized in Algorithm 1.

Algorithm 1: Steering direction with speed control with VGG-GRU
Input: I = I1, I2, I3, · · · , In
Output: Do = LTs, RTs, S

Start ()
Define parameters of Vgg-GRU;
Given direction LTs, RTs and speed
Spilt data into Training and Test TRd, TEd
For I in TRd
TRd, TEd VGG-GRU with I
Fit data into VGG-GRU network
VGG-GRU (Load-framework)

Execute
compute the function← VGG-GRU
MAE← VGG-GRU
Runtime← VGG-GRU
Accuracy← VGG-GRU
End

4. Results

Here, the results of the presented VGG16-GRU framework were analyzed on an Intel
Core i5-4440 CPU with 16 GB of RAM, Jetson Nano, and an NVIDIA GTX 2080Ti. The exper-
iment was executed on a Jupyter notebook in TensorFlow, TensorFlow-GPU, Anacondaand
Keras. For the analysis of the proposed framework, some metrics were used to evaluate
the performance of the models, including the MSE, RMSE, number of parameters, and
runtime. The execution runtime was computed with a single epoch and the total running
time. However, we also compared the runtime and power of the proposed framework
on a GPU and Jetson Nano to find the runtime for a prediction in a single epoch.

4.1. Simulation Framework

This section presents the experiment conducted with the proposed model.
A self-driving environment was used to examine an autonomous self-driving car at a nor-
mal speed. The Udacity simulator [31] is an open-source driving environment platform
used for self-driving vehicles. The graphics settings can be changed according to the user:
a screen resolution of 1600× 1200 was chosen and graphics quality was set to “fantastic”
This platform has two modes and two simulator tracks for driving a car in an environment:
the training mode and the autonomous mode. Screenshots of both tracks (the Lack track
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and the Mountain track) are shown in Figure 5a,d. The Lack track is a simple, not-too-curvy
track, and it is easier for cars to drive on it. The Mountain track is more complex and
has sharper turns than in a village track. We tested our proposed model on both tracks.
The training mode gave an option to drive the vehicle in the simulator, and the dataset
was recorded, as shown in Figure 5b,e. The simulator showed a red circular sign at the top
right of the screen when recording the dataset, and a folder was created, which contained
an image folder and a CSV file. An on-road stumbling block was captured by three cameras.
The image folder contained the three images (left, right, and center) for every captured
frame.

Figure 5. The Lack track has three scenarios: (a) Lack track environment; (b) data recording screen;
(c) autonomous mode. The Mountain track has three scenarios: (d) Mountain track environment;
(e) data recording screen; (f) autonomous mode.

The autonomous mode could be used to test the proposed model to see if it could
auto-drive on both tracks while using decision making to keep the autonomous vehicle
in the lane without human interaction and while driving safely, as shown in Figure 5c,f.
The speed was 30 km/h during the test of the proposed model in the autonomous mode
for both tracks. Figure 6 shows the real dataset of the Lincoln self-driving car samples
in different scenarios in the daytime.

Figure 6. The real dataset of the Lincoln self-driving car.

4.2. Analysis of the System

Our proposed VGG-GRU framework controlled the predicted steering angle in terms
of LT, RT, and LK. Evidently, our proposed framework achieved better performance in terms
of the MSE, RMSE, number of parameters, runtime, and total computational time compared
with the results of other related works. The batch size and dropout layers were used
for overfitting. Adam was selected as the optimizer, and the rectified linear unit (ReLU)
was used as the activation function. Moreover, the experimental results of the trained
system’s loss (MAE), RMSE, and the number of parameters of the simulation for both tracks
and the real dataset are shown in Table 3. The proposed model had mean square error
(MSE) losses of 0.0230, 0.0520, and 0.0936, respectively. In addition, the RSME values were
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0.154, 0.300, and 0.3120 respectively. The proposed model achieved better performance
in predicting the steering angle (LT and RT) and speed.

Table 3. Performance analysis of the proposed framework in terms of MSE, RMSE, and number
of parameters.

Data Direction MSE RMSE Parameters

Simulator Lack LTs 0.0230 0.154 14,927,759
RTs 0.0230 0.154 149,27,759

Speed 0.0233 0.0454 14,927,759

Simulator
Mountain LTs 0.0520 0.300 15,183,909

RTs 0.0525 0.331 15,183,909
Speed 0.0885 0.0400 15,183,909

Real data LTs 0.0936 0.3120 14,929,229
RTs 0.0931 0.3038 14,929,229

Speed 0.0932 0.3039 14,929,229

Herein, the running time was analyzed to calculate two terms: the inference times
for a single epoch and the overall proposed architecture. The proposed framework gave
a better performance in terms of runtime (Table 4) for a single epoch; the values were 3–4
and 3 ms for both datasets in the simulator and the real dataset respectively.

Table 4. Experimental results for the proposed model in terms of inference times and the total time
for model execution.

Data Direction Inference Times Parameters

Lack LTs 3 ms 14,927,759
RTs 3 ms 14,927,759

Speed 4 ms 14,927,759

Mountain LTs 3 ms 15,183,909
RTs 4 ms 15,183,909

Speed 3 ms 15,183,909

Real-data LTs 3 ms 14,929,229
RTs 3 ms 14,929,229

Speed 3 ms 14,929,229

For the framework without the proposed VGG-GRU, the performance in terms of MSE,
RMSE, the number of parameters, and computation time is shown in Table 5; for a single
epoch, the times taken were 3–4 and 3 ms for the simulated and real datasets, respectively.

Table 5. Experimental results without the proposed model in terms of MSE, RMSE, parameters, and
inference time for model execution.

Data Model MSE RMSE Parameters Inference
Time

Lack VGG16 0.1068 0.8180 14,925,159 11 ms

Mountain VGG16 0.1211 0.7356 14,925,159 11 ms

Real-data VGG16 0.2479 0.6791 15,802,541 10 ms

Figure 7 summarizes the performance of the proposed model in terms of the MSE
(loss). The results show that the proposed framework performed better on both tracks.
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The main goal of this paper is the achievement of better results in lane following on road
paths.

Figure 7. Loss metrics: (Top left) steering angle and (Top right) speed. Loss metrics: (Bottom right)
steering angle and (Bottom left) speed.

Figure 8 shows the proposed model’s MSE (loss) performance on the real data.
The results show that the proposed framework performed better with the Lincoln self-
driving car. The main goal of this paper is the achievement of better results in lane following
on road paths.

Figure 8. Loss metrics: (left) steering angle and (right) speed on the real dataset.

Table 6 compares the proposed VGG-GRU framework with related models for con-
trolling the steering angle by using our dataset. Evidently, the proposed framework had
better performance in terms of MSE, RMSE, the number of parameters, and inference time
compared with models from other studies. Table 6 shows that our proposed model gave a
better performance compared to the performance of models from previous studies.
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Table 6. Comparison of the proposed framework with existing frameworks in terms of data, RMSE,
inference time, and MSE.

Ref. Data/Control RMSE Inference Time MSE

[32] Udacity 0.4690 8ms 0.01597
[27] Udacity 0.3597 6 ms 0.1113

Our LTs 0.0154 3 ms 0.0230
Our RTs Udacity Lack 0.0154 3 ms 0.0230
Speed 0.0454 4 ms 0.0233

Our LTs 0.300 3 ms 0.0520
Our RTs U-Mountain 0.331 4 ms 0.0520
Speed 0.0400 3 ms 0.0520

Our LTs 0.3120 3 ms 0.0936
Our RTs Real data 0.3038 3 ms 0.0931
Speed 0.3039 3 ms 0.0932

4.3. Embedded System

Using an implementation on the NVIDIA Jetson 4 GB embedded platform, we showed
that our proposed framework can achieve the best performance in terms of computation
time when using the behavioral characteristics of a vehicle, such as LT and RT of the steering
angle. Table 7 shows the overall performance of the proposed framework when used with
an embedded system (Jetson Nano 4 GB) and the GPU, indicating an excellent real-time
prediction of the steering angle and speed.

Table 7. Comparison of the performances of our proposed framework when used with an embedded
system and the GPU in terms of the runtime for a single epoch and accuracy.

Simulator Direction Accuracy GPU Jetson Nano Parameters

Lack LTs 90% 25 s 46 s 14,927,759
RTs 89% 25 s 46 s 14,927,759

Speed 90% 24 s 46 s 14,927,759

Mountain LTs 89% 23 s 45 s 15,183,909
RTs 89% 23 s 46 s 15,183,909

Speed 88% 23 s 46 s 15,183,909

We estimated the execution time for a training and prediction for a single epoch with
the embedded platform. The power consumption of the Jetson Nano is less than that of
a GPU when using the same model.

5. Conclusions

Autonomous self-driving vehicle technology ensures safe driving and automatic con-
trol of the motion of a vehicle. The proposed approach is called the VGG–gated recurrent
unit (VGG-GRU). It is based on an understanding of the lane-following planning and control
of the steering angle with the speed to continuously keep an autonomous car in the middle
of a path during simulated driving situations and real scenarios. In the proposed approach,
we utilized a widely adopted deep-learning-network-based architecture, which integrates
the VGG-16 and the gated recurrent unit (GRU) for lane following on the road. The ex-
perimental results show that the proposed framework predicts steering angles in different
directions excellently. The proposed approach (VGG-GRU) achieved higher MSEs of 0.0230
and 0.0932 and better inference times of 3–4 and 3 ms for both the real and simulated scenar-
ios. We also implemented our proposed framework on an embedded system (Jetson Nano
4 GB) and compared its computation time with that when the framework was implemented
on a GPU. The results showed that the embedded system took almost 45–46 s to execute
a single epoch in order to predict the steering angle.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
GRU Gated recurrent unit
AVs Autonomous vehicle
LSTM Long short-term memory
RNN Recurrent neural network
FC Fully connected
LT Left turn
RT Right turn
LK Lane keeping
ReLU Rectified linear unit
MSE Mean square error
RMSE Root mean square root
RNN Recurrent neural network
DNN Deep neural network
HLCIUM Human-Like Lane-Changing Intention Understanding Model
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