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Abstract: Named entity recognition (NER) is one fundamental task in natural language processing,
which is usually viewed as a sequence labeling problem and typically addressed by neural conditional
random field (CRF) models, such as BiLSTM-CRF. Intuitively, the entity types contain rich semantic
information and the entity type sequence in a sentence can globally reflect the sentence-level semantics.
However, most previous works recognize named entities based on the feature representation of each
token in the input sentence, and the token-level features cannot capture the global-entity-type-
related semantic information in the sentence. In this paper, we propose a joint model to exploit
the global-type-related semantic information for NER. Concretely, we introduce a new auxiliary
task, namely sentence-level entity type sequence prediction (TSP), to supervise and constrain the
global feature representation learning process. Furthermore, a multitask learning method is used to
integrate the global-type-related semantic information into the NER model. Experiments on the four
datasets in different languages and domains show that our final model is highly effective, consistently
outperforming the BiLSTM-CRF baseline and leading to competitive results on all datasets.

Keywords: named entity recognition; type sequence prediction; multitask learning

1. Introduction

Named entity recognition (NER) aims to seek and identify named entities in unstruc-
tured text into predefined entity types, such as person names, organizations, locations, etc.
The extracted named entities can benefit various subsequent NLP tasks, including syntactic
parsing [1], question answering [2] and relation extraction [3].

NER is usually regarded as a sequence labeling problem [4]. Neural-based conditional
random fields (CRF) models, such as BiLSTM-CRF [5], have achieved state-of-the-art
performance [6,7]. In particular, based on the word embeddings, we can exploit a long
short-term memory network (LSTM) to capture implicit token-level global information,
which has been demonstrated to be effective for NER in previous studies [6,8].

However, the token-level features cannot capture the global-type-related semantic in-
formation in the sentence, and this problem may limit the capacity for semantic information
of the feature representation.

Intuitively, the entity types contain rich semantic information and the entity type
sequence in a sentence can reflect the sentence-level semantics globally. For instance, as
shown in Figure 1, the type sequence (PERSON, ORG, LOC) can express the semantic
information of the sentence. Determining whether a sentence contains a type sequence
should enable us to learn rich type-related information for the representation of the token.
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Al-Farouq set up the Wimbledon in the south of Jordan.
PERSON ORG LOC

Figure 1. A sample with annotated entity types.

Inspired by the end-to-end neural translation method [9], we propose a new end-to-
end entity type sequence prediction task (TSP) at the sentence level. The input of the task is
the sentence and the output is the entity type sequence in the sentence. To incorporate the
information learned from the TSP into the NER model, we employ a multitask learning
strategy. The architecture of the joint model is shown in Figure 2. For NER, we use the
standard BiLSTM-CRF model as a baseline [5], where the input could be either a word
embedding or Bidirectional Encoder Representations from Transformers (BERT). For the
TSP, an auxiliary task, we exploit the end-to-end translation model to generate possible type
sequences. The two tasks share the same word representation. We combine the encoder
representation of BiLSTM between NER and TSP as the final encoding representation for
the NER model. In essence, the TSP enhances the semantic feature representation of the
token and provides type constraint information for NER. Noticeably, the auxiliary TSP
task does not require any extra training data, thus there is no additional annotation cost to
achieve our final goal.
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Figure 2. Main architecture of the joint model. The left part is the NER module and the right part is
the TSP module. For NER, words tagged with O are outside of named entities and the B-XXX and
I-XXX tag refer to the beginning and inside of a named entity of type XXX, respectively.

We conduct experiments on the four benchmark datasets in different languages (En-
glish, Chinese and Spanish) and different domains (general and biomedical) to show the
effectiveness of our approach. Experimental results demonstrate our model is highly
effective, resulting in improvements and leading to state-of-the-art performance on the
CoNLL-2003 German NER and JNLPBA datasets without any extra cost. Furthermore,
our model can almost achieve the same energy efficiency and latency as the baseline on
embedded platforms. Our main contributions can be summarized as follows:

(1) We propose a multitask learning (MTL) approach for NER to exploit the global-
type-related semantic information.

(2) We introduce a new auxiliary task, namely the sentence-level entity type sequence
prediction (TSP), which enhances the semantic feature representation of tokens and pro-
vides type constraint information for NER.

(3) Experimental results demonstrate our MTL model is highly effective, resulting in
consistent improvements and leading to state-of-the-art results on the CoNLL-2003 German
NER and JNLPBA datasets without any external resource.
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2. Related Work
2.1. Neural NER

Early studies on NER often used the hidden Markov model (HMM), maximum entropy
Markov model (MEMM) and conditional random fields (CRF) [10] models based on manu-
ally crafted discrete features, which suffered from the feature sparse problem and required
heavy feature engineering. Recently, neural network models have been successfully applied
to sequence labeling [5,11–13]. Among these works, the model which uses BiLSTM for the
feature extraction and CRF for decoding has achieved state-of-the-art performances [6,7].

To overcome the issue that neural NER usually requires huge quantities of annotated
training data, a number of recent technologies have been proposed, such as pretrained em-
bedding [14], multitask learning [15,16], transfer learning [17], multimodal learning [18,19]
and knowledge distillation [20]. Multitask learning can leverage other annotation cor-
pora. Refs. [21,22] studied multitask learning of sequence labeling with language models.
Refs. [23,24] proposed multitask learning of NER with word segmentation. The method
in [25] utilized multitask learning of NER with several NLP tasks such as part-of-speech
(POS) tagging and parsing. Refs. [26,27] leveraged the performance of NER by multitask
learning of several tasks of biomedical NLP. Different from the above multitask models,
our model does not use external corpora and resources to enhance feature representation.

2.2. Type Constraints

The auxiliary task TSP can learn the type-related semantic information. In essence,
our joint model proposes a way to incorporate type constraints for NER. Type constraints
are a useful technique in natural language processing (NLP), and here we discuss related
work in the literature.

Type constraints have been widely used in NLP, especially for relation extraction and
event detection. They have confirmed the fact that the entity types of two entities are
important indicators for a specific relation. The authors of [28] explored fine-grained entity
type constraints for distantly relation extraction. Ref. [29] used a multitask transfer learning
method along with human guidance in the form of entity type constraints. The authors
of [30] proposed a novel switchable LSTM, which was able to detect unseen entities using
external knowledge. The authors of [31] explored how to use the glyph features of medical
fonts to identify Chinese medical entities. The authors of [32] proposed a hierarchical
modular event argument extraction model (HMEAE) based on hierarchical type correlation.
However, as we do not know the entity boundary and its type in advance, integrating the
type constraints into NER is a challenge. In NER, several recent studies proposed to exploit
useful visual multimodal information to augment textual information. Some researchers
have tried to use other auxiliary tasks to identify type patterns from examples. The authors
of [33] proposed a joint model for NER with sentence-level named type prediction, which
used an attention network to supervise the feature representation learning globally.

Our work is similar to [33] and both models employ other auxiliary tasks to capture
type-related feature using a multitask learning framework. Different from the method
in [33], which only predicts entity types, the auxiliary task in our work predicts the entity
type sequence which reflects the order of types appearing in a sentence and can better
represent the semantics of a sentence. In addition, we adopt a complex neural translation
network instead of the attention network, which may limit the learning ability of the model
in [33] due to a small number of parameters.

3. Methodology

In this section, we describe the proposed joint model in detail. Our model focuses
on two tasks, NER and TSP, where the TSP is the secondary task, and it is exploited as an
auxiliary for NER. First, we introduce the word representation used in our model, then we
describe the NER and TSP. Finally, we introduce the multitask learning, which combines
the NER and TSP by concatenating the hidden layer. Our final goal is to enhance the
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performance of NER via the TSP. Figure 2 shows the overall architecture, where the left
part is for NER and the right part is for the TSP.

3.1. Word Representation

For a given word sequence s = {w1 · · ·wn}, where wi is the ith word, the first step
was to obtain the word representations of each token. Here, we exploited two kinds of
word representations: embeddings and BERT.

Following [7], the embedding representation of one word was created by concatenating
its word embedding and its character embeddings, as follows:

xi = [ew(wi); xc
i ] (1)

where ew denotes a word embedding lookup table and xc
i denotes the character-level

embeddings. We used BiLSTM to encode character-level embeddings. Assuming wi =
{ci,1, . . . , ci,j, . . . , ci,mi} where ci,j denotes the jth character in the ith word (j ∈ [1, mi]),
each ci,j is represented using xc

i,j = ec{ci,j}, where ec denotes a character embedding
lookup table. The word-level output xc

i = BILSTM(xc
i,1 · · · xc

i,mi
) denotes the output of the

character-level encoding.
BERT has shown great potentials in NLP [14], which is one kind of contextualized

word representations. Thus, we also exploited BERT to enhance word representations. We
took the outputs of the last layer of a pretrained BERT model as word representations:

x′1 · · · x′n = BERT(w1 · · ·wn). (2)

Finally, we concatenated the BERT representations and the embedding representations
above together to obtain boosted word representations, xi = [ew(wi); xc

i ; x′i], as shown in
Figure 3.

Jordon

J n

BERT

  ∙∙∙ ∙∙∙    Jordon    ∙∙∙ ∙∙∙

  ∙∙∙ ∙∙∙   ∙∙∙ ∙∙∙
word⊕char⊕contextual

o d or

⊕

BiLSTM

  ∙∙∙   ∙∙∙ 

Figure 3. An example to illustrate our final word representation that concatenates its word embedding,
char-level representation and contextual BERT representation.

3.2. NER

We employed the BiLSTM-CRF baseline [5] as an NER model in this work. We
exploited a bidirectional LSTM network to capture high-level feature representations for
NER, which was widely used in previous work [5]. Concretely, the word embedding
sequence (x1, x2, . . . , xn) of each input was taken as the input to a BiLSTM network in each
step, then the output sequence of hidden states of the forward LSTM network and the
corresponding output sequence of the backward LSTM network were combined according
to the position to obtain the complete sequence of hidden states (h1 · · · hn):

h1 · · · hn = BILSTM(x1, · · · , xn) (3)

Finally, a standard CRF layer was used to score the candidate output sequences, which
could capture the dependencies between successive labels. Formally, we took the above
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sequence of hidden states (h1 · · · hn) as our input to the CRF layer, and its output was our
final prediction tag sequence ŷ = (ŷ1 · · · ŷn), which could be computed as follows:

oi = Whi

p(ŷs) =
e∑i oi [ŷi ]+T [ŷi ,ŷi−1]

∑y′ e
∑i oi [y′i ]+T [y′i ,y

′
i−1]

,
(4)

where y′ = y′1 · · · y′n is any one of the candidate outputs, W (emission matrix) and T
(transition matrix) are two model parameters of CRF and [·] indicates indexing.

The first-order Viterbi algorithm was used to find the highest scored label sequence
during decoding. To train the model, the cross-entropy objective function was exploited.
Assuming that the GOLD standard tag sequence for sentence s = w1 · · ·wn was y =
y1 · · · yn, the loss function for this single training instance was defined as:

Lner = − log p(gs), (5)

where all model parameters were optimized to minimize the loss in an online manner.

3.3. TSP

We followed the neural machine translation architecture proposed by [9], which was
constructed as a composite of an encoder network, an attention module and a decoder
network. The word representation (x1, . . . , xm) was shared with the NER model as the
input, and the output was a possible type sequence t = (t1, . . . , tn).

The encoder was also a bidirectional LSTM network that read the same input sequence
x = (x1, . . . , xm) as the NER model and calculated a forward sequence of hidden states and
a backward sequence. Then, we concatenated the forward and backward hidden states to
form a context set:

C = h
′
1 · · · h

′
n = BILSTM(x1, · · · , xn) (6)

Then, the decoder computed the conditional distribution over all possible type se-
quences based on this context set. This was done by first rewriting the conditional probabil-
ity of a predicted type sequence:

logp(tx) =
Kt

∑
k′=1

logp(tk′ t<k′ , x). (7)

For each conditional term in the summation, the decoder BiLSTM network updated its
hidden state by

ht
k′
= (et(tk′−1), ht

k′−1
, ck′ ), (8)

where is the activation function and et is the continuous embedding of a target entity type.
ck′ is a context vector computed by an attention mechanism:

ct′ = fatt(et(tk′−1), ht
k′−1

, C). (9)

The attention mechanism fatt weighted each vector in the context set C according to its
relevance to the entity type generated by the decoder. Note that the attention submodule
was self-supervised, and the query of attention was the previous generated type. The
weight of each vector h

′
k was computed by

αk,k′ =
1
Z

fscore(et(tk′−1), ht
k′−1

, h
′
t), (10)
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where fscore is a parametric function returning an unnormalized score for h
′
k given hk′−1,

tk′−1. We used a feedforward network with a single hidden layer in this paper. Z was a
normalization constant:

Z =
Tx

∑
t=1

fscore(et(tk′−1), ht
k′−1

, h
′
t). (11)

This procedure can be understood as computing the potential relationship between the k
′
th

target type and tth source word.
The hidden state hk′ , together with the previous target type tk′−1 and the context vector

c
′
k, was fed into a feedforward neural network to generate the conditional distribution:

p(tk′ t<k′ , x) ∝ e fout(et(tk′ −1
),h

k′
,c

k′
) (12)

For training, the model parameters were learned by minimizing the negative log-
likelihood, where the loss function for a single input sentence was defined as follows:

Ltsp(t) = −log(p(t, x)). (13)

3.4. Multitask Learning

In order to integrate the TSP task into our baseline model and create full interactions
between the NER and auxiliary TSP task at the same time, we used the multitask learning
method to integrate the type information into the NER model. We concatenated the hidden
embedding of the two tasks in the BiLSTM encoder layers and obtained basic feature inputs
for the decoding layer of the NER model.

For NER in the MTL model, we added a sequence of new features from the TSP task
to enhance NER. Concretely, we combined the newly obtained hidden word represen-
tations from the TSP encoder with the original BiLSTM outputs to get the final feature
representations for NER:

hjoint
i = [hi; h′i], (14)

where simple concatenations were adopted for the combination, and hjoint
i was used in our

final joint model for NER.
The multitask learning model had two kinds of losses and we combine them by a

dynamic weight λ as follows:

Ljoint = λ ∗ Lner + (1− λ) ∗ Ltsp (15)

where the λ is a hyperparameter assigned to control the degree of importance for each task.
In our tests, we only predicted named entities and did not execute the TSP task.

Therefore, there was only a very slight efficiency decrease during decoding compared with
the BiLSTM-CRF baseline.

4. Experiments
4.1. Datasets

We conducted experiments on four benchmark datasets involving two domains and
three languages to evaluate our model. The statistics of these datasets are described in
Table 1. Detailed descriptions of the datasets are given in the following.

• OntoNotes 5.0 (English) is an English NER dataset with 18 entity types (PERSON,
CARDINAL, LOC, PRODUCT, etc.), which consists of texts from the general do-
main [34]. We adopted the data splitting method in [35] to obtain the training, de-
velopment and testing sets (http://conll.cemantix.org/2012/data.html, accessed on
25 December 2019).

• CoNLL-2003 (German) is a German NER dataset with four entity types: LOCATION,
ORGANIZATION, PERSON and MISCELLANEOUS. We used the official splitting

http://conll.cemantix.org/2012/data.html
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method to divide the dataset into the training, development and testing sets (https:
//www.clips.uantwerpen.be/conll2003/ner/, accessed on 20 October 2021) [36].

• MSRA (Chinese) is a Chinese NER dataset in newswire domain [37], which includes
three entity types: LOCATION, ORGANIZATION and PERSON. We used the official
data splitting method to preprocess the dataset. During training, we randomly split
the official training set into training and development sets with the ratio 9:1.

• JNLPBA (medical) is a biomedical NER dataset in the English language, includ-
ing five entity types: PROTEIN, DNA, RNA, CELL_LINE and CELL_TYPE. We
adopted the same dataset splitting method as [38] to preprocess the dataset (http:
//www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004, accessed on
20 October 2021).

Table 1. Statistics of the datasets, where #type denotes the number of types, #sent denotes the
number of sentences and #entity denotes the number of entities.

Data Training Dev Testing

OntoNotes 5.0 #type 18 18 18

(English) #sent 59,924 8528 8262
#entity 81,828 11,066 11,257

CoNLL-2012 #type 4 4 4

(German) #sent 12,705 3068 3160
#entity 11,851 4833 3673

MSRA #type 3 - 3

(Chinese) #sent 46,400 - 4400
#entity 75,059 - 5334

JNLPBA #type 5 5 5

(medical) #sent 16,692 1854 3856
#entity 46,390 4911 8662

4.2. Evaluation Metrics

Standard precision (P), recall (R) and F1-score (F1) were used as the evaluation metrics
for named entity recognition. Note that as an auxiliary task, we do not report the perfor-
mance of the TSP task in the main results. All experiments were conducted 100 times with
random seeds sampled from 1 to 100 and the average performance outputs were used for
the result reporting and analysis. We converted the IOB boundary encoding to the BIOES
as previous work found this encoding resulted in improved performance [39].

4.3. Settings
4.3.1. Hyperparameters

The hyperparameters were tuned on the corresponding development sets. Specifically,
we selected the best hyperparameters by searching a combination of the hidden size, the
learning rate and λ from the following range: the hidden size from {100, 200, 400}, the
learning rate from {0.005, 0.010, 0.015, 0.020} and λ from {0.5, 0.6, 0.7, 0.8, 0.9}. The bold
parameters were selected as the hyperparameters in our experiments. We optimized our
models with a stochastic gradient descent (SGD) following [7]. We applied a dropout
rate of 0.5 to the embeddings and hidden states. The training procedure stopped when
the results of the next five validations were not better than the previous best record. The
other hyperparameter settings followed [7]. Table 2 shows all the hyperparameters used in
our experiments.

https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004
http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004
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Table 2. Hyperparameters.

Hyperparameters Value Hyperparameters Value

char emb size 30 dropout 0.5
char hidden 50 batch size 10
word emb size (English) 100 optimizer SGD
word emb size (Spanish) 300 momentum 0.9
word emb size (Chinese) 100 L2 regularization 1 × 10−8

word emb size (medical) 200 learning rate 0.015
word hidden 400 learning rate decay 0.05
CNN window 3 gradient clipping 5.0
word CNN layer 4 λ 0.8
number of attention heads 5

4.3.2. Word Representations

We exploited two kinds of word representations. (1) Embeddings: For the OntoNotes
5.0 datasets, the 100-dimensional GloVe embeddings (https://nlp.stanford.edu/projects/
glove/, accessed on 20 October 2021) [40] were used to initialize our word represen-
tation. For the CoNLL-2002 German dataset, we initialized the word embeddings us-
ing the 300-dimensional embeddings from Wikipedia2Vec (https://wikipedia2vec.github.
io/wikipedia2vec/pretrained/, accessed on 20 October 2021) [41]. For JNLPAB, the
200-dimension embeddings (https://github.com/cambridgeltl/BioNLP-2016, accessed
on 20 October 2021) from [42] were employed. For the MSRA dataset, we employed
the 300-dimensional glove embeddings (https://fasttext.cc/docs/en/crawl-vectors.html,
accessed on 20 October 2021). The word embeddings were fine-tuned during training.

(2) BERT was also exploited for a stronger baseline. For the OntoNotes 5.0 dataset, we
used the BERT base released by Google as inputs (https://github.com/google-research/
bert#pre-trained-models, accessed on 20 October 2021). For the German language, we
exploited the pretrained German BERT (https://github.com/deepset-ai/FARM, accessed
on 2021-10-20) as inputs. Furthermore, for the MSRA dataset, we used the pretrained
Chinese-BERT [43]. For the JNLPBA dataset, we used BioBERT (https://github.com/
dmis-lab/biobert/, accessed on 20 October 2021) [44]. In the BERT-based experiments,
we froze the parameters in BERT and fine-tuned the accompanying word embeddings
during training.

4.3.3. Implementation

The models were implemented using Pytorch 1.2.0. The number of model parameters
was 17.6 M. All the experiments were conducted using a single NVIDIA 1080Ti GPU and
Ubuntu 18.04. Furthermore, the training time on the OntoNotes 5.0, CoNLL-2003, MSRA
and JNLPBA datasets were 18 h, 4 h, 8 h and 6 h, respectively. We released all codes publicly
at https://github.com/qtxcm/JointNERwithTSP for research purpose under the Apache
License 2.0.

4.3.4. Baselines

Besides the BiLSTM-CRF baseline, we also took the joint model proposed by [33] as
another baseline to verify whether predicting type sequences was more effective than only
predicting types.

For the convenience of description, we abbreviate the two baselines as BaseNER,
BaseJoint, respectively, in the following experiments.

4.4. Development Experiments

We conducted development experiments with various model configurations in order
to select the best settings for the BaseNER and joint models without and with BERT.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://github.com/cambridgeltl/BioNLP-2016
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/google-research/bert#pre-trained-models
https://github.com/google-research/bert#pre-trained-models
https://github.com/deepset-ai/FARM
https://github.com/dmis-lab/biobert/
https://github.com/dmis-lab/biobert/
 https://github.com/qtxcm/JointNERwithTSP
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4.4.1. The Influence of Hyperparameters

We studied the sensitivity of hyperparameters of model, i.e., the learning rate, the
training epochs and the weights λ. All experiments were based on the development set of
OntoNotes 5.0 (English). In Figure 4a, we compare the validation F1-score of our model
against the BaseNER without and with BERT. We observed that the two models could
achieve their best score at the learning rate of 0.015, while our model had a higher F1-score
than the BaseNER when training with the same learning rate.

Figure 4b shows the F1-score curves for the BaseNER and joint models without and
with BERT against the number of training iterations. As can be seen from the figure, BERT
information was helpful for NER, improving the best development results on the BaseNER
and our joint model, respectively. In addition, our joint models performed better than the
BaseNER in all iterations.

As shown in Equation 15, λ was assigned to control the degree of importance for each
task. Figure 4c shows the F1-score curves of NER for the joint models without and with
BERT using different λ’s. We set λ to 0.8 according to the model performance.
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Figure 4. Comparisons between BaseNER and our method on the F1 sensitivity of the hyperparam-
eters. All results are generated based on OntoNotes 5.0 (English). (a) F1-score vs. Learning rate;
(b) F1-score vs. Training epochs; (c) F1-score vs. the Weight λ.

4.4.2. Development Results Against Baselines

Table 3 shows the development results. We observe that by adding the auxiliary tasks,
the performance of our joint model and the BaseJoint model was higher than that of the
BaseNER model on all four datasets. This shows that adding type constraints was effective
for named entity recognition. Compared to the BaseNER model, the BaseJoint model had
average F1-score improvements of 0.56% and 0.39% on word representations without and
with BERT, respectively, while our method achieved the highest F1-scores in all cases with
average improvements of 0.70% and 0.49%, respectively. This shows that our proposed
objective was effective in different classification tasks and different word representations.
On the other hand, our method achieved a better performance than the BaseJoint model
in all cases. This demonstrates that predicting type sequence should be able to capture
type-related features better than only predicting types.
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Table 3. The P, R and F1 of development sets on four datasets.

Model
OntoNotes 5.0 (English) CoNLL-2003 (German)

P R F1 P R F1

BaseNER 85.94 86.25 86.09 79.48 64.35 71.12
BaseJoint 85.78 87.58 86.67 79.45 65.57 71.85

Joint model 86.23 87.38 86.80 79.83 65.58 72.01

BaseNER + BERT 87.63 88.01 87.82 87.25 87.06 87.15
BaseJoint + BERT 88.34 88.21 88.27 88.47 86.96 87.71

Joint model + BERT 87.85 88.88 88.36 87.83 87.77 87.80

Model
MSRA(Chinese) JNLPBA(Medical)

P R F1 P R F1

BaseNER 90.92 88.17 89.52 79.56 77.31 78.42
BaseJoint 91.86 88.04 89.91 79.25 78.67 78.96

Joint model 91.03 88.94 89.97 80.20 78.13 79.15

BaseNER + BERT 93.98 94.37 94.17 81.06 79.44 80.24
BaseJoint + BERT 95.16 94.14 94.65 80.87 79.78 80.32

Joint model + BERT 94.18 95.23 94.70 81.13 79.84 80.48

4.5. Main Results

Tables 4–7 present the final results on the four benchmark test datasets when compar-
ing with the baselines and existing state-of-the-art models. Similar to the development set
results, the two auxiliary methods consistently improved the performance of the BaseNER
model, and our joint model achieved better performance than the BaseJoint model in all
cases. Specifically, by using BERT word representations, our final model obtained better
performance than the BaseNER model, leading to improvements by 0.49%, 0.70%, 0.06%
and 0.85% on the four datasets, respectively. By using other word embeddings as word
representations, our final model could still bring F1-score improvements of 0.75%, 0.66%,
0.82% and 1.22% on the four datasets, respectively. We compare with previous works on
the four datasets in the following.

Table 4. F1-scores on the OntoNotes 5.0 test set. * denotes semisupervised and multitask learning.

Model F1

BiLSTM-CNN [45] 86.17
Dilated-CNN-CRF [46] 86.84
CNN-CNN-LSTM [47] 86.52
LS-BiLSTM-CRF [8] 87.95
Semisupervised CVT [25] * 88.81
Hierarchical BiLSTM-CRF [6] 87.98
GRN [48] 87.67
BiLSTM-LAN [7] 88.16

BaseNER 87.66
BaseJoint 88.37
Joint model 88.41

Bert-Tagger [14] 89.16
Hierarchical + BERT [6] 90.30
BERT-MRC [49] 91.11

BaseNER + BERT 89.07
BaseJoint + BERT 89.53
Joint model + BERT 89.56
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Table 5. F1-scores on CoNLL-2003 German.

Model F1

BiLSTM-CRF [12] 78.76
BiLSTM-CRF [50] 79.01

BaseNER 79.36
BaseJoint 79.94
Joint model 80.02

multilingual-BERT [51] 82.82

BaseNER + BERT 86.98
BaseJoint + BERT 87.37
Joint model + BERT 87.68

Table 6. F1-scores on MSRA (Chinese), * indicates the models were trained with the use of external
labeled data.

Model F1

Character-based LSTM-CRF [52] 90.95
Lattice LSTM [53] * 93.18

BaseNER 90.13
BaseJoint 90.86
Joint model 90.95

BERT-Tagger [14] 94.80
BERT-MRC [49] * 95.75

BaseNER + BERT 94.78
BaseJoint + BERT 95.35
Joint model + BERT 95.41

Table 7. F1-scores on the JNLPBA test set.

Model F1

Char-attention BiLSTM-CRF [54] 72.70
nested BiLSTM-CRF [55] 75.44
Dictionary BiLSTM-CRF [56] 71.99
BiLSTM-softmax [57] 73.60
LMs-BiLSTM-CRF [58] 74.29

BaseNER 74.22
BaseJoint 75.01
Joint model 75.44

Bert-Tagger [14] 75.98

BaseNER + BERT 75.69
JointNER + BERT 76.38
Joint model + BERT 76.54

OntoNotes 5.0 (English) dataset For the OntoNotes 5.0 (English) dataset, there have
been an extensive number of investigations, as shown in Table 4. We can see that both our
embedding and BERT baselines were competitive, comparable with previous works. The
state-of-the-art systems [25,49] on this dataset both utilized external resources. Ref. [25]
presented a cross-view training for NER, with several auxiliary tasks such as chunking and
dependency parsing. Ref. [49] reformalized NER as an MRC question-answering task and
trained on the reconstructed data, which exploited expert knowledge to construct query
questions. Actually, our MTL model with BERT could achieve the best performance when
no external resource, such as syntax and any other human-supervision, was used.
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CoNLL-2003 (German) dataset For the CoNLL-2003 German dataset, we also listed
the state-of-the-art models in the literature. Two of them used the BiLSTM-CRF methods,
similar to our baseline system, and the BERT-based model employed a multilanguage
model. As shown in Table 5, our baseline models were comparable to the corresponding
best-performance systems, and our final MTL models obtained the best results with both
BERT and other word embedding-based representations.

MRSA (Chinese) dataset For the MSRA dataset, we listed the four state-of-art models.
Our final model outperformed the state-of-the-art systems without external resources,
except that [53] exploited an external lexicon and [49] used expert knowledge of entity types.

JNLPBA (Medical) dataset On the biomedical JNLPBA dataset, we compared our
model with previous state-of-the-art models, including [54,56], etc. With a BERT-based
representation, our MTL model consistently outperformed all previous models, achieving
the best results.

Overall, the results on four datasets indicated that our proposed model could achieve
comparable NER performance on the four datasets. It demonstrated that our joint model
could outperform the two baselines for NER by using the auxiliary TSP task. Moreover, we
did not fine-tune any hyperparameters to fit the specific task. The results in Tables 4–7 are
all with the same hyperparameters, which demonstrates the generalization ability of our
joint framework.

4.6. Analysis

In this section, we conducted a detailed analysis to understand how our auxiliary
TSP task helped to improve the performance of NER. The selected models here exploited
embedding-based word representations.

4.6.1. Statistical Analysis

First, we investigated the statistical significance of the main experimental results and
the effect of random initialization of weights in the networks. In the experiments, each
dataset was tested 100 times with the same set of hyperparameters and random seeds
sampled from 1 to 100. We introduce four metrics, (1) max, (2) average, (3) min and
(4) standard deviation (STD), to measure the changes in F-scores for each trail. For example,
maxi, averagei and mini are the maximum, average and minimum F-score of the first i trails,
respectively, and STDi represents the standard deviation of the first i F-scores . Figure 5
reports their curves on the four datasets. The corresponding values in the y-axis of index i
are reported based on the experimental results of the first i trails. We can see that all curves
became smooth after the first few trails. In addition, all STD values were also quite small,
indicating that different random initialization of weights had no significant effect on the
final results and the joint model was consistently stable.
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(a) OntoNotes 5.0 (b) CoNLL-2003 German

(c) MSRA 5.0 (d) JNLPBA

Figure 5. Max, average, min and standard deviation (STD) of the F1-scores of 100 random trails on
the four datasets. X-axis denotes the trail time i (i = 1, 2, ..., 100). Y-axis denotes the corresponding
values based on the experimental results of the first i trails.

4.6.2. Network Comparison

We compared the network structure of the joint model with the BaseNER model.
Table 8 lists the parameter size of the two models and the training and inference time on the
CoNLL-2003 German dataset. The joint model contained one additional TSP submodule
and the parameter size of the joint model was 1.5 M larger than that of the baseline. Thus,
the training time of the joint model was about 33% longer than that the baseline. However,
we can see that the inference speeds of the two models were 91 st/s and 89 st/s, respectively,
which were almost the same.

We also compared our joint model with the baseline on different computing platforms.
As shown in Table 9, the experiments ran on three different computing platforms: the Intel
Core i7-8700k, NVIDIA GTX1080 and ARM Cortex M7. Note that the power of the CPU was
its thermal design power (https://ark.intel.com/content/www/us/en/ark/products/1266
84/intel-core-i7-8700k-processor-12m-cache-up-to-4-70-ghz.html, accessed on 2 August
2022), while the GPU power value was from the nvidia-smi program. Since we could not
obtain the individual power values of each CPU component due to a lack of power sensors,
we utilized a power measurement module to measure the whole board power consumption
for the embedded ARM platform. We can see that our model almost performed the same as
the baseline with different metrics on the same platform, although the performance varied
widely across different platforms.

Table 8. Network comparison. Note M is short for million, s is short for second, st/s is the inference
speed, which is the number of sentences inferred per second.

Model
Parameters Size Time

Total For Training Random Weights Training Inference

BaseNER 4.8 M 4.8 M 0.8 M 586 s 91 st/s

Joint model 6.3 M 6.3 M 2.3 M 795 s 89 st/s

 https://ark.intel.com/content/www/us/en/ark/products/126684/intel-core-i7-8700k-processor-12m-cache-up-to-4-70-ghz.html
 https://ark.intel.com/content/www/us/en/ark/products/126684/intel-core-i7-8700k-processor-12m-cache-up-to-4-70-ghz.html


Electronics 2022, 11, 3048 14 of 19

Table 9. Performance comparison between different platforms. st/s is used for the throughput
metric, which is the number of sentences inferred per second.

Platform
CPU GPU ARM

(Intel Core i7-8700k) (NVIDIA GTX1080) (ARM Cortex M7)
3.7 GHz 1607 MHz 480 MHz, 32 M RAM

Model BaseNER Joint Mode BaseNER Joint Mode BaseNER Joint Mode

Power (W) 95.0 95.0 75.0 78.0 6.1 6.3

Latency (ms) 12 13 7.4 7.6 55 57

Energy (kJ) 12.1 12.5 6.8 7.2 2.1 2.2

Throughput (st/s) 65 63 91 89 25 24

4.6.3. The Correlation between NER and TSP

Our final model jointly performed NER and TSP. Although TSP was regarded as an
auxiliary task, whose performance was not of concern, it was still interesting to check the
performance correlation between the two tasks. In this section, we present a scatter figure,
where the x-axis value denotes the TSP performance (i.e., BLUE-1) , and the y-axis value
denotes the F1-score of NER. For each point, the paired values were calculated by randomly
selecting 50 sentences. We sampled 1000 times, arriving at 1000 points. Figure 6 shows the
above results.

Figure 6. The scatter graph of F1 of NER over accuracy of TSP on the OntoNotes test set.

We can see that a roughly positive correlation is shown by the picture, where the
majority of points are around a line with a positive slope, which is consistent with the
intuition that the TSP performance should demonstrate positive correlations with NER.

4.6.4. Fine-Grained Analysis for NER Performance

Further, we performed a fine-grained performance analysis for NER. We conducted
the analysis on two aspects. First, we show the F1-score of NER with respect to the number
of entities in sentence. We grouped the number into four categories, and the entity numbers
above four (including four) were merged as one category. Figure 7a shows the results,
where the performance of the BaseNER model, as well as that of the final model, is offered.
We can see that, as the number of entities increased from one to four, the NER performance
grew as well. The possible reason may be because the named entities in one sentence were
closely related, thus each entity could help the recognition of the others. In addition, our
final model outperformed the baseline in all categories, demonstrating the effectiveness of
our method.
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Figure 7. F1-score against entity length and sentential entity number on the OntoNotes test set.
(a) Sentential entity number. (b) Entity length.

Second, we show the NER performance in terms of NER length. We categorized the
NER lengths into four categories: 1, 2, 3 and 4+ (i.e., ≥4). Figure 7b shows the results.
Similarly, the F1-scores of both the BaseNER and the final systems are offered. As shown
in Figure 7b, we can see that the NER performance decreased with the length increases,
which was reasonable. Our final model was still better than the BaseNER model in each
category, which further proved the benefit of TSP.

4.6.5. Case Study

We conducted a case study. Table 10 shows four cases with different numbers of
entities on the OntoNotes dataset. In case 1, Mt. Everest is usually regarded as the type
LOCATION, but it was FACILITY in sentence 1. Due to the limited contextual information,
the BaseNER model made a mistake, while our MTL model correctly recognized it and was
able to capture the type-related information by using type sequence prediction. For case 2,
Nine Eleven, incorrectly identified as TIME by the BaseNER model, was correctly identified
as EVENT by our model due to the integration of the type sequence information. In case 3,
there were three entities in the sentence. We found that the BaseNER model made the same
mistake identifying the White House as ORGANIZATION. However, the type of the White
House is more likely FACILITY in this context. This type correlation information could be
learned by the neural machine model in our model. In the last case, the BaseNER model did
not recognize the entity Western, while our model could correctly identify it and its type.
These cases demonstrated that the TSP could incorporate rich type-related information into
NER and our model had a better capacity to deal with entity type ambiguity.

Further, we conducted another case study to compare the type sequence prediction
performance of our model with the baselines on specific type sequences. The sentence-
level type sequence prediction requires all entity types (i.e., type-sequence) in a sentence be
recognized correctly. Table 11 shows the results of the three models on four specific type
sequences from the OntoNotes dataset. We can see that the sentence-level entity type accuracy
of our model was significantly improved, compared with that of the baselines. Furthermore,
we also found that our model was more effective than the baselines when the sequence was
longer. This showed that our model could better capture sentence-level type-related features
by predicting type sequences.
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Table 10. Examples of that our model can integrate type chaining structure to constrain entity types,
while the BaseNER cannot.

Case 1

Gold They ’re [Mt.Everest]_FACILITY to conquer.

BaseNER They ’re [Mt.Everest]_LOCATION to conquer.

Our model They ’re [Mt.Everest]_FACILITY to conquer.

Case 2

Gold [One]_CARDINAL was [Nine Eleven]_EVENT .

BaseNER [One]_CARDINAL was [Nine Eleven]_TIME .

Our model [One]_CARDINAL was [Nine Eleven]_EVENT .

Case 3

Gold [Republicans]_NORP have not held [the White House]_FACILITY for [eight
years]_DATE.

BaseNER [Republicans]_NORP have not held [the White House]_ORGANIZATION
for [eight years]_DATE.

Our model [Republicans]_NORP have not held [the White House]_FACILITY for [eight
years]_DATE.

Case 4

Gold Later, as a result of [Sino-French]_NORP war of [1884]_DATE ,
[Tanshui]_GPE was again opened up to [Western]_NORP access.

BaseNER Later, as a result of [Sino-French]_NORP war of [1884]_DATE ,
[Tanshui]_GPE was again opened up to Western access.

Our model Later, as a result of [Sino-French]_NORP war of [1884]_DATE ,
[Tanshui]_GPE was again opened up to [Western]_NORP access.

Table 11. Sentence-level entity type accuracy on specific entity type sequences. N is the number of
samples containing the specific entity type sequence.

Type Sequence N
Sentence-Level Entity Type Accuracy (%)

BaseNER BaseJoint Our Model

PERSON 505 83.1 84.1 84.6

PERSON-ORG 53 71.7 77.4 79.3

ORG-PERSON 44 63.6 75.0 77.3

PERSON-ORG-GPE 19 31.6 52.6 57.9

ORG-GPE-DATE-PERSON 15 20.0 33.3 46.7

5. Conclusions

In this paper, we proposed a multitask learning framework that incorporated the
entity type-related information for NER. To achieve this goal, we investigated the auxiliary
TSP task. The TSP task had a positive correlation and could capture potential type-related
information at the sentence level. Noticeably, the TSP task shared the same input with the
NER, and the type labels for TSP could be directly obtained from the NER training corpus.
Thus, the TSP task did not require any extra training data, and there was no additional
annotation cost in our framework. Experimental results demonstrated our MTL model was
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highly effective, resulting in consistent improvements and leading to state-of-the-art results
on the CoNLL-2003 German NER and JNLPBA datasets without any external resource.

This article demonstrated the effectiveness of TSP on named entity recognition and
our joint model did not depend on any additional annotation data. Therefore, we will
explore the TSP task on other more challenging NLP tasks, such as relation extraction and
reading comprehension, in the future.
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