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Abstract: The study explored a deep learning image super-resolution approach which is commonly
used in face recognition, video perception and other fields. These generative adversarial networks
usually have high-frequency texture details. The relevant textures of high-resolution images could be
transferred as reference images to low-resolution images. The latest existing methods use transformer
ideas to transfer related textures to low-resolution images, but there are still some problems with
channel learning and detailed textures. Therefore, the study proposed an enhanced texture trans-
former network (ETTN) to improve the channel learning ability and details of the texture. It could
learn the corresponding structural information of high-resolution texture images and convert it into
low-resolution texture images. Through this, finding the feature map can change the exact feature
of images and improve the learning ability between channels. We then used multi-scale feature
integration (MSFI) to further enhance the effect of fusion and achieved different degrees of texture
restoration. The experimental results show that the model has a good resolution enhancement effect
on texture transformers. In different datasets, the peak signal to noise ratio (PSNR) and structural
similarity (SSIM) were improved by 0.1–0.5 dB and 0.02, respectively.

Keywords: deep learning; texture transformer; generative adversarial network; super-resolution;
attention mechanism

1. Introduction

In the field of images, super-resolution has a wide range of practical uses and appli-
cation scenarios. For example, digital imaging technology [1], deep space satellite remote
sensing technology [2], target recognition analysis technology [3] and medical image anal-
ysis technology [4] have a far-reaching influence. At the same time, super-resolution
technology can also make up for the limitations of hardware implementation, and has
the advantages of a low cost and a short cycle, so it has become a hot topic in the field of
image processing.

For traditional single-image super-resolution (SISR), the super-resolution of an image
is a process of recovery from low resolution (LR) to high resolution (HR) [5]. Recently, it
has been possible to take an image’s content information to another level with good visual
resolution. For example, convolution neural networks [6,7] were introduced to improve
the performance of SISR. However, they had some problems with single images, as the
existing methods for super-resolution (SR) of images still produce some blurry results,
especially for 2× and 4× scale images. In recent years, reconstruction loss [8] has been
inadequate for solving these issues. Thus, a high-resolution texture is too challenging to
restored through the degradation process, which will result in a blurred effect [9]. Therefore,
some researchers have proposed adversarial loss [10,11], which may be a solution for these
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problems and produce good visual quality for scholars who have analyzed the adversarial
loss function in the field of super-resolution [11,12]. It was found that one kind of loss
alone cannot produce good visual quality [13,14]. Finally, a combination of these loss
functions can produce different effects for better visual perception [15,16]. In a recent study,
a super-resolution-based algorithm was proposed that required two images for the texture
transformer [17], namely one single image for super-resolution and another reference image
for super-resolution [18,19]. Currently, the most state-of-the-art (SOTA) method is to use
one image as the reference, then another as the LR input. The texture of the reference image
is then used to provide a low resolution.

Therefore, this can lead to unsatisfactory SR images. Zhang et al. [19] adopted a feature
space determined by a pre-trained classification model to search for and transfer textures
between the LR and reference images. Nevertheless, high-level semantic features have
textures with different presentations [20,21]. To solve the problem of high-level semantic
features, Yang et al. [18] introduced some closely related associated modules optimized
for image generation tasks. Through the attention mechanism module, the HR features in
the reference images are transformed and fused into LR features extracted from the trunk
image through the attention image.

The design encourages the development of a more accurate method to search for
and transfer related textures from the reference image to low-resolution images. At the
same time, the number of research parameters in this project is insignificant. Under the
same hardware configuration, it can successfully shrink the number of parameters and the
storage space of the model, meaning that the application of the model in the industrial field
can settle the storage problem of SISR in industrial practice [22].

This study proposed a multi-scale feature fusion network, in which the main research
goal was to apply super-resolution in the manufacturing field so that the super-resolution
could ultimately meet the application requirements of the manufacturing field. The features
were learned at different scales (1×, 2× and 4×) to permit more representation and the
final output was a 4× image. In prior research work, the texture transformation relative to
the field-learning ability of the feature mapping network was not powerful and the ability
to transmit low-frequency information between channels was insufficient. Therefore, this
study proposed a texture transformation network of super-resolution algorithms, which
was able to search for and transfer reference images related to low-resolution texture images.
Finally, compared with current methods, the main contributions of this study are as follows.

Firstly, the various spatial pyramid pools were used to capture the images’ information
on multiple scales, for which the sampling performance was enhanced.

Secondly, the block module for receptive fields was intended to help the network
improve the learning ability of large receptive fields and to balance a small amount of
computation between channels.

Finally, multi-residual channel attention blocks were applied to the network, which
enhanced the interdependent learning ability of the feature channels and enriched the back-
ward propagation of low-frequency information through identity mapping, guaranteeing a
favorable flow of information and accelerating the training of neural networks.

2. Materials and Methods
2.1. Single-Image Super-Resolution

In recent years, compared with other traditional methods, deep-learning-based meth-
ods have significantly improved in PSNR/SSIM. In the field of GAN, images’ texture
information can be restored into high-resolution images through Wasserstein loss [10,11].
At the same time, the recently emerging transformer network structure can also restore im-
ages’ texture information very well [19]. In addition, the reconstruction of high-resolution
pixels by sampling the local distribution and the corresponding plane coordinates can
reasonably solve the problem of selection performance and efficiency [23,24].
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Therefore, this study mainly focused on the transformer’s structure. The application
converts the reference images’ textures sources and channels the information to low-
resolution (LR) images, which substantially enhances the performance of the input images.

Dong et al. [6] first proposed the idea of using a convolution neural network (CNN) for
super-resolution. This includes three parts, namely patch extraction, non-linear mapping
and reconstruction, and thoroughly embedded convolution within the super-resolution
field. Experiments have proven its validity in terms of deep learning, and enhanced
performance has been achieved. Later, Wang et al. [25] combined deep learning with sparse
expression. At the same time, Chao et al. [5] integrated sparse expression into CNNs by
decomposing the input globally, then proposing two specific components; ultimately, the
fusion of the features improved the performance [26]. In order to apply deep learning
CNNs to SR fields, Lim et al. [7] directly extracted the features from low-resolution images,
which also achieved better performance than the enlarged LR images processed by bicubic
interpolation. Meng et al. [27] found that the residual attention network applied in the field
of super-resolution had good results for local image recovery. Kim et al. [8] proposed DRRN
and Kim et al. proposed VDSR [28] to further improve the performance of SRCNN [6].

In general, there is a mean square error (MSE) loss between SR and HR images,
but this may not always be consistent with human evaluations. In recent years, many
researchers have conducted research on improving the visual quality of perceived loss.
For example, John et al. [16] introduced a perception loss function into a SR project, and
Ledig et al. [10] first introduced the idea of GAN into SR fields(SRGAN) [29,30]. The
adversarial network was used to minimize the perceived correlation distance between SR
and HR. Sajjadi et al. [31] further integrated the matching loss of a texture based on the
idea of transferring the style to the texture in super-resolution ESRGAN [32], which is a
type of SRGAN [10], by proposing RRDB [33]. The recently proposed RSRGAN [34] trains
a sequence and uses the content loss to optimize the perceived quality, achieving more
advanced visual results.

2.2. Super-Resolution of Reference Images

Unlike SISR using a single LR image as the input, the reference images can align
or patch-match images to obtain more accurate details. In general, some existing ref-
erence super-resolution (RefSR) methods [18,19,35] chose to align the LR and reference
(Ref) images, but the reference image needs to have a texture and a content structure
similar to those of the LR image. Huanjing et al. [21] solved the problem by global re-
pair to align the reference image and LR image. Zhang et al. [17] proposed the CrossNet
streamer method to align LR images with the reference image in proportion and fuse them
into the corresponding layer of the decoder. However, these methods [17,36] still have
some limitations and require good alignment of the low-resolution and reference images.
Meanwhile, the methods [21] require extensive resources and they are not conducive to
practical applications.

Recently, with existing reference image methods, SRNTT [19] textured between the
VGG [37] features of LR and reference images to produce the final output. Nevertheless,
it ignored the correlation between the original features and the switching features. All
switching features were inputted into the main network equally. Therefore, Yang et al. [18]
combined the transformer with super-resolution for the first time, which could solve the
problems of SRNTT. Nevertheless, there are still some issues, such as the inadequate
extraction of spatial information and the unbalanced channel computation during fusion.

In recent years, RefSR methods have tended to ignore potentially large differences
in the distribution, which has affected the effectiveness of the information utilized. The
MASA [38] network was proposed, in which the current modules were designed to address
these issues. Next, in order to enhance the ability to learn the significant details of the
features of Ref images, the interference of noisy information was attenuated by introducing
a multi-attentive mechanism using dual-view supervision to motivate the network to learn
more accurate feature representations, and a DSMA [36] network was proposed. In a study
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on SRTNN [19], the reference image was transferred to the LR input when restored to
high-resolution detail, and patches were applied to match VGG features between the LR
and Ref images by exchanging similar texture features. However, the SRNTT [19] network
ignored the correlation between the original and swapped features, meaning that all the
swapped features entered the main network equally. To address these issues, a texture
transfer network (TTSR) [18] was developed, which enabled our method to search for and
transfer correlated textures from Ref to LR images. Ignoring the fact that the LR space
still contains valuable high-frequency details, TTSR [18] could not effectively fuse the two
independently extracted features or extracting the finer features in LR space, so a new
fusion module to combine LR and Ref features more effectively is needed, for which the
DPSR network has been proposed. Thus, the ability to capture the contextual information
of images and channel learning has not been fully achieved.

To solve these problems, the receptive field block can balance a small amount of
computation and enlarge the receptive field [39], atrous spatial pyramid pools can capture
a larger proportion of the contextual information of images, and the residual channel
attention block can enhance the learning ability of the channel. In this study, a multi-scale
fusion texture transformer network was proposed to further improve the performance.

3. The Proposed ETTN

In this section, we introduce the proposed ETTN to enhance the texture transformer
network. It mainly consists of four parts. A multi-scale fusion integration (MSFI) method
was introduced to further boost the model’s performance. Its transformer texture comes
from the backbone transformer F to achieve MSFI. It includes a receptive field block, a resid-
ual channel attention block and atrous spatial pyramid pools. This group of loss functions
for optimizing the proposed network was clarified. Finally, the hardware environment was
also considered.

3.1. The Enhanced Texture Transformer Network

In this study, low-resolution images and reference images needed to be prepared in
the network. The first image was a low-resolution image to be restored. We then needed
to prepare reference images related to the low-resolution images. Inspired by [23], the
bicubic interpolation method achieved a better performance, so the bicubic interpolation
method was selected as the main interpolation method for upsampling/downsampling in
this network. The texture features need three images in the networks as the input feature
vectors K, V and Q, so we needed to find the input image and the reference image. After
four rounds of bicubic interpolation, the obtained reference image was expressed as Ref
↓↑ and the LR image was expressed as LR↑. Meanwhile, the reference image needed
to be represented as Ref in order to input it into the texture transformer network. The
corresponding features of the LR images were outputted by the backbone, and the output
feature maps were then used to generate super-resolution images with the three feature
vectors through feature extraction and fusion. The texture converter’s structure is illustrated
in Figure 1.

Feature extraction: In the reference image, texture extraction is essential because
accurate and proper texture information will assist the generation of super-resolution
images. Instead of the semantic features extracted by a pre-trained classification model
such as VGG19 [37], the design feature are extracted, for which the parameters are updated
during end-to-end training. The high-resolution reference image is transformed into
a network.
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Here, Q is the LR sampling and K is the bicubic Ref image. They are the input images
fed into the feature extraction module and to extract the features Q, K and the mapping to
the template.

Q = fFE(Bicubic LR)

K = fFE(Bicubic Re f )

V = fFE(Re f )

(1)

V is the feature extraction of the reference image, and then the output part of the
template is combined with V in the texture feature module. The extracted texture features,
namely Q (query), K (key) and V (value), indicate three basic elements of the attention
mechanism inside a transformer and are also used in our template module.

The attention relationship is the correlation between the LR image and the Ref image
embedded within the transformation of features through the similarity between Q and K.

Attention(V, K, Q) = V ×
(

Q
||Q|| ·

K
||K||

)
(2)

This is also a major component of attention and takes three vector parameters: Q, K,
and V. The similarity between Q and K is calculated, then the calculated result is multiplied
by the weighted coefficient of the corresponding V. Finally, the weighted sum is used to
obtain the attention value.

Template: We propose a relevance attention module to transfer the HR K for each
query Q. However, such an operation may cause a blurring effect which lacks the ability
to transfer the features of the HR texture. For this, Q unfolds to patch {q1, . . . , qi}, and K
expands to patch { k1, . . . , ki}. Next, for each patch of Q, we find its most relevant patch
in K. Finally, we perform dense patch-matching on the unrolled patches of Q and K. For
example, for the ith patch qi, we calculate the cosine similarity of each q and k patch as:

η =

〈
qi
||q|| ,

k j

||k||

〉
(3)

This module is also used to obtain the template and the maps of extracted attention.
Texture features: In the experiment, we used the Ti HR texture feature V from the Ref

image. However, this option may cause a blurred effect which lacks the power to transform
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the HR texture features. Therefore, we first extracted more texture features to calculate a
template map transformer hi, in which the ith element was calculated from the relevance.

hi = argmaxhi,j (4)

where hi is the maximum index position, which is the best related position of the Ref
image. We also needed to convert the texture of Ref T to LR so that we could select the
non-collapsed patch V as our template map, where ti denotes the value of t in the ith
position, which was selected from position hi of V. Therefore, the low resolution changes
from the reference images to the high-resolution feature representation T.

Transformed texture features: In this study, we proposed the combination of an
attention extraction module and the LR texture feature F extracted by the backbone network.
This helped to enhance the attention texture’s transformation effect, and reduced the
transfer of unrelated textures. Therefore, the experiment needed to calculate ηi,j in the
template and obtain the maximum mapping value S, which represents the confidence
degree T of the enhanced and transformed texture.

si = max
j

ηi,j (5)

where Si represents the position of confidence. The main purpose was to integrate the HR
texture feature T with the texture F proposed by backbone through the concat method to
improve the detailed texture of LR images. Such fused features were further multiplied
element-wise by the attention map S and added back to F to obtain the final output of the
texture transformer. This operation can be represented as

Tout = F + concat(F, T) · S (6)

where Tout represents the fusion output, and concat represents the operation of convolution,
which expresses multiplication between two elements. The values of the corresponding
image size of Tout are half and quarter of the original image. Finally, multiplication of the
elements with the confidence S plus the original F is carried out.

3.2. Multi-Scale Feature Integration

We proposed a method of multi-scale feature integration, which is mainly divided
into three parts: RFB, RCAB and ASPP.

Receptive field block (RFB): Extreme super-segmentation is needed to resolve the
texture’s details. The super-partition was introduced to balance the small amount of
computation and enlarge the receptive field, which could extract very detailed features.
Its structure is shown in Figure 2. RFB has proven to be powerful in target detection and
image recognition [40].
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Atrous spatial pyramid pool (ASPP): We used this model to enhance the computer
channels of the super-resolution field. Parallel sampling of the dilated convolution with
different sampling rates for a given input image is equivalent to capturing the context
information of the image at multiple scales [41]. In this study, the information was mainly
placed on Lv2, Lv3 and Lv4, which were able to capture low-frequency information and
expand the acceptance domain. Compared with the previous method [42], there were fewer
pooling layers, because this can lead to a decrease in the spatial resolution, thus affecting
the performance. As shown in Figure 3, we placed this information on the last layer to help
extract the high-frequency information, thus enhancing the resolution.
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Multi-residual channel attention block (MRCAB): Modeling the interdependence be-
tween feature channels is possible through adaptive rescaling of each channel [43]. The
upsamping process allowed the network to focus on enhancement of the more useful
channel. The transient inside the residual allowed rich low-resolution mapping between
the channel and the signal behind the channels, which accelerated the network’s train-
ing [44,45].

The shortcut inside the residual allowed a large number of low-frequency channels
to pass through. Consequently, the method selected for this experiment was the MRCAB
composed of four to eight RCABs, which could achieve a better channel transmission effect.
The network structure of this experiment is shown in Figure 4.
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Meanwhile, three jumps were added to the MSFI module to transmit some low-
frequency information. The high-frequency information was improved through the charac-
teristics of the fusion process. Finally, Figure 5 shows the architecture of the multi-scale
feature integration process for a better analysis of the low frequencies.
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3.3. Objective Function and Evaluation Metrics

To preserve the spatial structure of the LR images, improve the visual quality of
the SR images and take advantage of the rich texture from the reference images, the
objective function combines reconstruction loss Lrec, perceptual loss Lper and adversarial
loss Ladv. The reconstruction loss is adopted in most super-resolution, whereas perceptual
and adversarial loss improve the visual quality. The texture loss is specific to the reference
super-resolution image.

Reconstruction loss: The overall loss can be interpreted as:

Lrec =
∣∣∣∣∣∣IHR − ISR

∣∣∣∣∣∣
1

(7)

The use of L1 loss has been shown to be sharper than L2 loss, with an increased ease of
convergence in performance. Perceptual loss has been proven useful for improving visual
quality [11]. The key idea of perceptual loss is to enhance the similarity in the feature space
between the prediction image and the target image. The perceptual loss includes two parts

Lper = 1
V

∣∣∣∣∣∣ϕvgg
i (ISR)− ϕ

vgg
i (IHR)

∣∣∣∣∣∣22
+ 1

V

∣∣∣∣∣∣ϕFE
j (ISR)− T

∣∣∣∣∣∣22 (8)

where the first part is the traditional perceptual loss, in which ϕ
vgg
i (·) denotes the ith layer’s

feature map of VGG19 and V represents the shape of the feature map of size (C * H * W)
at that layer. ISR is the predicted super-resolution image, and the information extracted
by feature extraction is constrained by the transformed texture feature T, which is more
beneficial for texture transformation of Ref images.

Adversarial loss: Wang et al. [25] found that the adversarial loss can significantly
enhance the sharpness of synthesized images. Although the loss model is powerful, it has
unstable training results. Therefore, Gulrajani et al. [46] used WGAN to optimize the cost
function so as to reduce the gradient and maintain the relative stability of training [13].
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Therefore, the use of WGAN in this experiment enhanced the visual effects, for which the
expression is as follows:

LG = −E˜̂x−Pg
[D(x̃)] (9)

Ladv = −E˜̂x−Pg
[D(x̃)]− LG + λEx̂∼Px [(||∇x̂D(x̂)||2 − 1)] (10)

Object loss: The experiment in this study consisted of the three loss functions above,
and each coefficient of the constraint condition can be expressed as:

Ltotal = λrecLrec + λperLper + λadvLadv (11)

Metrics Evaluation: The peak signal to noise ratio (PSNR), the structural similarity
(SSIM) and the mean square error (MSE) were deployed as quantity assessment metrics.
Specifically, the PSNR of an M × N ground truth image g relative to the SR image r was
calculated as follows

PNSR(r, g) = 10 log10(
1

MSE(r, g)
) (12)

where the mean square error (MSE) function was defined as

MSE(r, g) =
1

MN

M

∑
i=1

N

∑
j=1

(rij − gij)
2 (13)

The SSIM thus can be represented as

SSIM(r, g) =
(2µrµg + C1)(2σRG + C2)

(µ2
r + µ2

g + C1)(σ2
r + σ2

r + C2)
(14)

where µr, σr and σrg are the mean, standard deviation and cross-correlation between the
two images r and g, respectively. C1 and C2 are positive stabilizing constants.

3.4. Histogram Analysis

To further verify the method, this study used two models to verify the generalization
of the image trained by the performance indicators, including the Babbittacharyya distance
and Chi-square analysis.

The Bhattacharyya coefficient is an approximate measure of the amount of overlap
between two statistical samples. It therefore can be used to evaluate the degree of similarity
between two images. Moreover, it can be applied to the similarity calculation of a histogram,
which can be used to evaluate the best effect obtained by the Babbittacharyya distance.

D(IHR, ISR) =

√
1− 1√

IHR ISRN2 ∑
i

√
IHR(i) · ISR(i) (15)

where Ihr and Isr are, respectively, the histogram data of the high-resolution images and
low-resolution images. N is the coefficient. When the calculated result is 0, the two images
are perfectly correlated.

Chi-square: Chi-square comparison involves the degree of deviation between the ac-
tual value of a high-resolution pixel and the value of a super-resolution pixel. It determines
the Chi-square value and can also be used to calculate the correlation.

D(IHR, ISR) = ∑
i

(IHR(i)− ISR(i))
2

I1(i)
(16)

When the pixels of the two images are the most similar, the minimum value is
D (IHR, ISR) = 0. Meanwhile, the smaller the Chi-square, the better the similarity, which also
implies that better correlation between the two images.
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4. Experiments
4.1. Datasets and Evaluation Metrics

To verify the superior performance of the model, tests were carried out on the CUFED5
proposed by Zhang et al. [19], in which the datasets consisted of 11,871 pairs of input images
and reference images. The test consists of five similar images from the CUFED5 datasets.
Accordingly, the generalization and adaptability of the model proposed in this study was
verified using other datasets from Urban100 [47] and Sun80 [48]. Firstly, to introduce
Urban100, an LR image was selected and put into the network as the reference image. Since
these datasets are composed of architectural images, which have high textural similarity,
the model has outstanding search and texture transfer effects. Second, Sun80 contains
natural landscape images that match the reference images. Nevertheless, prior experience
used Urban100 for testing. Its datasets are composed of curves and planes. Therefore, we
use HR images as the reference images so that the low-resolution images were used as
input images. The model finally used the RGB channel to evaluate the results of PSNR
and SSIM.

4.2. Implementation Details

In this study, except for the convolution layer marked by the parameters, the size of
the convolution kernel was 3, the number of channels was 64 and the batch size was 18. The
Adam optimized the network using an optimizer with β1 = 0.9 and β2 = 0.999. The learning
rate for both the generator and the discriminator was set to 10−4. The loss was used to train
the texture converter for 60 epochs, and the initial learning rate was 10−4. The weights
of λrec, λper and λadv were 1, 10−4 and 10−4, respectively. In addition, the experimental
environments were Ubuntu 18.04 and GPU Tesla T4.

4.3. Comparison of Super-Resolution

To compare the generalization of the model, we conducted quantitative analysis on
the latest models, namely TTSR [18] and SRNTT [19], and the model proposed in this
study. The comparative performance mainly relied on the Bhattacharyya distance and
Chi-square distance for the comparative analysis. The study selected one image of the
CUFED5 datasets and Urban100 datasets as the output image for analysis. The results are
shown in Table 1. It can be seen that the model proposed in this study outperformed the
others with the addition of higher perception quality.

Table 1. Performance comparison: Bhattacharyya distance and Chi-Square distance.

CUFED
im006

Bhattacharyya
Distance

Chi-Square
Distance

Urban100
im008

Bhattacharyya
Distance

Chi-Square
Distance

SRNTT 0.219 95,860 SRNTT 0.231 231,325
TTSR 0.187 96,554 TTSR 0.171 393,684
Ours 0.108 13,646 Ours 0.142 196,324

To verify the degree coincidence between the proposed method and the recent TTSR
method, the super-resolution images and the original images were used to compute the
histograms of a series of arrays in this study. In Figure 6, the y-axis represents the number
of different gray values, each of which appears in the whole image. The x-axis is the range
of pixels. Counting the degree of conformity of the histograms by the method of counting
the histograms, it was found that the higher the degree of conformity, the more identical
the images.

The study principally compared the degree coincidence of the images from the CUFED
datasets for testing. As shown in the results, the TTSR model still had a higher degree of con-
formity and still performs better than the ENNT model when the pixels (Figure 6a) were in
the range of 50 or so. Though the gray value was around 50–230 with the ENNT, providing
a good result (Figure 6b), the ENNT model had a stronger effect on the pixels’ range.
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4.4. Ablation Study

In order to prove the impact of the reference images’ correlation on the model, we
conducted performance tests on the reference images. As shown in Table 2, results with
similar levels were obtained, in which L1 to L5 are the test results from the CUFED5
datasets, where L1 is the most correlated level and L5 is the least correlated level with
the best results. “LR” represents the low-resolution images of the CUFED5 datasets as a
reference. The test sets had a total of 126 samples, each consisting of one person in the HR
image and five reference points, namely LR, L1, L2, L3 and L4, which was very convenient
for the CUFED5 RefSR study and provided a benchmark for a fair comparison.

Table 2. Ablation study on reference images with different levels of similarity.

Level L1 L2 L3 L4 L5 LR

TTSR 25.53/0.765 25.30/0.760 25.17/0.750 25.17/0.750 25.23/0.751 25.31/0.756
Ours 25.68/0.768 25.44/0.758 25.34/0.756 25.31/0.755 25.31/0.754 25.46/0.761

The transformer model in this study consists mainly of four parts, including feature
extraction of the images, a template, the texture features for the texture transformer and the
MSFI module for feature fusion. As shown in Table 3, the study was mainly based on TTSR
and then gradually added the effects of ASPP, RFB and RCAB to the experiment. From
Table 3, although the data in ASPP have decreased, the main reason was to add the balance
of the channel, leading to a performance of 25.30. However, adding RFB and using the
residual error of the channel function was good enough to transform the data to the other
part. The performance (PSNR) rose to 25.50.

Table 3. Ablation study on the transformer model.

Method ASPP RFB RCAB Param(M) PSNR/SSIM

Base + ASPP
√

7.01 25.30/0.749
Base + ASPP + RFB

√ √
7.10 25.50/0.761

Base + ASPP +
MRCAB(4/8) + RFB

√ √ √
7.56 (8.22) 25.60/0.767

(25.65/0.768)

The RCAB was added to make the feature channels come from the adaptive scaling
of each channel during the upsampling process. The network allowed more channels to
enhance the ability to learn. Finally, the features were fully extracted, and the performance
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(PSNR) was improved by 0.05. After adding MRCAB, the residual function of the channel
could be used to extract more low-frequency information from each channel, which grad-
ually improved the performance. As shown in Table 3, the experiments showed that the
effect of using eight residual channels was better.

4.5. Quantitative Evaluation

To evaluate the effectiveness of TTSR [18], this section compared the model with
other SISR and super-resolution methods of reference images. The SOTA performance
of ENet [49] for both PSNR and SSIM was achieved. RSRGAN [34] was considered to
achieve SOTA visual quality. Some algorithms utilize adversarial loss, such as SRGAN [10]
ESRGAN [32] and RSRGAN [34], which can retain the features’ details as often as possible,
hence conserving the texture’s information nicely.

In recent years, the latest reference image algorithms MASA [38] and DSMA [36] have
allowed the network features to learn more accurate features and convert their textures
better. Their performance is also superior, with significantly better performance than
previous methods. The algorithms DPSR [35] and TTSR [18], which transform the texture
of the reference image to a low-division image to make it a high-resolution image, also
have excellent quantitative performance compared with the previous algorithms. All
experiments were performed with a scale factor of 4× between the low-resolution images
and the original reference images. As shown in Table 4, the performance is ranked according
to the PNSR from high to low, compared with the combined effect of the above three losses.

Table 4. PSNR/SSIM/MSE comparison of different super-resolution methods on three datasets. Bold
numbers denote the highest scores. A lower MSE means better performance.

Algorithm CUFED5 [19] Sun80 [48] Urban100 [47]

ESRGAN [32] 21.90/0.633/0.00646 24.18/0.651/0.00382 20.91/0.620/0.00810
RSRGAN [34] 22.31/0.635/0.00587 25.60/0.667/0.00275 21.47/0.624/0.00712

SelfEx [47] 23.22/0.680/0.00476 27.03/0.756/0.00198 24.67/0.749/0.00341
Bicubic 24.18/0.648/0.00382 27.26/0.739/0.00188 23.14/0.674/0.00485

ENet [49] 24.24/0.695/0.00377 26.24/0.702/0.00237 23.63/0.711/0.00433
SPSR [50] 24.39/0.714/0.00364 27.94/0.744/0.00160 24.29/0.729/0.00372

SRGAN [10] 24.40/0.695/0.00363 26.76/0.729/0.00211 23.63/0.711/0.00433
Landmark [21] 24.91/0.718/0.00323 27.68/0.776/0.00170 —

MASA [38] 24.92/0.729/0.00322 27.12/0.708/0.00194 23.78/0.712/0.00419
SRCNN [6] 25.33/0.745/0.00293 28.26/0.781/0.00149 24.41/0.738/0.00362
DPSR [35] 25.23/0.808/0.00281 28.42/0.762/0.00144 24.35/0.734/0.00367
SCN [51] 25.45/0.743/0.00285 27.93/0.786/0.00161 24.52/0.741/0.00535
TTSR [18] 25.53/0.765/0.00280 28.59/0.774/0.00138 24.62/0.747/0.00345

SRNTT [19] 25.61/0.764/0.00275 27.59/0.756/0.00174 25.09/0.774/0.00310
DSMA [36] 25.61/0.758/0.00275 - 24.55/0.733/0.00354

Ours 25.67/0.769/0.00271 28.80/0.786/0.00131 25.09/0.768/0.00310

Therefore, we trained the model on the CUFED5 dataset and tested it on the CUFED5,
Sun80 and Urban100 datasets. As can be seen in Table 4, SRGAN [10] and ESRGAN [32]
first provided competitive training performance results. Moreover, most SR algorithms
minimized the MSE, such as SCN [51] and SelfEx [47], which could only improve the PNSR
and SSIM metrics accordingly, without fine visual quality. In contrast, the latest methods,
such as DPSR [35] and DSMA [36], yielded the best texture effects after using the constraints
of the three losses, and the proposed method outperformed the SOTA method by 0.06 dB
with the CUFED5 test datasets. Furthermore, we achieved improvements with the Sun80
and Urban100 datasets.

The perceptual loss enhanced the similarity between the image and the target image
in the feature space. It has been demonstrated that the mutual constraint of these three loss
functions can provide excellent results in TTSR and SRNTT. The comparison results showed
that good performance indicators were achieved for the three datasets in the test. As shown
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in Table 4, our method was distinctly better than the SOTA reference images based on the
super-resolution methods TTSR [18] and SRNTT [19]. Although the performance with
Urban100 was slightly worse than that of SRNTT [19], as shown in Figure 7, the visual
effect was much better than that of the previous methods [17,19].
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As shown in Table 5, TTSR and our method were faster than SRNTT in terms of
execution time. Through comprehensively considering Table 4, it can be concluded that
ETTN is slightly inferior to TTSR in terms of network parameters and execution time, but
has the best performance in terms of PSNR and SSIM.
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Table 5. Comparison of the number of network parameters and execution time. The methods used
for comparison are all patch-based RefSR methods.

Method Param (M) Average Execution Time (ms)

SRNTT [19] 5.74 3811.18
TTSR [18] 6.73 198.59

Ours 8.22 338.39

4.6. Qualitative Evaluation

Compared with current methods such as SRGAN [10], SRNTT [19] and TTSR [18],
as shown in Figure 7, the model in this study could convert the texture information of
high-resolution images into reference images and achieved better results.

As shown in the first example in Figure 7, the test used CUFED5 datasets, and the
output LR images and the reference image show that the effect of local information recov-
ery was excellent. The second sample was from the Sun80 datasets, and used the same
methods as the first example. The method obtained the local details, the effect of texture
recovery was better, showing that the effect was excellent. The final example obviously
showed the effects of image restoration, where the textural details were extracted very well,
specifically highlighting the texture of strips. Therefore, this showed that the algorithm
had a remarkable effect on more organized information. Finally, even if the high-resolution
reference images and low-resolution input images are not globally correlated, our proposed
model can extract extremely extensive parts through local extraction. At the same time,
the information can be essentially converted into super-resolution results. Moreover, the
proposed method is more suitable for real images than other reference super-resolution
methods. Qualitative comparisons showed that the method could successfully integrate tex-
tural features with LR features. This is valuable for obtaining satisfactory super-resolution
results as a reference.

5. Conclusions

In this study, we proposed a novel deep-learning-enhanced texture transformer net-
work (ETTN) for super-resolution images, which improved performance by transferring
textural information from the reference images to LR images. By combining three modules,
the textural information weas converted to MSFI for feature fusion and representation
to output the image through convolution layers. By using PSNR and SSIM for a perfor-
mance evaluation of the output images, it was found that the performance of the proposed
method has been significantly improved. Thus, the output images were of better quality.
Meanwhile, the degree of coincidence of the histograms was used to verify that the model
could make the HR images better. Finally, based on the results of the ablation study and the
qualitative evaluation, we can draw the conclusion that the model proposed has superior
performance for a single image.

Experiments have demonstrated that the ETTN model can be applied to the field of
super-resolution. It provides good perceptual quality for the recovery of single images.

This network can be of great importance in the medical field and industry. Next, we
will apply super-resolution to MR images in medicine. Considering the simple repetitive
structure and distribution of such images, our model can handle the task of processing MR
images more efficiently and precisely, in which it decreases the cost of materials to a certain
extent and promotes research in medical MR.

For the field of detecting circuit board defects, it can be applied to derive high-
resolution images that can better differentiate the location of the defects and facilitate
the next steps so researchers can examine the causes. For this reason, the algorithms in this
study are of importance for future research in these areas.
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