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Abstract: The emerging concept of drone swarms creates new opportunities with major societal
implications. However, future drone swarm applications and services pose new communications and
sensing challenges, particularly for collaborative tasks. To address these challenges, in this paper, we
integrate sensor arrays and communication to propose a mathematical model to route a collection of
autonomous unmanned aerial systems (AUAS), a so-called drone swarm or AUAS swarm, without
having a base station of communication but communicating with each other using multiple spatio-
temporal data. The theories of structured matrices, concepts in multi-beam beamforming, and
sensor arrays are utilized to propose a swarm routing algorithm. We address the routing algorithm’s
computational and arithmetic complexities, precision, and reliability. We measure bit-error-rate (BER)
based on the number of elements in sensor arrays and beamformed output of the members of the
swarm to authenticate and secure the routing for the decentralized AUAS networking. The proposed
model has the potential to enable future drone swarm applications and services. Finally, we discuss
future work on obtaining a machine-learning-based low-cost drone swarm routing algorithm.

Keywords: communications; sensor arrays; unmanned autonomous systems; swarm; MIMO models;
computational and arithmetic complexities; routing algorithms; muti-beam beamforming; performance
of algorithms

1. Introduction

The positive use of drones or unmanned aerial systems (UAS) has the potential to
save lives, increase safety and efficiency, and enhance science and engineering research.
Drone swarms could act independently or autonomously; for example, drone swarms
could be utilized to map and predict dangerous areas and assist first responders during
civil emergencies [1,2]. Drone swarms are scalable, adaptive, and resilient. However, future
drone swarm applications and services pose new communications and sensing challenges;
for example, many collaborative tasks require communications and networking to enable
intra-agent collaboration in dynamic environments, which existing networking protocols
are unable to achieve, as pointed out by Air Force Research Laboratory—Information
Directorate (AFRL/RI) in its BAA entitled “Elastic Tactical Networking for Autonomous
Swarms” [3].

Multiple, autonomous, unmanned aerial systems (AUAS) can exhibit swarm behavior
in airborne robots. Although AUAS consists of thousands of drones flying in formation
based on artificial intelligence (AI), sometimes, it exhibits chaotic patterns due to swarm
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dynamics. The centrally controlled collections of drones are popular and used for enter-
tainment, e.g., in stadiums to emulate firework displays. However, AUAS swarm robotics
have a fully distributed control architecture through independent and secure agents. The
secure multi-agent approach to flight control and navigation allows the distribution of trust
via consensus mechanisms and smart contracts—making them robust against cyberattacks
and agent failures. Navigation and swarm control dictate multi-hop data networking
between nodes of the AUAS swarm. The AUAS network requires network capacity for
control functions between the agents and requires low latency for precision, navigation, and
maneuvering—not to mention negotiating challenging flight paths in dense environments
without collision. Thus, in this paper, we propose an integration of communication and
sensor arrays to route a collection of AUAS while facilitating high-performance aerial
multi-agent systems in the most challenging of air spaces.

The development of 5G cellular networking enables the improvement of the capacity
of beamforming on AUAS networking [4–13]. Different from the majority of the literature
on UAS based on a single flying antenna system (as a hub) [14–19], we propose an AUAS
swarm routing algorithm that is compatible with wideband multi-beam beamforming and
based on multiple steering angles and multiple variations to optimize the routing with a
decentralized communication system to increase efficiency, accuracy, and reliability. We
obtain an AUAS swarm routing algorithm in which drones can communicate with each
other efficiently and understand routing through decentralized multiple antenna array
systems. Frankly, the quicker and more synchronized the decisions of each drone, the easier
the swarm will navigate efficiently. A model based on AUAS swarm routing becomes more
reliable when the decision-making processes are transparent and explainable. In general, it
is difficult to define an accurate and reliable mathematical model to optimize drone swarm
routing, but it is easy to draw a definition to model swarm routing having each drone
understand each other and making a decision to determine optimal routing.

Deep neural network-based (DNN) machine learning (ML) algorithms provide so-
lutions for human dynamics, channel state information (CSI), optimum detection, and
array beamforming [20–24]. However, these are trained on simplified scenarios that either
assume a single-user scenario without interface [25,26], or require exact CSI available to the
users for CSI reconstruction at the base stations [25,27,28], or need an end-to-end network
training to design a frequency division duplex multiple input-output system [29] for swarm
routing. The drone swarm can route using ML-based spatial and temporal data. However,
given the conventional digital signal processing (DSP) algorithms, such as the Multiple
Signal Classification (MUSIC) and the Estimation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT), as well as sparse estimation methods of array manifold matrix
[30–39] to determine spatio-temporal data are mostly based on a priori information and
may not be suitable in beamforming-based AUAS routing algorithms. Thus, techniques
have to be explored (i) to understand and simplify the mathematical interpretation of
models described by AI, (ii) to reduce the computational and time burden in computing
spatio-temporal data, and (iii) to design accurate and low-cost ML algorithms. As of the
preliminary work, we propose a mathematical model, algorithm, and error threshold of the
proposed model to route a drone swarm utilizing spatio-temporal data and multi-beam
beamforming communication having decentralized flying antenna array systems.

Although beamforming is implemented to improve UAS networking, the conven-
tional routing algorithms for UAS networking are based on ad hoc on-demand distance
vector (AODV) and optimized link state routing (OLSR). AODV is decentralized, reac-
tive, and has less overhead for management, which is robust to the dynamic topology.
Nevertheless, the main drawbacks of AODV are the consumption of path discovery and
the local optimization for routing generation [40,41]. In contrast, OLSR is a centralized
algorithm that could achieve global optimization of routing generation with the sacrifice
of overhead [42]. Compatible with beamforming, a swarm-oriented routing algorithm,
implemented with decentralization and efficiency, is an urgent need for AUAS networking.
Thus, challenges still remain to efficiently navigate drone swarms without centralized
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communications, obtain efficient algorithms to capture real-time spatio-temporal data in a
massive and complex multiple-input multiple-output (MIMO) model, and address limita-
tions in beamformed antenna arrays for AUAS routing. Here, we propose a mathematical
model and address complexity, precision, and reliability to route an AUAS swarm while
communicating with each other (without having a base station communication) through
multiple spatio-temporal data based on theories of multi-beam beamforming, sensor arrays,
and structured matrices.

The organization along with the contribution of the paper is as follows.

• In Section 2, we propose a mathematical model followed by an algorithm and flow
chart to navigate a drone swarm using multi-beam beamforming decentralized an-
tenna array systems.

• In Section 3, we present

– the array received beamformed signals of drones in the drone swarm at time
stamps and compare these received signals with output signals corresponding to
a ground-truth action function having the same time stamps.

– the analytical arithmetic complexity and numerical computational complexity of
the proposed routing algorithm.

– BER results based on the proposed AUAS swarm routing algorithm.

• In Section 4, we discuss an ML algorithm for the completion of spatial and temporal
data to obtain the AUAS swarm routing algorithm followed by a low-cost algorithm.

• In Section 5, we conclude the paper.

2. MIMO Beamforming-Based Mathematical Model and Routing Algorithm to
Navigate a Collection of AUAS

In this section, we propose a novel mathematical model to route an AUAS swarm
based on MIMO beamforming. After the model is proposed, an algorithm is stated to
route an AUAS swarm consisting of a massive number of drones. Thus, we will be able to
deploy over 100 drones without using base station communication. The proposed method
is different from the conventional AODV and is suitable for the 5G NR, B5G, and 6G cellular
networking on the AUAS networking on a large scale. The difference between the scenarios
is that the existing AODV can be deployed in a group and the members of the group can
not exceed 100 [43,44].

We assume a drone swarm consists of M number of drones, and each drone—say u—
has a uniform array with N elements and d element spacing. We also assume that there are
M uncorrelated signals impinging on the array from M drones (to establish communication
among drones) with unique directions {θi}M

i=1, amplitudes {ai}M
i=1, and temporal variables

{ωi}M
i=1 s.t. −2π fi ≤ ωi < 2π fi, where fi is the unique temporal frequency in each drone.

Thus, the assumptions are made so that each drone could communicate using a unique RF
beacon modulated at a low-rate digital waveform that carries a unique binary identification
code. If x(u)(t) = [x(0, t), x(1, t), · · · , x(M− 1, t)]T—say x(u) denotes the source signal
of drone u at time t, then the array received N-beamformed signal of drone u at time t,

i.e., y(u)(ωi, ai, θi, t) =
N−1,M

∑
k=0,i=1

aiej(ωit−kωiψi)x(u) + (u), where ψi = 2π d
λ sin(θi), λ denotes

the wavelength of the incident signal, and (u)(t) = [n0(t), n1(t), · · · , nN−1(t)]
T—say (u)

as the additive white Gaussian noise (AWGN), takes the vector form y(u)(ωi, ai, θi, t) =

[y(0, t), y(1, t), · · · , y(N − 1, t)]T—referred to as y(u). Now, for all u’s we can rewrite y(u)’s
as a collection of matrix–vector products describing a MIMO beamforming model, and for
each drone, u, described via:

y(u) = V(u)
ki · S

(u)
i · x

(u) + (u), (1)
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where V(u)
ki =

[
e−jkωiψi

]N−1,M

k=0,i=1
is an N ×M matrix determined by spatial and temporal

frequencies of each drone u, which we call a frequency Vandermonde matrix, j2 = −1, and
S(u)

i = [aiejωit]Mi=1 is an M×M matrix consisting of temporal frequencies and amplitudes

(Recall that V(u)
ki · S

(u)
i is called the array manifold matrix). Thus, we will have a set of M

systems of equations, and for each drone u we have a system of N equations as given in (1).
The simplest example case of the Equation (1) can be described as having three drones

with each consisting of four elements in the antenna array. Thus, we could see the overall
system as a collection of three systems with each consisting of four sets of equations. Thus,
if each drone received signals from other drones (while communicating with itself and the
other two), the collection of 12-beamformed signals (4-beamformed signals per drone) can
be put into a collection of matrix–vector form as follows

y(1)
4×1

y(2)
4×1

y(3)
4×1

 =


[
V(1)

ki · S
(1)
i

]3,3

k=0,i=1
0 0

0
[
V(2)

ki · S
(2)
i

]3,3

k=0,i=1
0

0 0
[
V(3)

ki · S
(3)
i

]3,3

k=0,i=1


12×9

x(1)3×1

x(2)3×1

x(3)3×1

+


(1)
4×1


(2)
4×1


(3)
4×1

, (2)

where 0 denotes zero matrices.
Following the proposed model (1), we state a simple algorithm (Algorithm 1) to

present N-beamformed received signals for each drone u at time t, i.e., y(u)(ωi, ai, θi, t),
where x(u)(t) denotes the source signal of drone u at time t.

Algorithm 1 Multi-beam beamforming-based AUAS swarm routing algorithm
Input: M, N, fi, and t.
Output: y(1), y(2), · · · , y(M).

1. for i = 1 to M
compute θi, ai, ωi, and ψi

2. for u = 1 to M
compute x(u) at t

3. for u = 1 to M
for k = 1 to N

for i = 1 to M
construct S(u)

i and V(u)
ki

end for i
end for k

z(u) ← S(u)
i · x

(u)

y(u) ← V(u)
ki · z

(u)

end for u

4. return y(1), y(2), · · · , y(M)

For further clarification, we present a flowchart corresponding to the AUAS swarm
model followed by the algorithm as shown in Figure 1.
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Figure 1. This flowchart depicts the execution of the proposed AUAS swarm routing algorithm
followed by the model (1).

3. Results

In this section, we first present the received N-beamformed array of signals in each
drone at different time stamps to assess the performance of the proposed mathematical
model. Next, we show numerical results based on the computational complexity of the
proposed AUAS swarm routing algorithm and show that it is compatible with the analytical
arithmetic complexity. Finally, we show the BER results of the proposed routing algorithm
to understand the communication among drones in the swarm.

3.1. Beamfomed Output of the AUAS Swarm Routing Model

In order to understand the error threshold of the proposed AUAS swarm rout-
ing model, we compare the N-beamformed signals in antenna arrays of each drone at

time t with a ground-truth activation function γu,i,k(t) =
M

∑
i=1

sin(2π(βu,i,k + t)), where

βu,i,k is the distance from drone u’s kth antenna element to each antenna element of
drone i at time t. As we have taken the activation function in terms of sine, and beam-
formed outputs are complex-valued vectors, for the generation of Figure 2, we com-
pare the activation function with the magnitude of the beamformed output vector times
the sine value of the phase of the beamformed output of all drones in spatial arrange-
ments of drones at a given time experienced by each element of the antenna array, i.e.,
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M

∑
i=1
|y(u)| · sin

(
arctan

(
Imag(V(u)

ki · S
(u)
i · x

(u)), Real(V(u)
ki · S

(u)
i · x

(u))
))

. For the generation

of Figure 2, we have assumed that each drone is spatially arranged equidistantly along the
circumference of a circle whose radius is one spatial unit such that the angle α from the
center of the circular formation to drone u is α

(u)
i = 2π

M i, where the center of the formation

is the origin so that each drone u’s spatial coordinates are
(

x(u), y(u)
)
=
(

cos α(u), sin α(u)
)

.
Moreover, we assume that the amplitude of the received signal of drone i from drone u is
a(u)i = 1 and each drone’s linear N-element antenna array is oriented horizontally, such that

an antenna k’s spatial coordinates of drone u are
(

x(u) + d(k− 1), y(u)
)

, where d = 0.01 is
the inter-element distance of the antenna arrays. Thus, Figure 2 depicts the N-beamformed
signals (color codes to show the strength of the signals) in antenna arrays of M number of
drones (without having base station communication) at time steps t = 0, 0.1, 0.2, ...0.9, i.e.,
y(u)(ωi, ai, θi, t) when u and i runs from 1, 2, · · · , M and M = N = 8.

(a) (b)

Figure 2. (a) depicts the beamformed signals of the AUAS swarm routing algorithm y(u)(ωi, ai, θi, t)
over 10 time steps with 0.1 per time step, where each drone u in the circular spatial arrangement is
represented along the Drone Index axis, and its N-element antenna array is represented along the
Antenna Element Index axis. Note that this figure is not a direct representation of physical space; but
rather summarizes results from the perspective of many drones in a single figure, with each drone’s
data stacked along the Drone Index axis, and (b) illustrates signals corresponding to the output of the
ground-truth activation function γu,i,k(t) over 10 time steps with 0.1 per time step.

Next in Figure 3; (a)–(l), we show the 2D projections of 3D views of the N-beamformed
signals in antenna arrays of M number of drones at time t and the ground-truth signals
of the activation function at a time t extending the illustration in Figure 2 with different
M and N values. As shown in Figure 3; (a)–(h), the beamformed output of the proposed
AUAS swarm algorithm shows similar results as the ground-truth signals of the activation
function except for a few beamformed signals, and the effect becomes minor when the
number of drones increases. When we fix the number of drones and increase the number
of elements in the antenna arrays at t = 0, say M = 128 or 256 as in Figure 3; (g)–(l), the
beamformed output of the proposed AUAS swarm algorithm does not show favorable
results with the ground-truth signals of the activation function as in the N = 8 case, but
not significantly. Thus, we will explore the deviations of the beamformed output of the
proposed model and activation function as in Section 4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 3. A comparison between the beamformed output of the proposed AUAS swarm model and
ground-truth bluevalues having a different number of drones and different numbers of elements in



Electronics 2022, 11, 3023 8 of 14

the antenna array in the spatial arrangement specified in the results section at t = 0. blue Subfigures
(a–h) show the 2D projections of 3D views of the 8-beamformed signals of 8-element antenna arrays in
8, 32, 128, or 256 drones vs. the ground-truth signals at time t. Subfigures (i–l) show the 2D projections
of 3D views of the 16-beamformed signals of 16-element antenna arrays in 128, or 256 drones vs. the
ground-truth signals at time t.

3.2. Complexity of the AUAS Swarm Routing Algorithm

In this section, we will discuss the arithmetic and computational complexity of the
proposed AUAS swarm routing algorithm. Let us start with the arithmetic complexity of
the proposed algorithm.

Proposition 1. The arithmetic complexity of the algorithm corresponding to the AUAS swarm
model (1) having M number of drones, and each drone consisting of a uniform linear array with
N-elements is O(NM2).

Proof. We have M-sets of N-beamformed signals of M-drones, i.e., [y(1), y(2), · · · , y(M)] as
the columns of a throughput matrix to navigate the AUAS swarm. As each N-beamformed
signal y(u) correspondences to each drone described via (1), the computation of the through-
put matrix cost O(NM2).

Figures 4 and 5 show the proportionality between the arithmetic and computational
complexities of the proposed AUAS swarm routing algorithm. Figure 4 depicts the execution
time, algorithmic additions, and algorithmic multiplications of the proposed algorithm based
on the code written in Python. The x-axis and y-axis show the number of drones and the
complexity of the graph, respectively. Each line in the graphs shows the number of elements
in the antenna arrays which are 64, 32, 16, 8, and 4 from top to bottom. Thus, it is evident that
the execution time is directly proportional to the arithmetic complexity as in Proposition 1. For
a better visual purpose in showing the algorithmic complexity variation based on the elements
of the antenna array, we present Figure 5 on a logarithmic scale. Based on this figure, the
computational complexity, algorithmic additions, and algorithmic multiplications increase
as the number of drones and/or elements of the antenna arrays increases, and hence the
computational complexity is proportional to the arithmetic complexity in Proposition 1.

(a) (b)

(c) (d)

Figure 4. Using the code written in Python: (a) shows the number of algorithmic multiplications
involved in computing the non-optmized AUAS algorithm; (b) shows the number of algorithmic
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additions; (c) shows the number of algorithmic multiplications on a log-scaled graph; and (d) shows
the number of algorithmic additions on a log-scaled graph of the proposed AUAS swarm routing
algorithm. Each line in the subfigures (a–d) shows the number of elements in the antenna arrays
which are 64, 32, 16, 8, and 4, and varies from top to bottom, respectively.

(a) (b)

Figure 5. Using the code written in Python: (a) shows the execution time; and (b) shows the execution
time on a log-scaled graph. Each line in the subfigures (a) and (b) shows the number of elements in
the antenna arrays which are 64, 32, 16, 8, and 4, and varies from top to bottom, respectively.

Remark 1. Although particle swarm optimization is a popular stochastic optimization method,
it may not always provide low-complexity routing algorithms [45,46]. Authors in [47] compared
the performance of the particle swarm optimization and differential evolution techniques to find
delivery routings with minimum travel distances with quadratic complexity in time and space. This
complexity is calculated based on a spatial distance matrix from the deployment to the landing. Thus,
once the AUAS swarm is deployed based on the proposed model, the proposed algorithm also has
quadratic complexity in time as in Proposition 1 because N remains a constant after deployment.

3.3. Bit-Error-Rate Based on the AUAS Swarm Routing Model

We use the BER to understand the mutual communication among drones as it gives
a measurement of bits that have errors relative to the total number of bits received in a
transmission (usually denoted by ten to a negative power). Following [48], we have shown
the BER of the proposed AUAS swarm routing algorithm over a collection of signal-to-
noise ratios (SNR). As shown in Figure 6, when SNR increases, the BER displays constant
behavior, and hence implies that there is a communication loss or delay among drones.
The simulated BER is calculated using the beamformed output signals y(u) and source
signals x(u) multiplied by an offset factor 1.022 for 20 drones, each having an antenna array
with 32 elements. If the magnitude of the beamformed output vector y(u) is greater than the
magnitude of the source signal vector x(u), then we set the bit value to zero and otherwise
the bit value to one (this is undertaken to convert the vector quantities into bits). Next, the
AWGN is added to y(u) in order to introduce noise to the beamformed output signal. The
AWGN is calculated as 1√

2
n, where n is a randomly generated complex number. Following

this, the positive real part of the beamformed output signal y(u) is compared with the bit
value conversions. The BER is encountered when these quantities are different. These
bit-errors are summed and divided by the number of bits in the transmit signal and show
the resulted BER over SNR as in Figure 6.
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Figure 6. This shows the BER of the proposed AUAS swarm routing algorithm over a collection
of signal-to-noise ratios (expressed as Eb/N0, where Eb is the energy in one bit (Joules) and N0 is
the noise power spectral density (Watts per Hertz)). The x-axis and y-axis represent a collection of
signal-to-noise ratios measured in decibels and BER on a logarithmic scale, respectively.

4. Discussion

In this section, we discuss the variation of the graphs for the beamformed output of
the proposed AUAS swarm model with the ground-truth activation function as shown
in Section 3. We sum up the discussion to obtain a low-cost AUAS swarm routing algo-
rithm exploring the structures of the matrices and ML algorithms. For the purposes of
understanding the variation of beamformed output of the proposed AUAS swarm model
with the ground-truth activation function in Figure 3, we utilize min–max normalization
following the formula y′ = y−ymin

ymax−ymin
, where y is a scalar value in y(u) or γu,i,k(t), ymin is

the minimum scalar element of the tensor that contains each drone u’s beamformed signal
y(u) for each time t or ground-truth signal γu,i,k(t) for each time, ymax is the maximum
scalar value from this tensor, and y′ is the input value normalized to fall between the range
[0, 1] [49].

Figure 7 shows the consistency between the beamformed output of the proposed
model and the ground activation function. The magnitude of error depicted for higher
values of k (i.e., number of elements in the antenna array) will not occur in practice because
dk represents the positive horizontal offset of any antenna array element k from the center
of the drone’s spatial coordinate. We measure the difference between the imaginary part
of the beamformed output and the activation function and the magnitude of it as shown
in Figure 7c,d, respectively. The robust accuracy of the proposed algorithm shows small
k values, which we mostly see in practice. Thus, the proposed AUAS swarm routing
algorithm is useful as a heuristic, e.g., as a metric to sort a collection of neighboring drones
according to their connection strength with any particular drone. The difference between a
collection of ground-truth signals and the output beamformed signals of the AUAS swarm
model would increase as the number of elements in the antenna arrays, i.e., N increases
and/or the offset size dk increases but remains consistent even for large spatial drone
arrangements. Thus, we will seek artificial-neural-network-based ML algorithms for the
completion of the frequency Vandermonde matrices defined via spatial and temporal data
to obtain a closed-form algorithm (while reducing the error as best as possible) and hence
to navigate a massive collection of AUAS in real-time, in future.
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(a) (b)

(c) (d)

Figure 7. We show how the beamformed output of the AUAS swarm routing model diverges from
the ground-truth signal, especially based on a large number of elements in the antenna arrays, i.e.,
N = 256 (to show the worst possible case): (a) shows the expected ground-truth signal; (b) shows the
imaginary component of the beamformed output signal; (c) shows the differences in (a) and (b); and
(d) shows the magnitude of the difference between (a) and (b).

Extending the future work, we have observed that in the AUAS swarm model (1),
the most expensive calculation occurs in the brute-force computation of the matrix–vector
products. Although S(u)

i is a diagonal matrix, V(u)
ki is a dense matrix. Fortunately, V(u)

ki is a
Vandermonde structured matrix having nodes {e−jωiψi}M

i=1. Thus, in future, we will use the

M-set of N-beamformed signal of M drones at time t, i.e.,
[
y(1) y(2) · · · y(M)

]
as the columns

of a throughput matrix and optimize the routing of AUAS swarm using low-complexity
multi-beam beamforming algorithms described in [50–52]. For fast missing data inference,
we will propose to explore the inherent data relation between vectors in consecutive time
frames to quickly fill in the missing data in the new time slot using a vector autoregression
method followed by a product of highly sparse and low-rank matrices to estimate the
transition matrices V̂(u)

ki characterizing the interaction among different components.

5. Conclusions

We have integrated communication and sensor arrays to propose a mathematical
model to route a collection of AUAS, without having a base station of communication
but by communicating with each other using multiple spatio-temporal data. The theories
of structured matrices, concepts in multi-beam beamforming, and sensor arrays were
utilized to propose a swarm routing algorithm. We have addressed the routing algorithm’s
computational and arithmetic complexities, precision, and reliability. We have measured
BER based on the number of elements in sensor arrays and beamformed output of the
members of the swarm to authenticate and secure the routing for the decentralized AUAS
networking. Finally, we have discussed future work on obtaining an ML-based low-cost
AUAS swarm routing algorithm.



Electronics 2022, 11, 3023 12 of 14

Author Contributions: Conceptualization, S.M.P.; theory, S.M.P.; software, R.J.M.; validation, S.M.P.,
R.J.M., K.S. and K.B.; formal analysis, S.M.P. and R.J.M.; investigation, S.M.P. and A.M.; resources,
S.M.P. and H.S.; data curation, S.M.P. and R.J.M.; writing—original draft preparation, S.M.P., R.J.M.,
K.S., K.B. and H.S.; writing—review and editing, S.M.P. and H.S.; visualization, R.J.M., K.S. and K.B.;
supervision, S.M.P.; project administration, S.M.P. and H.S.; funding acquisition, H.S. and S.M.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Science Foundation under Grant
No. 2150213.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In the future, we will provide data in the public domain using a
GitHub account.

Acknowledgments: The authors would like to thank Jian Wang for the discussions on BER analysis.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AUAS Autonomous Unmanned Aerial Systems
BER Bit-error-rate
DNN Deep neural network
ML Machine learning
CSI Channel state information
DSP Digital signal processing
MUSIC Multiple Signal Classification
ESPRIT Estimation of Signal Parameters via Rotational Invariance Technique
AI Artificial Intelligence
MIMO Multiple-input multiple-output
AODV ad-hoc on-demand distance vector

References
1. Chung, S.J.; Paranjape, A.A.; Dames, P.; Shen, S.; Kumar, V. A Survey on Aerial Swarm Robotics. IEEE Trans. Robot. 2018,

34, 837–855. [CrossRef]
2. Tahir, A.; Böling, J.; Haghbayan, M.H.; Toivonen, H.T.; Plosila, J. Swarms of Unmanned Aerial Vehicles—A Survey. J. Ind. Inf.

Integr. 2019, 16, 100106. [CrossRef]
3. Elastic Tactical Networking for Autonomous Swarms. 2017. Available online: https://govtribe.com/opportunity/federal-

contract-opportunity/elastic-tactical-networking-for-autonomous-swarms-fa875018s7004 (accessed on 4 January 2021).
4. Huang, Y.; Wu, Q.; Wang, T.; Zhou, G.; Zhang, R. 3D Beam Tracking for Cellular-Connected UAV. IEEE Wirel. Commun. Lett. 2020,

9, 736–740. [CrossRef]
5. Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutorials

2016, 18, 1617–1655. [CrossRef]
6. Lin, Z.; Lin, M.; de Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT With Rate-Splitting Multiple Access in Satellite and

Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [CrossRef]
7. Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay

Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [CrossRef]
8. Huang, Q.; Lin, M.; Wang, J.B.; Tsiftsis, T.A.; Wang, J. Energy Efficient Beamforming Schemes for Satellite-Aerial-Terrestrial

Networks. IEEE Trans. Commun. 2020, 68, 3863–3875. [CrossRef]
9. Lin, Z.; Lin, M.; Zhu, W.P.; Wang, J.B.; Cheng, J. Robust Secure Beamforming for Wireless Powered Cognitive Satellite-Terrestrial

Networks. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 567–580. [CrossRef]
10. An, K.; Liang, T. Hybrid Satellite-Terrestrial Relay Networks With Adaptive Transmission. IEEE Trans. Veh. Technol. 2019,

68, 12448–12452. [CrossRef]
11. Jia, M.; Zhang, X.; Gu, X.; Guo, Q.; Li, Y.; Lin, P. Interbeam Interference Constrained Resource Allocation for Shared Spectrum

Multibeam Satellite Communication Systems. IEEE Internet Things J. 2019, 6, 6052–6059. [CrossRef]
12. Li, B.; Fei, Z.; Chu, Z.; Zhou, F.; Wong, K.K.; Xiao, P. Robust Chance-Constrained Secure Transmission for Cognitive Satel-

lite–Terrestrial Networks. IEEE Trans. Veh. Technol. 2018, 67, 4208–4219. [CrossRef]

http://doi.org/10.1109/TRO.2018.2857475
http://dx.doi.org/10.1016/j.jii.2019.100106
https://govtribe.com/opportunity/federal-contract-opportunity/elastic-tactical-networking-for-autonomous-swarms-fa875018s7004
https://govtribe.com/opportunity/federal-contract-opportunity/elastic-tactical-networking-for-autonomous-swarms-fa875018s7004
http://dx.doi.org/10.1109/LWC.2020.2968312
http://dx.doi.org/10.1109/COMST.2016.2532458
http://dx.doi.org/10.1109/JIOT.2021.3051603
http://dx.doi.org/10.1109/TAES.2022.3155711
http://dx.doi.org/10.1109/TCOMM.2020.2978044
http://dx.doi.org/10.1109/TCCN.2020.3016096
http://dx.doi.org/10.1109/TVT.2019.2944883
http://dx.doi.org/10.1109/JIOT.2018.2870878
http://dx.doi.org/10.1109/TVT.2018.2791859


Electronics 2022, 11, 3023 13 of 14

13. Du, J.; Jiang, C.; Zhang, H.; Wang, X.; Ren, Y.; Debbah, M. Secure Satellite-Terrestrial Transmission Over Incumbent Terrestrial
Networks via Cooperative Beamforming. IEEE J. Sel. Areas Commun. 2018, 36, 1367–1382. [CrossRef]

14. Messous, M.A.; Arfaoui, A.; Alioua, A.; Senouci, S.M. A Sequential Game Approach for Computation-Offloading in an UAV
Network. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December
2017; pp. 1–7. [CrossRef]

15. Li, B.; Fei, Z.; Zhang, Y.; Guizani, M. Secure UAV Communication Networks over 5G. IEEE Wirel. Commun. 2019, 26, 114–120.
[CrossRef]

16. Zhou, F.; Hu, R.Q.; Li, Z.; Wang, Y. Mobile Edge Computing in Unmanned Aerial Vehicle Networks. IEEE Wirel. Commun. 2020,
27, 140–146. [CrossRef]

17. Li, B.; Fei, Z.; Zhang, Y. UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet Things J.
2019, 6, 2241–2263. [CrossRef]

18. Secinti, G.; Darian, P.B.; Canberk, B.; Chowdhury, K.R. SDNs in the Sky: Robust End-to-End Connectivity for Aerial Vehicular
Networks. IEEE Commun. Mag. 2018, 56, 16–21. [CrossRef]

19. Sun, X.; Yang, W.; Cai, Y. Secure Communication in NOMA-Assisted Millimeter-Wave SWIPT UAV Networks. IEEE Internet
Things J. 2020, 7, 1884–1897. [CrossRef]

20. Restuccia, F.; Medlodia, T. Deep Learning at the Physical Layer: System Challenges and Applications to 5G and Beyond. IEEE
Commun. Mag. 2020, 58, 58–64. [CrossRef]

21. He, R.; Dingm, Z. (Eds.) Applications of Machine Learning in Wireless Communications; ProQuest Ebook Central: 2019. Available
online: https://app.knovel.com/kn/resources/kpAMLWC004/toc (accessed on 20 August 2022).

22. Eugenio, M.; Cayamcela, M.; Lee, H.; Lim, W. Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential,
Limitations, and Future Directions. IEEE Access 2019, 7, 137184–137206.

23. Jagannath, J.; Polosky, N.; Jagannath, A.; Restuccia, F.; Melodia, T. Machine Learning Paradigms for Next-Generation Wireless
Networks. IEEE Wirel. Commun. 2017, 24, 98–105.

24. Jagannath, J.; Polosky, N.; Jagannath, A.; Restuccia, F.; Melodia, T. Machine learning for wireless communications in the Internet
of Things: A comprehensive survey. Ad Hoc Netw. 2019, 93, 101913. [CrossRef]

25. Wen, C.; Shih, W.; Jin, S. Deep learning for massive MIMO CSI feedback. IEEE Wireless Commun. Lett. 2018, 7, 748–751. [CrossRef]
26. Jang, J.; Lee, H.; Hwang, S.; Ren, H.; Lee, I. Deep learning-based limited feedback designs for MIMO systems. IEEE Wireless

Commun. Lett. 2020, 9, 558–561. [CrossRef]
27. Lu, C.; Xu, W.; Shen, H.; Zhu, J.; Wang, K. MIMO channel information feedback using deep recurrent network. IEEE Commun.

Lett. 2019, 23, 188–191. [CrossRef]
28. Guo, J.; Yang, X.; Wen, C.; Jin, S.; Li, G. DL-based CSI feedback and cooperative recovery in massive MIMO. arXiv 2020,

arXiv:2003.03303.
29. Sohrabi, F.; Attiah, K.M.; Yu, W. Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive

MIMO. arXiv 2020, arXiv:2007.06512v1.
30. Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [CrossRef]
31. He, Z.; Liu, Q.; Jin, L.; Ouyang, S. Low complexity method for DOA estimation using array covariance matrix sparse representation.

Electron. Lett. 2013, 49, 228–230. [CrossRef]
32. Richard Roy, T.K. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech, Signal

Process. 1989, 37, 984–995.
33. Yin, J.; Chen, T.Q. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Trans. Signal

Process. 2011, 59, 4489–4493. [CrossRef]
34. Lin, B.; Liu, J.; Xie, M.; Zhu, J. Sparse Signal Recovery for Direction-of-Arrival Estimation Based on Source Signal Subspace.

J. Appl. Math. 2014, 2014, 101–111. [CrossRef]
35. He, Z.; Shi, Z.; Huang, L.; So, H. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting.

IEEE Signal Process. Lett. 2015, 22, 435–439. [CrossRef]
36. Si, W.; Qu, X.; Qu, Z. Off-Grid DOA Estimation Using Alternating Block Coordinate Descent in Compressed Sensing. Sensors

2015, 15, 21099–21113. [CrossRef]
37. Sun, F.; Lan, P.; Gao, B. Partial spectral search-based DOA estimation method for co-prime linear arrays. Electron. Lett. 2015,

51, 2053–2055. [CrossRef]
38. Sohrabi, F.; Attiah, K.M.; Yu, W. The Real-Valued Sparse Direction of Arrival (DOA) Estimation Based on the Khatri-Rao Product.

Sensors 2016, 16, 693.
39. Sun, F.; Gao, B.; Chen, L.; Lan, P. A Low-Complexity ESPRIT-Based DOA Estimation Method for Co-Prime Linear Arrays. Sensors

2016, 16, 1367. [CrossRef]
40. Yang, X.; Li, Z.; Ge, X. Deployment Optimization of Multiple UAVs in Multi-UAV Assisted Cellular Networks. In Proceedings of

the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October
2019; pp. 1–7. [CrossRef]

41. Wang, J.; Liu, Y.; Amal, A.; Song, H.; Stansbury, R.S.; Yuan, J.; Yang, T. Fountain Code Enabled ADS-B for Aviation Security
and Safety Enhancement. In Proceedings of the 2018 IEEE 37th International Performance Computing and Communications
Conference (IPCCC), Orlando, FL, USA, 17–19 November 2018; pp. 1–7.

http://dx.doi.org/10.1109/JSAC.2018.2824623
http://dx.doi.org/10.1109/GLOCOM.2017.8253967
http://dx.doi.org/10.1109/MWC.2019.1800458
http://dx.doi.org/10.1109/MWC.001.1800594
http://dx.doi.org/10.1109/JIOT.2018.2887086
http://dx.doi.org/10.1109/MCOM.2017.1700456
http://dx.doi.org/10.1109/JIOT.2019.2957021
http://dx.doi.org/10.1109/MCOM.001.2000243
https://app.knovel.com/kn/resources/kpAMLWC004/toc
http://dx.doi.org/10.1016/j.adhoc.2019.101913
http://dx.doi.org/10.1109/LWC.2018.2818160
http://dx.doi.org/10.1109/LWC.2019.2962114
http://dx.doi.org/10.1109/LCOMM.2018.2882829
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1049/el.2012.4032
http://dx.doi.org/10.1109/TSP.2011.2158425
http://dx.doi.org/10.1155/2014/530413
http://dx.doi.org/10.1109/LSP.2014.2358084
http://dx.doi.org/10.3390/s150921099
http://dx.doi.org/10.1049/el.2015.2261
http://dx.doi.org/10.3390/s16091367
http://dx.doi.org/10.1109/WCSP.2019.8928128


Electronics 2022, 11, 3023 14 of 14

42. Leonov, A.V.; Litvinov, G.A. Applying AODV and OLSR routing protocols to air-to-air scenario in flying ad hoc networks
formed by mini-UAVs. In Proceedings of the 2018 Systems of Signals Generating and Processing in the Field of on Board
Communications, Moscow, Russia, 14–15 March 2018; pp. 1–10.

43. Wang, J.; Liu, Y.; Niu, S.; Song, H. 5G-enabled Optimal Bi-Throughput for UAS Swarm Networking. In Proceedings of the 2020
International Conference on Space-Air-Ground Computing (SAGC), Beijing, China, 4–6 December 2020; pp. 43–48. [CrossRef]

44. Wang, J.; Liu, Y.; Niu, S.; Song, H. Extensive Throughput Enhancement For 5G Enabled UAV Swarm Networking. IEEE J.
Miniaturization Air Space Syst. 2021, 2, 199–208. [CrossRef]

45. Kassabalidis, I.; El-Sharkawi, M.; Marks, R.; Arabshahi, P.; Gray, A. Swarm intelligence for routing in communication networks.
In Proceedings of the GLOBECOM’01, IEEE Global Telecommunications Conference (Cat. No.01CH37270), Rio de Janeiro, Brazil,
4–8 December 2001; Volume 6, pp. 3613–3617. [CrossRef]

46. Sohail, M.S.; Saeed, M.O.B.; Rizvi, S.Z.; Shoaib, M.; Sheikh, A.U.H. Low-Complexity Particle Swarm Optimization for Time-Critical
Applications. arXiv 2014, arXiv:1401.0546.

47. Wisittipanich, W.; Phoungthong, K.; Srisuwannapa, C.; Baisukhan, A.; Wisittipanit, N. Performance Comparison between Particle
Swarm Optimization and Differential Evolution Algorithms for Postman Delivery Routing Problem. Appl. Sci. 2021, 11, 2703.
[CrossRef]

48. Ali, I. Bit-Error-Rate (BER) Simulation Using MATLAB. Int. J. Eng. Res. Appl. 2013, 3, 706–711.
49. Mazziotta, M.; Pareto, A. Normalization methods for spatio-temporal analysis of environmental performance: Revisiting the

Min–Max method. Environmetrics 2022, 33, e2730. [CrossRef]
50. Perera, S.; Ariyarathna, V.; Udayanga, N.; Madanayake, A.; Wu, G.; Belostotski, L.; Cintra, R.; Rappaport, T. Wideband N-beam

Arrays with Low-Complexity Algorithms and Mixed-Signal Integrated Circuits. IEEE J. Sel. Top. Signal Process. 2018, 12, 368–382.
[CrossRef]

51. Perera, S.M.; Madanayake, A.; Cintra, R. Efficient and Self-Recursive Delay Vandermonde Algorithm for Multi-beam Antenna
Arrays. IEEE Open J. Signal Process. 2020, 1, 64–76. [CrossRef]

52. Perera, S.M.; Madanayake, A.; Cintra, R. Radix-2 Self-recursive Algorithms for Vandermonde-type Matrices and True-Time-Delay
Multi-Beam Antenna Arrays. IEEE Access 2020, 8, 25498–25508. [CrossRef]

http://dx.doi.org/10.1109/SAGC50777.2020.00019
http://dx.doi.org/10.1109/JMASS.2021.3067861
http://dx.doi.org/10.1109/GLOCOM.2001.966355
http://dx.doi.org/10.3390/app11062703
http://dx.doi.org/10.1002/env.2730
http://dx.doi.org/10.1109/JSTSP.2018.2822940
http://dx.doi.org/10.1109/OJSP.2020.2991586
http://dx.doi.org/10.1109/ACCESS.2020.2970342

	Introduction
	MIMO Beamforming-Based Mathematical Model and Routing Algorithm to Navigate a Collection of AUAS
	Results
	Beamfomed Output of the AUAS Swarm Routing Model
	Complexity of the AUAS Swarm Routing Algorithm
	Bit-Error-Rate Based on the AUAS Swarm Routing Model

	Discussion
	Conclusions
	References

