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Abstract: In order to improve the safety and reliability of the hypersonic flight vehicle, a sliding
mode observer-based fault detection scheme is applied in this paper to handle the actuator fault
detection issue, including stuck fault detection and PLOE fault detection. A dynamic linear model
with uncertainty is first derived from the original nonlinear hypersonic flight vehicle model by using
Taylor’s linearization approach at the equilibrium point. Secondly, the actuator fault model, reflecting
stuck faults and PLOE faults, is constructed. Then, a sliding mode-based fault detection observer,
considering system decomposition, is developed based on the linearized hypersonic flight vehicle
model. At last, the designed sliding mode observer is applied to the original nonlinear hypersonic
flight vehicle for single-input, single-style actuator fault detection. The simulation results show that
stuck faults and big proportion PLOE faults can be timely and accurately detected at the fault time,
and the stuck actuator fault from input 3 can cause a deadly impact to the hypersonic flight vehicle,
which deserves much more attention than the actuator faults from the other three inputs. Meanwhile,
the detection of a small proportion of PLOE faults encounters some difficulties and needs special
attention and further investigation.

Keywords: hypersonic vehicle; sliding mode observer; actuator fault; fault detection

1. Introduction

Much attention has been attracted in both military and civilian hypersonic vehicle
(HSV) fields over the last several decades [1,2]. In contrast with ordinary aircrafts, hyper-
sonic vehicles are confronted with more complicated circumstances, such as fast speeds,
large payloads, complicated external disturbances and complex environments [3,4]. Based
on the fact that tiny, unexpected changes to the hypersonic vehicles may lead to huge flight
disasters, the safety and reliability of HSVs have been the focus of numerous researchers.
Many effective control methods, including classical and advanced control approaches, have
been developed to guarantee the stability of fault-free HSVs [5], such as PID control [6,7],
back-stepping control [8,9], sliding mode control [10,11], adaptive control [12,13], predictive
control [14,15], etc. However, the above control methods may lose effectiveness, to a large
extent, when faults happen in the HSV system. Therefore, fault detection has received
significant attention to effectively increase the reliability of the HSV system [16,17].

Model-based fault detection and diagnosis problems have been developed for over
30 years and successfully applied to different fields for system stability and reliability.
Model-based extended Kalman filters (EKFs) were used for actuator fault detection of
unmanned underwater vehicles [18] and aerial vehicles [19]. Multi-model adaptive esti-
mation methods for actuator fault detection of unmanned aerial vehicles was proposed
and simulated in the work of Ducard et al. [20]. Furthermore, an adaptive fault detection
observer [21] and a sliding mode observer [22] were designed for actuator fault detection
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of near-space vehicles. In the work of Lv et al., the Total Measurable Fault Information
Residual (ToMFIR), deriving from an unknown input Kalman filter, was employed for
actuator fault detection of a hypersonic flight vehicle [5]. Despite this, there is a lack of
relative actuator fault detection works on HSV systems, especially in recent years. To this
end, actuator fault detection issues for a new HSV system are the focus of our recent work.
Thanks to the sliding mode observer’s superior robustness to unknown external uncer-
tainties and nonlinearities [23], it has been widely developed and applied in model-based
fault detection fields since its appearance [24,25]. Shen et al. proposed a fault detection
method based on a sliding mode observer for a hypersonic vehicle with sensor faults [26].
Alaei et al. applied a new robust H∞ sliding mode observer for state estimation and fault
reconstruction of a nonlinear, uncertain boiler system [27]. A sliding mode-based nonlinear
fault integrated detector is proposed in the work of Hu et al. for sensor fault detection [28].
To date, there are few studies on actuator fault detection using a sliding mode observer in
the HSV system with uncertainty and actuator faults that are carried out.

In addition, as is well known, there are multiple HSV fault styles due to the com-
plexities of the HSV system. Different fault styles mean different generation mechanisms
that can cause different impacts on the HSV performance. Therefore, in practice, the HSV
faults cannot be simply described as single form, which is generally assumed in previous
studies. Moreover, although the sliding mode observer has been successfully applied in
fault detection fields, how to employ the sliding mode observer to different fault models
in the HSV system is still an issue not yet fully resolved in the sliding mode fields. In
this paper, we focus on two different actuator fault models, that is, stuck faults and PLOE
faults. A general sliding mode observer for the attitude control system of the HSV with
uncertainties and actuator faults is designed for actuator fault detection. A simulation is
conducted to validate the effectiveness of the designed sliding mode observer. The results
show that the observer in this paper can achieve effective detection and diagnosis for
different actuator faults of the HSV.

The rest of this paper is organized as follows: Section 2 states the original nonlinear
and linearized HSV model with actuator faults; Section 3 presents the designed sliding
mode observer, including its stability and sliding motion reachability proofs; Section 4
implements actuator fault detection simulations on the original nonlinear HSV model to
illustrate the effectiveness of the sliding mode observer; and Section 5 gives conclusions
and future work directions about the fault detection of the HSV system.

2. Problem Formulation
2.1. Hypersonic Flight Vehicle Model

In this paper, we introduce a new HSV model. The original nonlinear dynamic equation
of the model is expressed, as follows, with system states: x =

[
ωx ωy ωz α β γv

]T.

.
ωx =

Mx+(Jzz−Jyy)ωyωz
Jxx

.
ωy =

My+(Jxx−Jzz)ωxωz
Jyy

.
ωz =

Mz+(Jyy−Jxx)ωxωy
Jzz

.
α = ωz + tan β(ωy sin α−ωx cos α)− Y−G cos γv

mV cos β

.
β = ωx sin α + ωy cos α + Z+G sin γv

mV
.
γv =

ωx cos α−ωy sin α
cos β + Y tan β−G tan β cos γv

mV

(1)

In the above described system equations, the states ωx, ωy, ωz, α, β and γv represent
the angular rates of rolling, the angular rates of yawing, the angular rates of pitching,
the attack angle, the sideslip angle and the velocity inclination, respectively. Meanwhile,
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the elements of the control input u = δc =
[
δ1 δ2 δ3 δ4

]T denote the right body flap,
left body flap, right rudder and left rudder, which do not appear explicitly in the system
equations. The forces G, X, Y and Z and the moments Mx, My and Mz are expressed as:

G = mg0(
r0

r0+H )
2

X = 1
2 ρV2SCx

Y = 1
2 ρV2SCy

Z = 1
2 ρV2SCz

Mx = 1
2 ρV2SLmx

My = 1
2 ρV2SLmy

Mz =
1
2 ρV2SLmz

(2)

With:
Cx = C0

x + CMa
x Ma + CMa2

x Ma2 + Cα
x α + Cα2

x α2

+ Cαδ1
x αδ1 + Cαδ2

x αδ2 + Cδ3
x δ3 + Cδ4

x δ4

Cy = C0
y + CMa

y Ma + CMa2
y Ma2 + CMaα

y Maα + Cα
y α

+ Cα2
y α2 + Cδ1

y δ1 + Cδ2
y δ2 + Cδ3

y δ3 + Cδ4
y δ4

Cz = CMaβ
z Maβ + Cαβ

z αβ + Cβ
z β + Cδ1

z δ1 + Cδ2
z δ2

+ Cαδ3
z αδ3 + Cαδ4

z αδ4

mx = CMaβ
mx Maβ + Caβ

mx αβ + Cβ
mx β + Cδ3

mx δ3 + Cδ4
mx δ4

my = Caβ
my αβ + Cβ

my β + Cδ1
my δ1 + Cδ2

my δ2 + Cαδ3
my αδ3

+ Cαδ4
my αδ4

mz = C0
mz + CMa

mz Ma + CMaα
mz Maα + Cα

mz α + CMaδ1
mz Maδ1

+ CMaδ2
mz Maδ2 + Cαδ4

mz αδ4 + Cαδ2
mz αδ2

(3)

The parameter implications of the model are detailed in Table 1 for a better explanation
of the nonlinear HSV model.

Table 1. Parameter Implication of the HSV model.

Symbol Implication Symbol Implication

m vehicle mass X resistance
H altitude Y lift

S reference area for dynamic
coefficient Z lateral force

L reference length for
aerodynamic coefficients Mx rolling moment

r0 earth radius My pitching moment
ρ0 mean air density Mz yaw moment
g0 acceleration owing to gravity δ1 right body flap
Ma Mach number δ2 left body flap
γv velocity inclination δ3 right rudder
α attack angle δ4 left rudder
β sideslip angle

Jxx rolling moment of inertia
Jyy yaw moment of inertia
Jzz pitch moment of inertia
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In this paper, the original nonlinear HSV model is linearized by using Taylor’s lin-
earization approach at the equilibrium point for a further fault detection analysis, and the
original nonlinear model with uncertainties can be rewritten as:

.
x(t) = Ax(t) + Bu(t) + Dη(t, x, u)
y(t) = Cx(t)

(4)

where A ∈ <n×n, B ∈ <n×m, C ∈ <p×n and D ∈ <n×h are known matrices and the signal
η(t, x, u) ∈ <h represents the uncertainties in the system including unmodeled dynamics,
external disturbances and parametric uncertainties.

Remark 1. It needs to be pointed out that what we focused on in this paper is the attitude control
system of a hypersonic vehicle under the condition of cruise flight. The model of the hypersonic vehicle
has high requirements for the response speed of the attitude control system. After a comprehensive
analysis, under the condition of cruise flight, the linearized model of the attitude control system has
enough of a stability margin. Therefore, the linearized model can satisfactorily be applied for further
study under the condition of cruise flight.

2.2. Actuator Fault Model

In this paper, the actuator fault model of the HSV system is formulated as follows:

u = λuc + f (5)

where λ = diag{λ1, λ2, . . . , λm} (m is the input dimension) is the unknown constant matrix
to be determined, which denotes the extent of the PLOE faults; f =

[
f1 f2 . . . fm

]T is
the stuck fault representing the stuck fault; uc is the commanded control input for system
stability.

Different fault cases can be represented by choosing different values of λ and f . Two
typical fault cases investigated in this paper are described in the next subsections.

2.2.1. Stuck Fault

When δi (i = 1, 2 . . . , m) is stuck, the corresponding fault model can be described as
follows: 

ui = λiuc,i + fi
λi = 0
fi = fs,i

(6)

where fs,i denotes the stuck value of δi (i = 1, 2 . . . , m).

2.2.2. PLOE Faults

When the response of the control input cannot be out-and-out, the PLOE faults occur.
The PLOE fault model is described as follows:

ui = λiuc,i + fi
λi = λp,i
fi = 0

(7)

where λp,i ∈ (0, 1) represents the effective ratio of the ith control input (i = 1, 2 . . . , m).
Obviously, the system works normally when λp,i = 1 and fs,i = 0 (i = 1, 2 . . . , m).

2.3. Dynamic System Model with Actuator Faults

Based on the aforementioned fault description, we obtained the following HSV system
with actuator faults from the linearized dynamic system:

.
x(t) = Ax(t) + Bλuc(t) + B f (t) + Dη(t, x, uc)
y(t) = Cx(t)

(8)
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where A ∈ <n×n, B ∈ <n×m, C ∈ <p×n and D ∈ <n×h are known matrices (n > p ≥ h);
x(t) ∈ <n is the state variables; uc(t) ∈ <m is the commanded control input by LQR control;
λ = diag(λ1, . . . , λm) represents the extent of the PLOE faults; f (t) ∈ <m is the matrix of
the stuck faults; y(t) ∈ <p is the corresponding measurable output of the system; and the
signal η(t, x, uc) ∈ <h represents the uncertainty in the system.

By defining g(t) = (λ− I)uc(t) + f (t), which reflects the relevant actuator faults, then
Equation (8) can be rewritten as follows:

.
x(t) = Ax(t) + Buc(t) + Bg(t) + Dη(t, x, uc)
y(t) = Cx(t)

(9)

To realize the SMO design, several assumptions are considered in this paper [24,29].

Assumption 1. The matrices B and C are full rank and rank(CB) = rank(B);

Assumption 2. (A, B, C) are stale, which means:

rank
[

SI − A B
C 0

]
= n + m

Assumption 3. η(t, x, u) is bounded with ‖η(t, x, u)‖ ≤ κ for all t, where κ is a positive scalar;

Assumption 4. g(t) ∈ <m is the bounded fault function to be estimated with ‖g(t)‖ ≤ τ(t, u).

Remark 2. It needs to be noted that Assumption 1 and 2 are the necessary and sufficient conditions
to guarantee the existence of the sliding motion, which has been proved in previous studies [24,29].

3. Sliding Mode Observer Realizations
3.1. Sliding Mode Observer Design

In this subsection, a classical sliding mode observer based on matrix transformation
for the linearized HSV model is designed for actuator fault detection as follows:

.
x̂(t) = Ax̂(t) + Buc(t) + L(y− ŷ) + Gv(y, ŷ)
ŷ(t) = Cx̂(t)

(10)

where x̂ and ŷ are the estimate of x and y, respectively; G ∈ <n×p is the SMO gain matrix.
The sliding mode discontinuous vector v is designed as follows:

v =

{
ρ(y, uc, t) P2ey

‖P2ey‖+σ
i f ey 6= 0

0 otherwise
(11)

where P2 is a symmetric positive-definite (SPD) matrix; σ is a small positive scalar; ρ(y, uc, t)
is a scalar function to be determined later; and ey is defined as ey(t) = y(t)− ŷ(t). Obvi-
ously, the realization of the observer design is to determine the parameter L, G, ρ(y, uc, t)
and P2. The flow chart of the proposed SMO on the attitude control system of the HSV is
illustrated in Figure 1.
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Under Assumptions 1 and 2, Equation (9) can be transformed into a concise structure
through a change of coordinates x → T1x as follows:

A = T1 AT−1
1 =

[
A11 A12
A21 A22

]
, B = T1B =

[
0

B2

]
, C = CT−1

1 =
[
0 Ip×p

]
, D = T1D =

[
D1
D2

]
where A11 ∈ <(n−p)×(n−p), A12 ∈ <(n−p)×p, A21 ∈ <p×(n−p), A22 ∈ <p×p, B2 ∈ <p×q,

D1 ∈ <(n−p)×h and D2 ∈ <p×h. B2 has the structure B2 =

[
0(p−q)×q

B0

]
, where rank(B0) = q.

3.2. Stability Analysis of the Designed SMO

Let the estimation error e(t) = x(t)− x̂(t). Thus, the following error system can be
obtained from Equations (9) and (10).

.
e(t) =

.
x(t)−

.
x̂(t) = (A− LC)e(t) + Dη + Bg(t)− Gv

ey(t) = y(t)− ŷ(t) = Ce(t)
(12)

Theorem 1. If appropriate matrices lv, P1 and P2 are determined to satisfy the following inequations,
the sliding motion can be proved asymptotically stable on the sliding surface.

Φ =

P1(A11 + L0 A21) + (A11 + L0 A21)
T P1 A21

T P2 P1(D1 + L0D2)

P2 A21 P2lv + lv
T P2 P2D2

(D1 + L0D2)
T P1 D2

T P 0

 < 0 (13)

P1, P2 > 0,
(

P2lv + lv
T P2

)
< 0 (14)

where lv is a stable SND matrix.

Proof. Considering a new coordinate transformation:

T2 =

[
In−p L0

0 Ip

]
where L0 is a matrix to be determined.
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Therefore, the matrices (A, B, D, C) in Equation (9) can be further transformed to be:

Ã = T2 AT−1
2 =

[
Ã11 Ã12
Ã21 Ã22

]
=

[
A11 + L0 A21 −(A11 + L0 A21)L0 + A12 + L0 A22

A21 −A21L0 + A22

]

B̃ = T2B =

[
0
B̃2

]
=

[
0

B2

]
, C̃ = CT−1

2 =
[
0 Ip×p

]
D̃ = T2D =

[
D̃1
D̃2

]
=

[
D1 + L0D2

D2

]

Let l =
[

l1
l2

]
= T2L = T2T1L and G = T1G =

[
−L0

Ip

]
, then :

G̃ = T2G = T2

[
−L0

Ip

]
=

[
0
Ip

]
Thus, the error system can be partitioned as:

.
e1(t) = Ã11e1(t) +

(
Ã12 − l1

)
e2(t) + D̃1η(t, x, uc)

.
e2(t) = Ã21e1(t) +

(
Ã22 − l2

)
e2(t) + D̃2η(t, x, uc) + B̃2g(t)− v

(15)

The following two Lyapunov function candidates are considered:

V1 = e1
T P1e1 (16)

V2 = e2
T P2e2 (17)

where P1 ∈ <(n−p)×(n−p) and P2 ∈ <p×p are SPD matrices.
The time derivative of the above Lyapunov functions is obtained as follows:

.
V1 =

.
e1

T(t)P1e1(t) + e1
T(t)P1

.
e1(t)

=
[
(A11 + L0 A21)e1(t) + (D1 + L0D2)η(t, x, uc)

]T P1e1(t)
+e1

T(t)P1
[
(A11 + L0 A21)e1(t) + (D1 + L0D2)η(t, x, uc)

]
= e1

T(t)[(A11 + L0 A21)
T P1 + P1(A11 + L0 A21)]e1(t)

+2e1
T(t)P1(D1 + L0D2)η(t, x, uc)

(18)

.
V2 =

.
e2

T(t)P2e2(t) + e2
T(t)P2

.
e2(t)

=
[
A21e1(t) + lve2(t) + D2η(t, x, uc) + B2g(t)− v

]T P2e2(t)
+e2

T(t)P2
[
A21e1(t) + lvey(t) + D2η(t, x, uc) + B2g(t)− B2v

]
= e2

T(t)(P2lv + lvT P2)e2(t) + 2e2
T(t)P2 A21e1(t)

+2e2
T(t)P2D2η(t, x, uc) + 2e2

T(t)P2B2g(t)− 2e2
T(t)P2v

(19)

Then, we can obtain the summation of the two derivatives:
.

V =
.

V1 +
.

V2

= e1
T(t)[(A11 + L0 A21)

T P1 + P1(A11 + L0 A21)]e1(t)
+2e1

T(t)P(D1 + L0D2)η(t, x, uc)− 2e2
T(t)P2v

+e2
T(t)(P2lv + lvT P2)e2(t) + 2e2

T(t)P2 A21e1(t)
+2e2

T(t)P2D2η(t, x, uc) + 2e2
T(t)P2B2g(t)

(20)

Substituting Equation (11) into the above equation, the following inequality is ob-
tained:

2e2
T(t)P2B2g(t)− 2e2

T(t)P2v ≤ 2‖P2e2‖(‖B2‖τ − ρ(y, uc, t)) (21)
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Thus,
.

V can be rewritten as:

.
V ≤ e1

T(t)[(A11 + L0 A21)
T P1 + P1(A11 + L0 A21)]e1(t)− 2ρ0‖P2e2‖

+2e1
T(t)P(D1 + L0D2)η(t, x, uc) + 2e2

T(t)P2D2η(t, x, uc)
+e2

T(t)(P2lv + lvT P2)e2(t) + 2e2
T(t)P2 A21e1(t)

(22)

The inequation can be transformed to the following structure:

.
V ≤

e1
e2
η

T

Φ

e1
e2
η

− 2ρ0‖P2e2‖ (23)

where:

Φ =

P1(A11 + L0 A21) + (A11 + L0 A21)
T P1 A21

T P2 P1(D1 + L0D2)

P2 A21 P2lv + lv
T P2 P2D2

(D1 + L0D2)
T P1 D2

T P 0


Obviously, if the matrix Φ satisfies Φ < 0,

.
V < 0− 2ρ0‖P2e2‖ < −2ρ0‖P2e2‖.

Finally, the asymptotically stability of the designed SMO is proofed, and Φ < 0 is
a sufficient condition for it. Meanwhile, the SMO can exhibit excellent robustness to the
uncertainty signal η.

Proved. �

3.3. Reachability of the Sliding Motion

An appropriate value of ρ(y, uc, t) in Equation (11) can successfully drive the error
system to the sliding surface S in finite time, which can ensure the stability of the designed
SMO.

Theorem 2. If the parameter ρ in Equation (11) is chosen as follows, the sliding motion on
S = [e : Ce = 0] can be reached and remain on it.

ρ ≥ ‖A21‖Θ + ‖B2‖τ + ‖D2‖κ + ρ0 (24)

Proof. The Lyapunov function Equation (17) is considered here, and its derivative along
the trajectory is Equation (18). We can easily obtain the following inequality:

.
V2 ≤ e2

T(t)(P2lv + lv
T P2)e2(t) + 2‖P2e2‖(‖A21‖‖e1‖+ ‖D2‖κ + ‖B2‖τ − ρ) (25)

It is known that P2lv + lv
T P2 < 0; thus, the selection of the value of ρ plays a decisive

role on the sliding motion reachability. There exists an instant tl and a positive scalar Θ
such that ‖e1(t)‖ ≤ Θ, ∀t ≥ tl . Based on the above information, a proper ρ can be selected
by the inequation of ρ ≥ ‖A21‖Θ + ‖B2‖τ + ‖D2‖κ + ρ0; thus, the following inequality is
obtained: .

V2 ≤ −2ρ0‖P2e2‖, ∀t ≥ tl (26)

Proved. �
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4. Simulation Result

In this section, the SMO design method in Section 3 is applied to the linearized HSV
model to derive the SMO observer. The linearized system model with uncertainty is shown
as follows: .

x(t) = Ax(t) + Buc(t) + Bg(t) + Dη(t, x, uc)
y(t) = Cx(t)

(27)

where:

A =



5.000 1.000 0 0 −57.2098 1.000
1.000 2.000 0 3.7897 0 0.500

0 0 1.000 −0.0116 −0.594 0
0 1.000 0 −0.0183 0 0

0.1676 0 0.9859 0 −0.0029 0.0020
0.9859 0 −0.1676 0 −0.0005 0



B =



0 0 −24.1144 −42.0982
−26.8390 7.8990 0 0

0.0235 0.0135 −0.3168 −4.4629
−0.0116 −0.0016 0 0

0 0 −0.0501 −0.3009
0.0200 0.0300 0 0

, C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



D =



0
0
0

0.1
0
0

, η(t, x, uc) = 0.01 sin(t) and uc(t) = −kx(t).

The parameter k is determined by LQR control as follows:

k =


−0.8272 2.5867 7.9792 −55.2867 0.4948 184.6327
−1.5978 5.9769 16.8881 139.5611 −11.9185 733.3548
−7.7928 −0.0224 55.2191 0.4697 51.0559 −7.6711
−272.2053 0.1350 −137.5423 0.3875 −370.3044 −124.3171


Obviously, Assumptions 1–3 are satisfied. The transformation matrix T1 is computed

as follows:

T1 =



0.0352 0.4342 1.4120 −1.3215× 103 −25.8657 −185.4388
0.0053 0.4342 0.2120 −1.3231× 103 −3.8835 −184.9869

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


The transformed matrices are described as follows:

A =



0.1208 −0.1221 186.5527 −1.3206× 103 6.8459 23.7877
0.0147 −0.0159 182.5693 −1.3223× 103 27.3696 24.2492
2.6046 −2.6164 4.9222 1.0051 −3.1231 −19.8739

4.7772× 10−4 −0.0032 1 2.0012 0 0.2111
0.0259 −0.0260 −7.7463× 10−4 2.7487× 10−5 0.9689 −0.1382

0 0 0 1 0 −0.0183





Electronics 2022, 11, 3059 10 of 18

B =



0 0 0 0
0 0 0 0
0 0 −24.1144 −42.0982

−26.8390 7.8990 0 0
0.0235 0.0135 −0.3168 −4.4629
−0.0116 −0.0016 0 0

, C =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, D =



0.4342
0.4342

0
1
0
0


The sliding mode observer is designed as introduced in Section 3. The parameters

ρ and σ are chosen as ρ = 0.01 and σ = 0.001, respectively. The relative gains from the
observer representation, determined by solving Equation (13) and (14), are as follows:

lv =


−3.2523 −0.0019 −0.0274 0
−0.0019 −0.5000 0 0
−0.0274 0 −0.5003 0
−0.0040 −0.0094 −0.0008 −9.46× 103


L0 =

[
−0.3451 369.3912 1.4706× 10−7 1.3215× 103

0.2242 5.9882× 10−4 1.8286× 10−6 1.3231× 103

]

T2 =



1 0 −0.3451 369.3912 1.4706× 10−7 1.3215× 103

0 1 0.2242 5.9882× 10−4 1.8286× 10−6 1.3231× 103

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−0.0505 33.6227 0.0546 −0.2223
0.0035 −0.7035 0 7.1572



L =



8.1745 1.0070 −3.0957 −19.8739
1.0019 2.5012 1.8883× 10−5 0.2111
0.0266 4.6359× 10−5 1.4692 −0.1382
0.0040 1.0094 7.9173× 10−4 9.4600× 103

16.8053 41.7998 1.0937 4.0535
0.6467 6.2774 −0.1731 −0.2405


In the end, the sliding mode observer is successfully obtained, which is further applied

to the original nonlinear HSV system. The simulation of the observer without actuator
faults is carried out as illustrated in Figure 2, and the system is stabilized by LQR control.
The states wz and α had steady-state errors caused by the uncertain part η(t, x, uc). It is
obvious that the system states are successfully observed through the sliding mode observer.
In order to study the observer performance for separate actuator faults, single-input, single-
style actuator faults are considered in this section, whereas multi-input, multi-style actuator
fault combinations are left for further study.
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4.1. Simulation Results of Stuck Fault Detection

Considering the fact that the original nonlinear HSV system has been stabilized by
the LQR feedback control and all four inputs approach zero (see Figure 3), any small stuck
fault means huge challenges for the controlled HSV system. Therefore, the small stuck fault
value from four inputs is chosen as ui = 0.006 (i = 1, 2, 3, 4). Assume that the actuator stuck
faults occur at 5 s < t < 10 s . The actuator fault detection simulation results from four
inputs are illustrated in Figures 4–7, respectively. It is noted that system states exhibit a
sudden change at t = 5 s , and the actuator faults can be detected immediately. Meanwhile,
it is obvious that the designed SMO performs a robust state observation even when stuck
faults occur.

As illustrated in Figures 4 and 5, the stuck faults from input 1 and input 2 cannot be
obviously detected through the observation of the states wx and wy, but can be reflected
from the observation of the other four states independently. Therefore, the detection of
stuck faults from input 1 and 2 can be successfully achieved through the observation of the
states wz, α, β and γv.

For the stuck faults from inputs 3 and 4, a sudden change happened in each state
at t = 5 s , as shown in Figures 6 and 7. It is worth noting that the extent of the sudden
change brought by the stuck fault from input 3 is much more severe than those from the
other three, and exhibits no convergence tendency, which is detailed in Figure 8. Thus,
stuck actuator faults from input 3 may cause a deadly impact on the control of the HSV
system and should be paid more attention to avoid possible accidents. In general, the stuck
faults that occurred in the HSV model can be accurately and timely detected through the
designed sliding mode observer, and some stuck faults may result in severe HSV disasters.
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4.2. Simulation Results of PLOE Fault Detection

The stuck faults are reported to be well detected through the designed sliding mode
observer in the above subsection, whereas the PLOE fault detection encounters some diffi-
culties in this subsection. Four extents of PLOE faults are detected through the sliding mode
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observer, that is, 80%, 60%, 40% and 20% PLOE faults. As described in Section 2, the PLOE
faults are represented as ui = λiuc,i (i = 1, 2, 3, 4) and λi =20%, 40%, 60%, 80% denoted
80%, 60%, 40% and 20% PLOE faults, respectively. Because of similar simulation results
of the PLOE fault from the four independent inputs, the PLOE fault detection simulation
from input 2 is exhibited in this subsection as a representative. The detection simulation of
the abovementioned four PLOE faults from input 2 is illustrated in Figures 9–12, with the
faults occurring at 5 s < t < 10 s .
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Figure 12. Input 2’s 80% PLOE fault detection simulation.

Based on the fact that the system is stabilized by LQR feedback control when no faults
occur, the four inputs all converge to zero in finite time, as shown in Figure 3. Thus, the
value of inputs has become extremely small at the fault time. Moreover, closed-loop systems
have been known as robust systems for external disturbances, including faults [30,31]. Thus,
even though the PLOE faults occur, a small proportion of PLOE faults lead to tiny changes
to the system, which are hardly detected owing to both the tiny change value and the
existence of feedback control. From Figures 9–12, it is obviously found that the HSV system
exhibits basic stabilities when the PLOE faults occur. For example, under the 20% PLOE
fault from input 2 in Figure 9, only the state wz exhibits a sudden tiny change that lasts
an extremely short time, which is hardly detected, whereas the other five states have no
change. The amplitude of the state change at the fault time increases with the increase in
the PLOE proportion, which is obviously shown in Figures 9–12. In other words, the bigger
the proportion, the better the fault detection effectiveness. However, the disadvantage is
that the detection may miss a low proportion of PLOE faults.
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5. Conclusions and Future Work Direction
5.1. Conclusions

A sliding mode observer is considered in this paper to carry out single-input, single-
style actuator fault detection for a HSV model. The HSV model is first linearized at an
equilibrium point to develop the model-based fault detection observer. Then, the designed
sliding mode observer is applied to the original HSV system. Stuck faults with a value
of 0.006 at 5 s < t < 10 s from four inputs are added to the system separately. From the
simulation results, it is found that stuck faults can be immediately and successfully detected
through the sliding mode observer in spite of the existence of uncertainty. In particular,
all system states rapidly diverge from the fault moment under the stuck fault from input
3. Therefore, more attention should be paid to input 3 in order to avoid deadly impact on
the HSV system. For the PLOE faults, the sliding mode observer can successfully detect a
big proportion of PLOE faults, but it encounters some difficulties in a small proportion of
PLOE fault detections, which needs further investigation.

5.2. Future Work Direction

A sliding mode observer is applied to a HSV model for single-input, single-style
actuator fault detection in this paper. Most of the actuator faults can be well detected. There
still exists much work to follow:

1. For the possibility of misdetection of a small proportion of PLOE faults, the sliding
mode observer or another suitable observer needs to be further improved to solve the
misdetection problem;

2. The linear system for the observer design can be improved by a TS-fuzzy method to
approach the original nonlinear system for more precise detection;

3. After the actuator fault detection, further efforts, such as fault construction, should be
made to achieve fault tolerant control and guarantee the system’s stability.
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