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Abstract: With the Internet of Things (IoT) and communication technologies are snowballing, various
applications (e.g., e-health and face recognition) are generated by IoT devices (IoTDs). Nevertheless,
these IoTDs generally have constrained computation resources. By offloading the IoT applications to
be processed by the MEC servers, mobile edge computing (MEC) is envisioned as a promising and
effective solution to address this problem. Meanwhile, security is a critical issue for task offloading in
MEC. While plenty of studies have focused on IoT tasks offloading, many of them ignored the security
issue. Moreover, many previous works ignored the resource allocation of MEC servers. In addition, as
dynamic voltage scaling (DVS) technology is flexible in the design of MEC systems, we integrate this
technology with task offloading. In this paper, the problem of IoT applications offloading in an MEC
system is studied, whose goal is to minimize computation overheads measured by the task processing
delay and energy consumption of IoTDs. The AES cryptographic technique is adopted to make
sure that the security of the data of the offloaded tasks is guaranteed. An optimization problem of
security-aware task offloading is formulated and solved by proposing an efficient resource-allocation
scheme. Experimental results are performed to evaluate and confirm the performance of the proposed
security model.

Keywords: MEC; DVS; task offloading; security

1. Introduction

In the past few years, the number of Internet of Things (IoT) devices (IoTDs), such as
wearable devices, has risen explosively [1]. According to the IOT ANALYTCS, the number
of active IoTDs will grow to 22 billion by 2025 [2], as Figure 1 illustrates. The growing num-
ber of IoTDs has resulted in various IoT applications, which are typically delay sensitive
and require a lot of computation resources. However, most of these IoT devices usually
have limited resources and constrained battery power [3,4], which imposes a bottleneck
for processing IoT applications. Although the remote public cloud (e.g., Amazon EC2) can
provide abundant computing resources for processing IoT applications, their data centers
are far away from the IoTDs, which will cause a long transmission latency. Therefore, the
distant public cloud may not be suitable for latency-sensitive IoT applications [5].

To this end, the mobile edge computing (MEC) platform has been put forward [6].
In contrast to the remote public cloud, the servers of the edge cloud are implemented
at a base station (BS), which are much closer to the IoTDs. Hence, the transmission
latency can be significantly reduced. Meanwhile, by way of offloading computation-
intensive IoT tasks to the edge cloud, the energy consumption of IoTDs can also be reduced.
Therefore, offloading IoT tasks to the edge cloud can lower the processing latency as well as
energy consumption.
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Figure 1. The active devices’ number connections worldwide [2].

In an MEC system, designing efficient resource-allocation schemes for task offloading
is a hot research topic studied by a significant amount of works, such as [7–9]. However,
many of them ignored the issue of data security, as the IoT users are concerned about
privacy leakage when offloading applications to the edge cloud [10]. Although some of
the related works, such as [11,12], did not jointly consider the DVS technology and the
computing resources that are hosted in the edge server. In [13], the authors investigated
the joint allocation of power and computing resources in an MEC system with multiple
cells and edge servers. They did not take the data-security issue and DVS technology
into account.

In this article, we study IoTDs’ task offloading in an MEC system by allocating the
resources of the edge MEC server and adopting the DVS technology. The objective of
our study is minimizing the execution time of tasks and the consumed energy by IoTDs,
which is an optimization problem. As its objective function is non-convex, an algorithm is
proposed to derive the optimal solution.

In a nutshell, we make the following contributions.

• We study the problem of IoTDs’ task offloading in a security-aware MEC system by
allocating resources of the MEC server and adopting DVS technology. In particular,
we take security issues into account, and the IoTDs adopt the DVS technology to
reduce the task’s execution time and the consumed energy. Our objective is to obtain
the minimization of the task-processing delay and the consumed energy for all IoTDs.
We formulate this problem using an optimization problem.

• Since the objective function for the formulated problem is mixed-integer nonlinear
programming (MINP), it is well-known as non-convex and NP-hard. This kind of
problem is difficult to be solved. We propose an efficient algorithm by dividing
the formulated problem into several sub-problems. The optimal solution for each
sub-problem can be efficiently solved.

• The theoretical analysis and experimental results verify the performance of our pro-
posed solution scheme.

2. Related Work

Recently, IoTDs’ task offloading and resource allocation have gained an enormous
amount of research interest in recent years. We present a review of some works according
to their objectives.

The minimization of delay or energy consumption. In [14], Gao et al. proposed a two-
stage computing method using the aggregative game to minimize the processing latency of
tasks while considering the proper management of a server load. In [15], Han et al. studied
power-consumption minimization with the constraints of average latency by considering
the MEC system dynamics. Lyu et al. studied resource-allocation and task-admission
problems to minimize the total energy consumption considering delay constraints in
MEC [16]. Their formulated problem is an integer programming problem, and the problem
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was solved by the proposed quantized DP algorithm. In [17], Wu et al. studied delay
minimization for partial task offloading in the non-orthogonal multiple access (NOMA)-
based MEC system. In [18], Wu et al. investigated multi-task multi-access MEC via NOMA
to minimize the total energy consumption of entire tasks. They applied a two-step approach
to studying the formulated problem. In [19], Tuong et al. investigated task offloading for
the reduction of the average task delay by proposing a novel scheme, which can effectively
improve the edge cloud service quality for all IoTDs by jointly optimizing the computation
resource allocation (CRA) and sub-channel assignment (SA).

The minimization of both energy consumption and delay. In [6], a game-theoretic
approach for mobile users is proposed to make task-offloading decisions by considering the
overheads by the measurement of energy consumption and processing time in the multi-
user MEC. In [20], Qian et al. investigated the joint resource allocation of communication
and computation to minimize the delay and consumed energy by computing the resource
allocation of edge servers in the NOMA-enabled multiaccess MEC with different edge
servers. In [21], Zhang et al. studied data compression and the control speed of wireless
transmission, aiming to minimize the energy consumption for wearable devices. An ap-
proximation algorithm was proposed such that the compression and transmission energy
of wearable devices are minimized. Tang et al. studied partial task offloading in the MEC
considering the overheads of time and energy [22]. The block coordinate descent method
was proposed to solve the time and energy minimization problem. In [23], Feng et al.
studied the trade-off of energy consumption and delay between the MEC system and the
blockchain system by allocating the radio and communication resources in the blocked-
enabled MEC systems. In [24], the authors focused on the study of sub-task offloading
for minimizing both task-processing latency and energy consumption of the IoT devices
with guarantees of dependency. They proposed an offloading scheme and compared it
with different algorithms. However, this work did not consider resource allocation. In [25],
Zhan et al. studied minimizing energy consumption and time for UAV applications in the
MEC system enabled by UAV.

The works above did not consider security, an important issue when offloading tasks in
MEC. To overcome this shortcoming, we present an efficient resource-allocation scheme for
IoT task offloading in the MEC system by taking data security into account. Although some
works considered the security issue of task offloading in the MEC system, many of them
either overlooked the allocation of computing resources of the MEC server or the adoption
of DVS without considering the joint study. In [11], Wu et al. studied power allocation
in NOMA-enabled MEC networks aiming to minimize the energy consumption of two
users while ensuring the task-offloading security. In [26], Elgendy et al. studied efficient
and secure computation offloading for MEC-based mobile IoT networks minimizing the
total energy consumed by the MDs. Although this security issue is considered in the two
works, the work [11] did not take the allocation of computation resources into account, and
the work [26] did not apply the DVS technology. Ref. [7] studied partial task offloading
and the allocation of transmit power of MDs adopting the DVS technology. Two system-
design goals, namely, minimizing energy consumption and task execution latency, were
considered. However, allocating the computation resources of the MEC server and the
security issue were not considered.

In order to present the existing challenges that this paper tries to address, we provide
and summarize the limitations in the state-of-art literature in Table 1.
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Table 1. Comparison.

Reference DVS Processing
Time

Consumed
Energy

Computation
Resources Security

[14] No Yes No No No
[15] No No Yes No No
[16] No No Yes Yes No
[17] No Yes No No No
[18] No No Yes No No
[19] No Yes No No No
[6] No Yes Yes No No
[20] No Yes Yes No No
[21] No No Yes No No
[22] No Yes Yes No No
[24] No Yes Yes No No
[25] No Yes Yes No No
[11] No No Yes No Yes
[26] No Yes Yes Yes Yes
[7] Yes Yes Yes No No

This Study Yes Yes Yes Yes Yes

3. System Model

In this section, the system model is introduced, and the optimization problem is
then formulated. Suppose that an MEC system consisting of multiple IoTD users and an
edge cloud integrated with one server providing computing resources for the number of
N IoTDs, which is illustrated in Figure 2. The IoTDs can be the fire alarms, which are
delay-sensitive. By analyzing the sensed data, these fire alarms will alarm if there are fire
accidents. There is a base station (BS) where the edge cloud is deployed, through which
each IoTD’s task can be offloaded and processed in the MEC server. The task of IoTD i is
denoted by Qi = (Di, Ci) [27–29], where Di denotes the task’s data size, i.e., the input data,
and Ci denotes the CPU cycles that should be needed to compute one bit of task data size.
Let ai denote the IoTD i’s task offloading policy. If the user of IoTD i processes its task in
the edge cloud, ai = 1, otherwise, ai = 0.

Figure 2. System model.

3.1. Local Model

In the local model, each IoTD user will execute the task by adopting the DVS technol-
ogy to use the computing resources of its device. For the IoTD i, its executing time and the
consumed energy for the local execution are, respectively, expressed as [6,26]:

Ti,l =
CiDi

fi
(1)

Ei,l = PiCiDi, (2)

where fi represents the computing capability denoted by the number of CPU cycles that
can be provided in one second, and Pi means the one CPU cycle power consumption.
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The power consumed by one CPU cycle of the IoTD i is [6]

Pi = ki f 2
i , (3)

where ki is a constant value parameter which is dependent on the chip architecture, and its
value is 10−26 [30].

Therefore, we can obtain the computation overhead of the local model,

Gi = wi,tTi,l + wi,eEi,l

= wi,t
CiDi

fi
+ wi,ePiCi, Di

(4)

where wi,t and wi,e ∈ [0, 1] represent the weighting parameters of task executing time
and the energy consumed by the IoTD i, respectively. If wi,t > wi,e, the IoTD i cares
more about execution time. Otherwise, if wi,t < wi,e, then the IoTD i focuses more on its
energy consumption.

3.2. Edge Cloud Model

In the edge cloud model, each IoTD will offload its task to the MEC server in the
edge cloud through a wireless channel. When offloading tasks to the edge cloud, extra
transmission time and energy consumption will be caused. For the IoTD i, its data rate in
the uplink is

ri = Bi log2(1 +
pihi

Biv0
), (5)

where Bi is the bandwidth allocated to IoTD i, pi is the transmission power, hi means the
channel gain expressed by d−2

i , di denotes the distance from the IoTD i to the BS, and v0
denotes the background noise power.

Then, the transmission time and the energy consumed for transmission are, respec-
tively, computed as [7,26],

Ti,t =
Di
ri

(6)

Ei,t = piTi,t = pi
Di
ri

(7)

When executed by the edge server, the computational time is calculated as

Ti,e =
CiDi
Fi,e

, (8)

where Fi,e is the allocated computing resources to the IoTD i.

3.3. Security Model

For the IoTD, i, the data of its task may be attacked by varieties of threats when it
adopts the edge cloud model. Consequently, the AES cryptographic technique is adopted
to protect the task against different types of threats [12,31,32]. In the security model, the
tasks of IoTDs and their data will be encrypted before offloading. After receiving the
data of these tasks, these data will be decrypted and executed by the edge servers. After
accomplishing the execution of these tasks, the results will be sent back to the IoTDs.

Therefore, the additional time, including the encrypt time and decrypt time and energy
consumption for securing data, are denoted, respectively, as [12,31,32],

Ti,en =
Ce

i
fi

(9)
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Ti,de =
Cd

i
Fi,e

(10)

Ti,s = Ti,de + Ti,en =
Ce

i
fi

+
Cd

i
Fi,e

(11)

Ei,s = ki f 2
i Ce

i (12)

where Ce
i and Cd

i indicate the number of CPU cycles that are needed to encrypt and decrypt
the task of IoTD i’s data, respectively.

Therefore, the total computation overhead of the edge model is calculated as

Hi = wi,t(Ti,t + Ti,e + Ti,s) + wi,e(Ei,e + Ei,s)

= wi,t(
Di
ri

+
CiDi
Fi,e

+
Ce

i
fi

+
Cd

i
Fi,e

)

+ wi,e(
piDi

ri
+ ki f 2

i Ce
i ).

(13)

For the analysis of convenience, the notations that are used in this paper are summa-
rized in Abbreviations.

3.4. Problem Formulation

The task offloading and resource-allocation problem while considering data security
is described in the following problem. The objective of it is to minimize the task-processing
time and energy consumption of all IoTDs.

For the IoTD i, we let Zi denote the execution time and energy consumption,

Zi = (1− ai)Gi + ai Hi

= (1− ai)[wi,t
CiDi

fi
+ wi,eki f 2

i CiDi]+

ai[wi,t(
Di
ri

+
CiDi
Fi,e

+
Ce

i
fi

+
Cd

i
Fi,e

)

+ wi,e(
piDi

ri
+ ki f 2

i Ce
i )].

(14)

Hence, the formulated problem is expressed as,

Problem 1.

min
fi ,Fi,e ,ai

N

∑
i=1

Zi

s.t. 0 < fi ≤ f m
i

N

∑
i=1

Fi,e ≤ F

ai ∈ {0, 1},

(15)

where the first constraint is the maximum computational capability of IoTD i, the second constraint
means that the allocated resources to the IoTDs should not be more than the computation capability
of the MEC server, and ai is the task offloading policy.
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Remark 1. As the task-offloading policy is binary, and the resource allocation is continuous in
Problem P, the above problem is a non-convex MINP problem, and it is notoriously challenging
to find the optimal solution. Traditionally, the MINP problem can be solved by leveraging the
Branch-and-Bound, the Dinkelbach, and the Alternating Direction Method of Multipliers (ADMM).
However, the time complexity of applying these algorithms is prohibitive [16]. The authors in [33]
obtain the solution of the MINP problem using these traditional algorithms and present the perfor-
mances of these algorithms. To solve the task-offloading problem, Chen et al. presented a distributed
learning-based framework [34]. In the following section, we will offer an efficient algorithm to obtain
the optimal solution to Problem P.

4. Algorithm Design

It is obvious that Problem 1 is MINLP, which is difficult to solve [7,35,36]. In this
part, we put forward an efficient algorithm to obtain the solution to Problem 1. Before
that, a lemma is firstly presented whose proof is in [35], according to which the solution is
obtained.

Lemma 1. We can always obtain

sup
x,y

f (x, y) = sup
x

f̃ (x),

where f̃ (x)=supy f (x, y).

By referring to Lemma 1, we have the conclusion that we could always solve a function
from minimizing over some of the variables firstly, and minimize over the left ones later.

From Lemma 1, Problem 1 can be solved by minimizing pi, Fi, and ai sequentially.
That is, we can first optimize the transmission power of IoTDs and computing resources
of the edge server provided that the offloading decisions of IoTDs are given. Conse-
quently,Problem 1 can be solved by dividing it into the following sub-problems:

(1) Local model computation problem;
(2) Edge model computing problem;
(3) Task offloading decision problem.

4.1. Local Model Computation Problem

Based on Problem 1, when ai = 0, the IoTD users execute tasks on their own devices.
Hence, the local model computing problem is written as follows,

Problem 2.

min
fi

Gi( fi)

s.t. 0 < fi ≤ fi,m,
(16)

where Gi( fi) is denoted as

Gi = wi,tTi,l + wi,eEi,l

= wi,t
CiDi

fi
+ wi,eki f 2

i CiDi
(17)

From the second-order derivative of Equation (17),

∂2Gi

∂ fi
2 =

2wi,tCiDi

f 3
i

+ 2CiDiwi,e, (18)

we know that G′′i is positive in the domain of fi; therefore, fi is convex. Therefore, from the
first derivative, we have
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∂Gi
∂ fi

= −wi,tCiDi

( fi)2 + 2wi,eki fiCiDi = 0. (19)

From Equation (19), the optimal solution is

f ∗i = 3

√
wi,t

2kiwi,e
. (20)

It can be clearly observed that Gi( fi) monotonously increases if fi > f ∗i and
monotonously increases when fi < f ∗i .

Hence, the optimal solution to the local computation problem P2 is

Gi( fi) =

{
Gi( fi,m), f ∗i ≥ fi,m

Gi( fi), f ∗i < fi,m
(21)

4.2. Edge Model Computing Problem

According to Problem 1, when ai = 1, the users of the IoTDs will execute their tasks
in the edge cloud. Therefore, the allocation of the MEC server computing problem can be
written as follows.

Problem 3.

min
fi ,Fi,e

N

∑
i=1

Hi( fi, Fi,e)

s.t. 0 < fi ≤ fi,m

N

∑
i=1

Fi,e ≤ F

Fi,e > 0,

(22)

where Hi( fi, Fi,e) is denoted as

Hi( fi, Fi,e) = wi,t(
Di
ri

+
CiDi
Fi,e

+
Ce

i
fi

+
Cd

i
Fi,e

)

+ wi,e(
piDi

ri
+ ki f 2

i Ce
i ).

(23)

By checking the objective function of Problem 3, we can further divide the above
problem into the following two sub-problems: (1) Local computing resource-allocation
problem; and (2) Edge cloud computing resource-allocation problem.

The problem of resource allocation in local model computing is formulated as follows.

Problem 4.

min
fi ,Fi,e

N

∑
i=1

Hi( fi)

s.t. 0 < fi ≤ fi,m,

(24)

where Hi( fi) is denoted as

Hi( fi) = wi,t
Ce

i
fi

+ wi,eki f 2
i Ce

i . (25)

As function Hi( fi) has a similar structure to Gi( fi), the solution of function Hi( fi) can
easily be obtained, which is expressed as
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Hi( fi) =

{
Hi( fi,m), f ∗i ≥ fi,m

Hi( fi), f ∗i < fi,m,
(26)

where f ∗i is given as follows

f ∗i = 3

√
wi,t

2kiwi,e
. (27)

The edge cloud resource-allocation problem is as follows.

Problem 5.

min
Fi,e

N

∑
i=1

Hi(Fi,e)

s.t.
N

∑
i=1

Fi,e ≤ Fe

Fi,e > 0,

(28)

where Hi(Fi,e) is denoted as

Hi(Fi,e) = wi,t(
CiDi + Cd

i
Fi,e

). (29)

From
∂2Hi

∂Fi,e
2 =

2wi,t(CiDi + Cd
i )

F3
i,e

> 0, (30)

we know that Hi is convex [35]. Consequently, the Lagrangian function is

L(Fi,e, u) =
N

∑
i=1

[
wi,t(Ci + Cd

i )

Fi,e

+ u(
N

∑
i=1

Fi,e − Fe),

(31)

where u ≥ 0 is the Lagrange multiplier. Referring to the KKT conditions [35], we have

∂L
∂Fi,e

=
−wi,t(CiDi + Cd

i )

F2
i,e

+ u = 0 (32)

u(
N

∑
i=1

Fi,e − Fe) = 0 (33)

u ≥ 0. (34)

According to Equation (33), it is obvious that u > 0. Hence, from Equation (32),
we have

F∗i,e =

√
wi,t(CiDi + Cd

i )

u
. (35)

Substituting Equation (37) back into the Equation (33), we can obtain the optimal value
of Lagrangian multiplier, which is

u = (

N
∑

i=1

√
wi,t(CiDi + Cd

i )

Fe
)2. (36)
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Therefore, by substituting Equation (36) into Equation (37), the optimal value of the
allocated computing resource is

F∗i,e =

√
wi,t(CiDi + Cd

i )

N
∑

i=1

√
wi,t(CiDi + Cd

i )

Fe. (37)

By substituting Equation (37) into Equation (25), the optimal value of Hi(Fi,e) is

H∗i (Fi,e) =

[
N
∑

i=1

√
wi,t(CiDi + Cd

i )]
2

Fe
. (38)

4.3. Offloading Decision Problem

In this subsection, an efficient resource-allocation and task-offloading algorithm in
the security-aware MEC system is presented. The users of IoTDs decide to execute their
tasks in the MEC server if the computation overheads are smaller than the computation
overheads of the local model [6]. For each user of IoTD, whether offloading its task or not
is set by making a comparison of the computation overhead of the local model and edge
model.

oi =

{
1, Gi ≥ Hi

0, Gi < Hi
(39)

After obtaining the minimum computation cost of each IoTD, we can obtain the
optimal system computation cost, which is

Z∗ =
N

∑
i=1

((1− ai)G∗i + ai H∗i ). (40)

An algorithm is presented to obtain an optimal solution for the offloading decision
policies, which is shown in Algorithm 1. This algorithm provides a detailed process to
obtain the optimal decision for each IoTD user. In Algorithm 1, all users of IoTDs firstly
initialize their task-offloading policies as 0 to obtain their optimal solution to the CPU
frequency. Then, all users of IoTDs set the task-offloading policies as 1 to reach their optimal
solution to the allocated computing resources and the local CPU frequency. At last, all IoTD
users make the optimal offloading policies by comparing the computation overheads of the
two models.

4.4. Complexity Analysis

In the local model, assume that there are n IoTDs, the computation overhead needs
n times computing. Therefore, the time complexity of steps 3–6 in Algorithm 1 is O(n).
In the edge model considering the security issue, the computation overhead needs N − n
times computing. Therefore, the time complexity of steps 7–8 in Algorithm 1 is O(N − n).
Consequently, the time complexity of Algorithm 1 is O(N). In [33], Yu et al. studied
power resource allocation and interference management in Fog computing by applying the
combination of the traditional methods, namely, ADMM, benders decomposition, and the
Dinkelbach algorithm. The time complexity of this work is O(max{N/(ε2), 2N}), where ε
denotes the tolerance.
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Algorithm 1 The Proposed Algorithm in the Security-Aware MEC System

Input:
1: N tasks of IoTDs;

Output:
2: The resources allocation, task offloading, and the system computation overhead;
3: Initialize i← 1
4: repeat
5: fi∗ ← Obtain its computational resource allocation by solving subproblem P2;
6: Gi ← Obtain its computation overhead in the local computing model based on

Equation (21);
7: Fi,e∗ ← Obtain its optimal allocation of computational resources by solving problem

P3;
8: Hi ← Obtain its the optimal computation overhead in the MEC server model from

Equation (13);
9: if Gi ≥ Hi then

10: ai ← 1;
11: else
12: ai ← 0;
13: end if
14: i← i + 1
15: until i← N

5. Experimental Results

In this section, the experimental results are provided to demonstrate the performance
of the proposed model. The proposed efficient resource allocation for the security-aware
task-offloading model labeled as Secured Model is evaluated through simulation results by
comparing with the following models.

Local Model: In this model, all the IoTDs’ tasks do not offload and are executed using
the resources of IoTDs.

Edge Model: In this model, all IoTDs will take the offloading strategies. Their tasks
are all processed by the MEC server.

Unsecured Model: In this model, the IoTDs’ tasks may be computed in the local model
or offloaded to the MEC server according to the proposed offloading algorithms. This kind
of model is widely studied in existing works, such as [6,37].

5.1. Simulation Parameter Settings

Assuming that some IoTDs and one server exist in a MEC system, the default number
of the IoTDs is N = 10 unless otherwise specified. The distance from the IoTD i to the
BS is 1000 m. The computational capability of the MEC server is F = 10 GHz, and the
computational capability of each IoTD is in [0, 1] GHz. Each IoTD has a task processed by
itself or in the MEC server. The IoTDs’ tasks can be the face-recognition application, whose
data size is uniformly distributed in [0, 10] Mb. The needed CPU cycles to complete one
bit are set to 1000 cycles. As far as the IoTD i is concerned, its transmission power is set to
0.1 W, the bandwidth is 0.3 MHz, its channel gain hi is 2.6× 10−7, and the background noise
power is 10−7 W. The weighting parameter values wi,t and wi,e are set from {0.2, 0.5, 0.8}
and wi,t + wi,e = 1. Moreover, the number of CPU cycles to encrypt and decrypt the IoTD
i’s data are both set to 100 megacycles. A summary of the values of the main parameters is
given in Table 2. We set these parameter values according to [6,12,16,38].
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Table 2. Parameter values Settings.

Parameters Values
The IoTDs’ number N 10
The allocated bandwidth of IoTD i Bi 0.3 MHz
The IoTD is’ data size Di [0, 10] Mb
The transmission power pi 0.1 W
The needed CPU cycles to process one bit of data size Ci 1000 cycles
The number of CPU cycles to encrypt the IoTD i’s data Ce

i 100 magacycles
The number of CPU cycles to decrypt the IoTD i’s data Cd

i 100 magacycles
ki 10−26

The channel gain hi 10−6

The maximum computational capability fi,m 1 GHz
The background noise power v0 10−7 W
The computational capability for the MEC server F 30 GHz

5.2. Simulation Results

Figure 3 shows the offloading percentage of IoTD users under different numbers of
IoTD users considering the security model and the one without security. It is evident
that the offloading percentage is lower when the security methodology is adopted. The
offloading percentage of the two models decreases, respectively, versus the increasing
number of IoTD users. For the secured model, the offloading percentage decreases more
rapidly than the unsecured model. Moreover, we observe that the offloading percentage
of IoTD users with the unsecured model remains at 100 percent when the number is less
than 10.
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Figure 3. The offloading percentage of IoTD users.

Figure 4 shows the energy consumption of all tasks versus different numbers of IoTDs.
Specifically, Figure 4a makes a comparison of the energy consumption under the models
of Local Model, Edge Model, and the Unsecured Model, and Figure 4b also shows the
consumed energy in the Secured model. It is evident from the two figures that processing
tasks of IoTDs under the Local Model consumes the most energy of the four models.
In contrast, less energy is consumed in the Edge Model than the other three models. It can
also be observed that energy consumption significantly increases when the number of
IoTDs rises. Furthermore, we can notice that, when the number of IoTD users is less than
15, the energy consumption under the Secured model and the proposed Unsecured model
are both near to the Edge model. However, when the number of IoTD users exceeds 15, the
gap will become larger.
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Figure 4. The energy consumption. (a) Unsecured model; (b) Secured model.

Figure 5 depicts the task-execution time of all the IoTDs versus different numbers of
IoTDs under different models. In Figure 5a, a comparison among the models of Local Model,
Edge Model, and the Unsecured Model is shown, while Figure 5b shows the task-execution
time of the Secured model. By observing Figure 5, it is found that the task-execution time
in the Local Model is the least among the four models, while processing in the Edge Model
costs more time than the other three models. From the two sub-figures, we see that the
total task execution time under the four models, respectively, increases if the number of
IoTD users increases. By comparing Figures 4 and 5, we find that the proposed Secured
Model consumes more energy than the baseline model Unsecured Model, while costing
less time. In addition, it can be noticed that, when the number of IoTD users is less than 20,
the task-execution time under the Secured model and the proposed Unsecured model are
both near to the Edge model. However, when the number of IoTD users exceeds 20, the
gap between the two models will become larger.
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Figure 5. The task execution time. (a) Unsecured model; (b) Secured model.

Figure 6a,b show the total computation overheads under the Unsecured model and Se-
cured model, respectively. It can be noticed from Figure 6a that the computation overheads
under the Unsecured model are higher than under the Local Model and the Edge Model. It
can be noticed from Figure 6b that the computation overheads under the proposed secured
model are higher than under the Local Model and the Edge Model. By comparing Figure 6a
and Figure 6b, we observe that the proposed secured model obtains higher computation
overheads than the Unsecured model. However, the gap is not obvious. This may be the
reason that encrypting and decrypting data of the tasks of IoTD users may cause extra
computation overheads. In addition, it is noted that the computation overheads in the
Local Model are higher than or near equal to those of the Edge Model when the number of
IoTD users is less than 20. However, the computation overheads under the Edge Model
will be higher than the Local Model when the number of IoTD users is over 20.
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Figure 6. The computation overhead. (a) Unsecured model; (b) Secured model.

In the last section, we analyze the impact of the computational capacity of the MEC
server on the offloading percentage of IoTD users under the unsecured model and the
secured model. We set the number of IoTD users N as 15 and vary the computational
capability of the MEC server from 10 GHz to 30 GHz. We present the corresponding results
in Figure 7. It can obviously be found from Figure 7 that the offloading percentage of
IoTD users will increase with the computational capabilities of MEC servers increasing.
Moreover, the offloading percentage under the secured model is lower than that under
the unsecured model. This is because taking the secure technique will cost additional
processing time and energy.
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Figure 7. The offloading percentage of IoTD users versus different computational capacities of
MEC server.

5.3. Discussions

In this paper, only the binary task offloading, that is, the task of IoTD that is either
processed in the model or in the edge model by offloading, is considered. In our proposed
Secured Model, as far as each IoTD is considered, since the proposed algorithm selects the
smaller computation overhead, the system computation overhead is the lowest compared
with the Local Model and the Edge Model. However, compared with the Unsecured Model,
as the adoption of the secure technique costs additional processing time and energy, the
Secured Model will cost additional computation overheads. This can be extended to the
partial task-offloading case, namely, one part of the task for each IoTD is locally processed,
and the other part of this task is offloaded.

According to the experimental results and the results’ analysis, the proposed secured
model can be applied to some IoT applications, such as face-recognition applications.
However, for applications that need higher requirements for the delay, such as traffic safety
applications, the edge cloud owner has to provide more resources to meet the applications
of the requirements.

As far as the formulated MINP problem is concerned, as well as the proposed algo-
rithm, other methods such as the dandelion algorithm (DA) [39] or the Bat algorithm [40],
may be applied to obtain the optimal solution. Queuing models can be used to model the
system model [41]. Besides, task Offloading in the air-ground integrated MEC Systems also
needs to be further studied [42].
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6. Conclusions

In this paper, the IoT task-offloading problem with security taking into account an
MEC system is studied, whose objective is minimizing the task-executing time and energy
consumption of IoTDs by allocating the computing resources while adopting the DVS
technology. Meanwhile, to ensure the security the offloaded tasks, we adopt the AES
cryptographic technique to secure the data of these tasks. An optimization problem
considering the computation overheads of the IoTDs is formulated. For the optimization
problem, since its objective function is not convex, the computation-overhead minimization
problem is a MINP problem, and it is well-known as NP-hard. To obtain the solution to
this problem, we first split it into three layered sub-problems and obtain the answer to each.
The experimental simulation results are validated to show the effectiveness of the proposed
task-offloading model. The experimental simulation results reveal the fact that the number
of the IoTDs has an evident effect on the energy consumption, task-execution time, and
offloading percentage of IoTD users. In a comparison to baseline models, the proposed
secured model reveals its better performances.
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Abbreviations
We use following abbreviations in this paper:

MEC mobile edge computing
IoT Internet of Things
IoT devices IoTDs
DVS Dynamic voltage scaling
MINP mixed-integer nonlinear programming
Notations
N the IoTDs’ number
fi the computation capability of the IoTD i
Di the data size of IoTD i’s task in bits
Ci the amount of CPU cycles needed to compute one bit of the data size of IoTD i
Ce

i the number of CPU cycles needed to encrypt the data of the task of IoTD i
Cd

i the number of CPU cycles needed to decrypt the data of the application of IoTD i
wi,t represent the weighting parameter of the execution time of the IoTD i
wi,e represent the weighting parameter the energy consumed by the IoTD i
λ the lagrange multiplier
Bi the uplink channel bandwidth of the IoTD i
pi the power transmission of IoTD i
hi the channel gain from the IoT device i to the BS
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v0 the noise power
ri the achievable uplink rate for the IoTD i
ai the task offloading decision made by the IoTD i
F the computation capability of the MEC server
Fi,e the computation resources of the MEC server allocated to the IoTD i
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