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Abstract: Deep learning is used for automatic modulation recognition in neural networks, and
because of the need for high classification accuracy, deeper and deeper networks are used. However,
these are computationally very expensive for neural network training and inference, so its utility in
the case of a mobile with memory limitations or weak computational power is questionable. As a
result, a trade-off between network depth and network classification accuracy must be considered. To
address this issue, we used a knowledge distillation method in this study to improve the classification
accuracy of a small network model. First, we trained Inception–Resnet as a teacher network, which
has a size of 311.77 MB and a final peak classification accuracy of 93.09%. We used the method to
train convolutional neural network 3 (CNN3) and increase its peak classification accuracy from 79.81
to 89.36%, with a network size of 0.37 MB. It was also used similarly to train mini Inception–Resnet
and increase its peak accuracy from 84.18 to 93.59%, with a network size of 39.69 MB. When we
compared all classification accuracy peaks, we discover that knowledge distillation improved small
networks and that the student network had the potential to outperform the teacher network. Using
knowledge distillation, a small network model can achieve the classification accuracy of a large
network model. In practice, choosing the appropriate student network based on the constraints of the
usage conditions while using knowledge distillation (KD) would be a way to meet practical needs.

Keywords: modulation recognition; knowledge distillation; teacher-student framework; convolu-
tional neural network

1. Introduction

A wealth of specialized expertise has become available in the field of communications
due to the rapid development of communication technology, which ensures the accurate
transfer of data. It is a complex and mature engineering field with many distinct areas of
investigation that have all seen diminishing returns in improved performance, particualrly
on the physical layer [1]. Modulation types of communication signals diversify and become
more complex along with the wireless communication environment, which puts increased
demand on the modulation identification of signals. Deep learning is brought into signal
modulation identification by employing convolutional neural network (CNN) approach to
identify the modulation types of signals in order to further explore and solve the problem
of modulation recognition.

New classification problems have arisen as a result of emerging wireless technology,
which means that automatic modulation classification (AMC) in real-world environments
continues to be a dynamic research field [2]. A DL-based (or processing block) that does
not require a mathematically tractable model and channel might be able to optimize the
function of a communications system better [1], so deep learning is useful for solving the
problem of new modulation recognition. Initially, neural networks in combination with
complex-valued temporal data, was investigated, and it was demonstrated that network
depth does not limit wireless modulation recognition. Therefore, and it was suggested that
future research focus on synchronization and equalization. Refs. [3–5] Deep learning in
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underwater communication scenarios, as well as multipath scenarios with blind channels
for collaborative modulation classification problems, have been investigated. Refs. [6,7]
The researchers continued to use deep networks, introduced advanced networks, changed
the input data, and used spectrograms to improve recognition accuracy, achieving a peak
classification accuracy of 93% [8–11].

The Ref. [12] mainly focused on the mixed data of the primary modulation and remod-
ulation signals and studied the modulation recognition algorithm based on a combination
of a CNN and a signal cyclic spectrum image. An edge intelligence algorithm of a CNN,
based on an attention mechanism, was developed to carry out modulation recognition (MR)
of the edge signal and bring MR closer to the antenna terminal [13]. Snoap et al. considered
the problem of deep-learning-based classification of digitally modulated signals using I/Q
data and studied the generalization ability of a trained neural network (NN) to classify
digitally modulated signals correctly [14].

Deeper and deeper networks are used to pursue high classification MR accuracy, along
with large computations and model storage. In practical inference, a balance between
classification accuracy and network model size should be maintained. The model should
be as small as possible, so the effect can be as good as possible. Current AMC research is
based primarily on very deep networks, and while these models achieve high performance
accuracy, the high cost of training these models raises concerns about their suitability for
mobile deployment.

With the development of the NPU (Neural network Processing Unit), massively
parallel processing architectures with distributed memory architectures—such as graphic
processing units (GPUs) and increasingly specialized chips for NN inference [15]—have
proven to be energy efficient and capable of impressive computational throughput when
fully used by concurrent algorithms [16]. Engineers and developers frequently have to
work within a limited time budget in industrial and commercial scenarios [17], so the NN
model size, computing effort, and operating time must all be taken into account. The goal
is to classify automatic modulation accurately in the simplest way possible using accessible
and less expensive devices such as smartphones or embedded devices.

Knowledge distillation (KD) is used in this paper to improve the accuracy of small
models to allow for faster and smaller memory occupation during the inference deployment
phase. In KD, a high-precision large-scale network is first trained, and then it is used to
induce the training of the small network to improve its classification accuracy, which is also
known as “compression of the large model” or “knowledge migration” [18].

In various machine learning applications—object detection, acoustical modeling and
natural language processing—KD has been used successfully [19]. Some studies are related
to our work with KD in real-life scenarios (e.g., skin cancer classification [20], autonomous
vehicles [21], drowsiness detection [22] and human activity recognition) [23]. The applica-
tions of KD are hardly explored in the AMC domain, and how KD translates in it remains
an open question. If KD could be used efficiently, it would reduce the complexity and
computing expense considerably. There are also other model complexity reduction methods
such as quantization [24] and pruning [25]. Quantization approximates a trained neural
network with low bit width numbers to reduce the memory requirement and computing
cost. It is also applicable after training deep NNs via pruning or KD. In pruning, an NN
is made smaller and efficient by eliminating the values of the weight tensors to derive a
computationally cost-efficient model. It is an expensive process since it requires multiple
pruning iterations to get the final model [26].

In this paper, we first investigated modulation recognition using CNNs then designed
Inception–Resnet deformation networks that can achieve high accuracy classification.
The classification accuracy of the student networks improved by using KD. To pick the
most appropriate values for the hyperparameters, we used repeated adjustments of the
hyperparameters T and α. When the best outcomes were compared to the network without
KD, the network with it had higher classification accuracy while maintaining the same
model size.
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The classification accuracy of NNs with three convolutional layers improved with
high-precision networks through knowledge distillation. Work related to neural networks
and knowledge distillation is introduced in Section 2. Experiments are set up in Section 3 to
train and test the proposed scheme, and the results were compared to select the best result.
In Section 4, the results of modulation recognition classification accuracy are compared
when KD was used and when it was not.

2. Materials and Methods
2.1. Basic Principle of Signal Modulation

Modulation identification means that for a given receive signal r(t), 0 <= t <= T, from
the set consisting of C possible modulation types {ω1, ω2, · · · , ωc}, the modulation type of
r(t) is selected and identified. AMC combines signal processing and pattern recognition,
but because communication signals and channel noise are typically modeled as stochastic
processes, they are coupled with unknown signal fading, multipath propagation, and
interference effects. As a result, modulation mode identification is essentially another
multiple unknown parameter with AMC, and it is very important in both collaborative and
non-collaborative domains.

If the channel is assumed to be ideal for a general signal model and carrier and
timing synchronization are not taken into account, the modulated signal can be uniformly
modeled as

r(i)(t) = [Ii(t) + jQi(t)]ej(2π fct+θ) + n(t), 0 <= t <= T, (1)

where i is the modulation type denote; r(i)(t) is the received complex signal; t denotes the
simulation time; n(t) denotes the noise during signal transmission; I(i)(t), Q(i)(t) denotes
the in-phase and quadrature components of the low-pass equivalent signal, respectively;
fc is the carrier frequency; θ is the initial phase of the carrier; and T is the observed
signal duration.

2.2. SNR and Accuracy

In digital signal processing (DSP) we deal with extremely big numbers and extremely
small numbers together (e.g., the strength of a signal compared to the strength of the noise).
The logarithmic scale of a dB lets us have more dynamic range when we express numbers
or plot them.

For a given value x, we can represent x in dB using the following formula:

xdb = 10log10x. (2)

The signal-to-noise ratio (SNR) is what we use measure the differences in strength
between the signal and noise, and in practice it is almost always in dB, in practice.

SNR = Psignal/Pnoise (3)

SNRdB = Psignal_dB − Pnoise_dB (4)

If someone says “SNR = 0 dB” it means the signal and noise power are the same. A
positive SNR means our signal is stronger than the noise, while a negative SNR means that
the noise is stronger. Detecting signals at a negative SNR is usually pretty tough.

To calculate accuracy, one needs to find the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) values. True positive indicates that the output of the
real class is yes, and the output of the predicted class is also yes, whereas true negative
indicates that the value of the real class and the value of the anticipated class are no. False
positive indicates that the real class is no while the predicted class is yes, whereas a false
negative indicates that the real class is yes but the expected class is no.

Because all samples were retrieved in this paper, only TP and FP were required: TP
indicated that the modulation predicted to be this modulation was this modulation. FP
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indicated that what was predicted to be a modulation was actually another. The accuracy
metrics is the ratio of correct predictions over the total number of predictions evaluated

Accuracy = TP/TP + FP (5)

2.3. CNN

A CNN is focused on handling data that has a grid-like structure. It shows that at least
one layer of the network uses special linear operations called convolutions rather than the
more common matrix multiplications [27].

In CNN terminology, the first parameter x of the convolution is usually called the
input and the second parameter w is called the kernel function. The structure of the
output is called the feature mapping. In general, when a computer processes data, time is
discretized so that the moment t can only take integer values, and assuming that both x
and w are defined at the integer moment t [27]. The convolution in discrete form is defined
as Equation (6):

s(t) = (x ∗ω)(t) =
∞

∑
a=−∞

x(a)ω(t− a). (6)

In machine learning, the kernel is usually a multidimensional array of parameters that
have been optimized by a learning algorithm, and input data are mostly arrays. Generally,
these multidimensional arrays are referred to as tensors. Convolutional operations are gen-
erally carried out in multiple dimensions in practical uses. For example, a two-dimensional
image I is taken as input and convolution is performed using a two-dimensional kernel K
as in Equation (7).

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n). (7)

The convolution is exchangeable, and we can equivalently write

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n). (8)

Convolutional operations can be used interchangeably because the relative inputs
of the kernels can be flipped. The libraries of neural networks, however, typically use
intercorrelation functions, which are nearly identical to convolutional operations but don’t
flip the kernels as (9), in the application of neural networks:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n), (9)

Figure 1 depicts a two-dimensional convolution. The convolution kernel is a 2 × 2
matrix, and the input data is a 3 × 4 matrix. A matrix of the same size as the convolution
kernel moves over the input data, which is multiplied by the data at the corresponding
position of the convolution kernel, and the product is added to produce a result. The
convolution result of the input data and the convolution kernel is represented by the result
matrix. Convolution refers to an operation that consists of multiple parallel kernals, because
a convolution with a single kernel can only extract one type of feature, despite the fact that
the kernel acts on multiple spatial locations, and we usually want each layer of the network
to extract multiple types of features at multiple locations [27].
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Figure 1. Two-dimensional convolution without kernel flipping.

A CNN, which is a deep-learning algorithm, can automatically classify and identify
features without any human intervention [28]. A visible trend in NNs for classification
is building deeper networks to learn more complex functions and hierarchical feature
relationships. Deep networks enable more complex functions to be learned more readily
from raw data [29]. Deep neural networks are typically used in three steps to solve
modulation classification problems. The first step is to design the network architecture.
The next is to train the network to select weights that minimize loss. The third is to validate
and test the network to solve the problem [30].

2.4. Residual Network

When deeper networks are able to start converging, a degradation problem is ex-
posed. When the network depth increases, accuracy becomes saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly, such degradation is not caused
by overfitting, and adding more layers to a suitably deep model leads to higher training
errors. The Ref. [31] addressed the degradation problem by introducing a deep residual
learning framework. Instead of hoping that each few stacked layers directly fit a desired
underlying mapping, they explicitly let these layers fit a residual mapping.

A deep residual learning framework is depicted in Figure 2. Following the activation
function, the input data matrix was processed in two parallel ways: one, to leave the data
unchanged and the other, to feed the data through two convolutional layers, and finally the
two parallel ways are summed and fed into the activation function. The original function
becomes Equation (10):

y = F (x, {Wi}) + x, (10)

where x and y are the input and output vectors of the layers. The function F (x, {Wi})
represents the residual mapping to be learned. The dimensions of x and F must be equal.
If this is not the case, we can perform a linear projection Ws by shortcut connections to
match the dimensions as Equation (11):

y = F (x, {Wi}) + Wsx, (11)

Ws is only used when matching dimensions [31].
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Relu activation

Relu activation

Conv

Conv

Figure 2. Residual network diagram.

Residual connections are inherently necessary for training very deep convolutional
models becasue they seem to improve the training speed greatly, which is a great argument
for their use [32].

2.5. Inception

The main idea of the Inception architecture is based on finding out how an optimal
local sparse structure in a convolutional vision network can be approximated and covered
by readily available dense components [33].

The Inception module with dimension reductions is depicted in Figure 3. It receives
data from the previous layer and processes it in four parallel ways into different convolution
channels for calculation; if the convolution channel is smaller than the input channel, the
data is downscaled. Finally, all output data channels are stitched together to produce the
final result. 1 × 1 convolutions are used to compute reductions before the expensive 3 × 3
and 5 × 5 convolutions. Besides being used as reductions, they also include the use of
rectified linear activation which makes 1 × 1 convolutions dual purpose: most critically, they
were used mainly as dimension reduction modules to remove computational bottlenecks
that would otherwise have limited the size of our networks. This allowed not just an
increase in depth, but also in the width of our networks without a significant performance
penalty [33].

The generous use of dimensional reduction and parallel structures of the Inception
modules mitigated the effect of structural changes on nearby components [34].
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Filter concat
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3x3  convolutions

1x1  convolutions

5x5  convolutions
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1x1  convolutions

3x3  Max pooling

Previous layer

Figure 3. Inception module with dimension reductions.

2.6. Knowledge Distillation

The main idea behind knowledge distillation is that to achieve superior performance,
the student model must imitate the teacher model. Knowledge types, distillation techniques
and teacher–student learning architecture all play critical roles in student learning. [19]. A
general teacher–student framework for knowledge distillation is shown in Figure 4. The
teacher-student framework is the most fundamental framework for knowledge distillation.
The teacher network in this paper is the pre-trained Inception–ResNet, and the student
networks are a CNN with three convolutional layers and a Mini-Inception–ResNet. The
output of the teacher network is distilled to form a soft and hard target to calculate the
student network’s loss function.

K
n

o
w

led
ge

Data

Teacher Model

Knowledge Transfer Student Models

Distill Transfer

Inception-ResNet

CNN3

Mini Inception-ResNetT/a 

Figure 4. The generic teacher–student framework for knowledge distillation [19].

Neural networks typically produce class probabilities by using a “softmax” output
layer that converts the logit zi, computed for each class into a probability qi, by comparing
zi with the other logits [18].

qi =
exp(zi/T)

∑j exp(zj/T),
(12)

where T is a temperature that is normally set to 1. Using a higher value for T produces a
softer probability distribution over the classes. To understand the knowledge distillation,
a benchmark model, which is the distillation combined with student losses, is given in
Figure 5. The basic process of knowledge extraction is as follows: The same input enters the
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teacher and student networks; the temperature of the softmax layer of the teacher network
is set to t; the output produced is soft targets; the temperature of the softmax layer of the
student network is set to t; and the soft targets produced together with those produced by
the teacher network produce a distillation loss; the temperature of the student network’s
softmax layer is set to 1; and the resulting soft targets and true labels of the data generate
the both the student and distillation losses as well as a combined loss, which comprises the
overall loss.

Transfer
Data Set

Inception-Resnet

CNN3/mini Inception-Resnet

Softmax
T=t

Softmax
T=t

Softmax
T=1

Soft
Targets 

Soft
Targets 

Soft
Targets 

Distillation
Loss

Student 
Loss

Ground
Truth Label

Figure 5. The specific architecture of the benchmark knowledge distillation.

When calculating losses in KD, the weighted average of two different objective func-
tions is used. The first is cross entropy with the soft targets, which is computed using the
same high temperature in the softmax of the distilled model that was used to generate
the soft targets from the cumbersome model. The second is cross entropy with the correct
labels. Since the magnitudes of the gradients produced by the soft target scale as 1/T2, it is
important to multiply them by T2 when using both hard and soft targets [19].

The process of knowledge distillation is shown in Figure 5, and its loss function [35] is

LKD(Wstudent) = αT2 ∗ CrossEntropy(Qτ
S, Qτ

T) + (1− α) ∗ CrossEntropy(QS, Ytrue, ) (13)

where T and α are hyperparameters, T refers to the temperature of distillation, and α refers
to the proportion of soft loss in the total loss.

3. Experiments
3.1. Structure of the Teacher and Student Network

The structure of the Teacher network shown in Figure 6 is based on Inception–Resnet,
which adapted to the size of the dataset used in this paper by varying the size of the
convolutional kernels over the number of sizes. Inception–ResnetA was repeated 10 times;
Inception–ResnetB, 20 times; and Inception–ResnetC 10 times.

There are two student networks: mini-Inception–Resnet and CNN3. The Figure 7
depicts the network structure of the mini-Inception–Resnet. The input to it was computed
in the following order: stem module, Inception–ResnetA, reduction-A, Inception–ResnetB,
reduction-B, and Inception–ResnetC, followed by pooling and softmax. The CNN3 used
three convolutional networks for classification as shown in Figure 8, and is the simple
equivalent of an entry-level network with fast inference, small computation, small number
of parameters, and small space occupied by the model.

The input to Inception–Resnet was computed in the following order: stem module,
10 tandem Inception–ResnetA, reduction-A, 10 tandem Inception–ResnetB, reduction-B,
and 10 tandem Inception–ResnetC, followed by pooling and softmax. The structures
of Inception–ResnetA, Inception–ResnetB, and Inception–ResnetC used in the paper are
shown in the Figure 9, respectively. Inception–Resnet contains the Stem network module
showed in Figure 10, the three Inception–Resnet modules, and two Reduction modules.

All three Inception–Resnet modules have a similar structure. After the previous level’s
input was passed through the ReLU activation function, it was divided into two parallel
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paths: one was completely unchanged; the other passed through several parallel convo-
lutional layers, then through a final 1 × 1 convolution into the same number of channels
as the initial input data. Finally the outputs of the two paths were summed and passed
through the relu activation function into the next module. Using the Inception–Resnet
module has the advantage of being a fast converging network, and from the results the
Inception–Resnet network had a good classification effect [32].

Softmax

Dropout (keep 0.8)

Avarage Pooling

5 x Inception-
resnet-C

Reduction-B

10 x
Inception-resnet-B

Reduction-A

5 x Inception-
resnet-A

Stem 

Input (1x2x128)

Output :11

Output :1792

Output :1792

Output :1792x2x32

Output :1792x2x32

Output :896x2x64

Output :896x2x64

Output :256x2x128

Output :256x2x128

1x2x128

Figure 6. Inception–Resnet.
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Softmax

Dropout (keep 0.8)

Avarage Pooling

 Inception-resnet-C

Reduction-B

Inception-resnet-B

Reduction-A

Inception-resnet-A

Stem 

Input (1x2x128)

Figure 7. mini Inception–Resnet.

Softmax

Avarage Pooling

1x8 conv 
(64)

1x2 Max pooling

2x8 conv
(32)

1x2 Max pooling

1x8 conv
(23)

Input (1x2x128)

Output :11

Output :64

Output :64x1x27

Output  32x1x30

Output :32x1x60

Output :24x2x63

Output :24x2x125

1x2x128

Figure 8. CNN3.
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Relu activation

Relu activation

1x1 conv
(32)

1x1 conv
(32)

1x1 conv
(32)

3x3 conv
(32)

3x3 conv
(32)

1x1 conv
(256  linear)

3x3 conv
(32)

(a) Inception–ResnetA

Relu activation

Relu activation

1x1 conv
(128)

1x1 conv
(128)

1x7 conv
(128)

1x1 conv
(896  linear)

7x1 conv
(128)

(b) Incepion–ResnetB

Relu activation

Relu activation

1x1 conv
(192)

1x1 conv
(192)

1x3 conv
(192)

1x1 conv
(1792  linear)

3x1 conv
(192)

(c) Inception–ResnetC

Figure 9. The schema for the three Inception–Resnet modules of the teacher network.
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Filter concat

1x3 MaxPool 
(stride 2 V)

1x3   Conv
(384 stride 2 V)

1x3   Conv
(256 stride 2 V)

1x3   Conv
(192)

Previous layer

1x1   Conv
(192)

(a) Reduction-A

Filter concat

1x3 MaxPool 
(stride 2 V)

1x3   Conv
(384 stride 2 V)

1x3   Conv
(256 stride 2 V)

2x3   Conv
(256)

Previous layer

1x1   Conv
(256)

1x1   Conv
(256)

1x3   Conv
(256 stride 2 V)

1x1   Conv
(256)

(b) Reduction-B

1x1   Conv
(128)

1x1   Conv
(128)

2x1   Conv
(128)

Filter concat

Input

Output 
256x2X128

1x2X128

(c) Stem

Figure 10. Structures of reduction blocks and Stem.

The article pre-trained the teacher network and the undistilled student network. It
used the Adam optimizer in training and the NatchNorm and ReLU activation functions
after all convolutional layers. The loss function is the categorical cross-entropy function,
and it is seen from the Figure 11 that the classification accuracy of the teacher network is
higher than 90% when the signal-to-noise ratio is higher than 0 dB, while it can be seen that
the accuracy of the undistilled student network had about 80% classification accuracy at a
high SNR, which was much less than the teacher network becasue its structure is much
smaller than that of the teacher network.
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Figure 11. The classification accuracy of teacher and student network.

3.2. Loss Function

The loss function Equation (13) designed for knowledge distillation was used in
the experiment. The teacher network was based on the Inception–Resnet network, and
the student network was a three-layer convolutional network. The soft target was the
output of Inception–Resnet, which corresponded to QT , and the output of the three-layer
convolutional network corresponded to Qs.

3.3. Dataset and Training

This paper used the RadioML 2016.10b dataset [2] as the basis for evaluating the
modulation recognition task. The dataset consisted of 11 modulations: 8 digital and 3
analog, all of which are widely used in wireless communications systems all around us.
These consist of BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, and PAM4 for digital;
and WB-FM, AM-SSB, and AM-DSB for analog modulations. Details about the generation
of this dataset can be found in [36]. Data was modulated at a rate of roughly 8 samples per
symbol with a normalized average transmit power of 0 dB [3]. The dataset was split into
two sections for the experiment, with 20% serving as a validation set and the remaining
80% serving as training data. Adam was the optimizer used in this paper. Its batch size is
512, and learning rate is 0.001.

When training in the experiments, an early stop mechanism was employed to halt
training when performance on the validation dataset began to deteriorate. The ability of
the deep neural network to generalize was improved by stopping the training before the
neural network overfitted the training dataset. The network was initially configured with
a minimum loss of 100. When the network’s loss on the validation set was less than the
minimum loss, the network structure was saved at this point, and the loss at this time
was noted as the minimum loss. Training was stopped when the network’s loss on the
validation set exceeded the minimum loss for 10 consecutive iterations.

3.4. Experimental Procedure

The general framework of the experimental process in this paper is shown in Figure 12,
where the teacher network is the high precision network trained in advance and the student
network is the network to be trained. The experimental procedure is the same as that of
knowledge distillation: first, the soft loss is calculated using the knowledge distillation
process, then the hard loss is calculated, and the two are added to yield the total loss.
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Softmax

Divided by T

Teacher model

Softmax

Student model
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T
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Total loss
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S=[0.1,0.6,…,0.2 ] Y=[0,1,…,0 ]

Hard target

a 1-a  sum

Figure 12. The process of knowledge distillation.

Typically, large amounts of data are essential for training the deep learning model to
avoid overfitting. There are many parameters in deep neural networks, so if there is not
enough data to training them, they tend to remember the entire training set, which will
result in good training, but bad performance on testing set [37].

The weighted average of the soft and hard losses is the knowledge distillation loss.
Soft loss was calculated first by inputting the dataset to the teacher and student networks
and dividing the result by the temperature parameter T, followed by a softmax calculation
to obtain the probability distribution of softening. The output of the teacher and student
networks was then used to calculate KL divergence to obtain a soft loss. The hard target was
the true marker of the sample, which can be represented by a one-hot vector inputted into
the student network to get an output. Then softmax was calculated, and the cross-entropy
loss was calculated using the softmax result and the true marker of the sample.

The experiment raised the temperature from 1 to 9, with a temperature difference of
2. The proportion α of the total loss changed from 0.1 to 0.9 in each temperature, and the
difference between α was 0.1, so there were nine α in each temperature. There were five
temperatures in total, each temperature and α formed a small experiment, and each small
experiment got a distillation student network for a total of 45.

4. Result and Analysis
4.1. Evaluation of Classification

Figures 13 and 14 display the KD effects that can be produced by “α” at various
temperatures. Assuming that a model’s quality is determined by its highest classification
accuracy over all SNRs, it is clear that, after knowledge distillation, the DSCNN3 (CNN3
after knowledge distillation) performed best at T = 1, α = 0.4, T = 3, α = 0.7, T = 5,
α = 0.1, T = 7, α = 0.6, and T = 9, α = 0.1, the DSminiIRNET(mini-Inception–Resnet after
knowledge distillation) performed best at T = 1, α = 0.4, T = 3, α = 0.7, T = 5, α = 0.8, T = 7,
α = 0.6, and T = 9, α = 0.5.

It can be seen that most networks after KD achieved higher classification accuracy,
and the classification accuracy of networks after knowledge distillation were very high at
the right temperature and α.

Figures 13f and 14f represent the accuracy of the best model at each temperature. The
best DSCNN3 appears at T = 1 and α = 0.4, which corresponded to the network model. The
best DSminiIRNET appeared at T = 7 and α = 0.6, which also corresponds to the network
model.



Electronics 2022, 11, 3018 15 of 20

−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18
SNR (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

SNR vs Accuracy(T=1)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a)

−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18
SNR (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

SNR vs Accuracy(T=3)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b)

−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18
SNR (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

SNR vs Accuracy(T=5)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c)

−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18
SNR (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Te

st
 a
cc
ur
ac
y

SNR vs Accuracy(T=7)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d)

−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18
SNR (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

SNR vs Accuracy(T=9)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(e)

−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18
SNR (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

SNR vs Accuracy
T=1 α=0.4
T=3 α=0.7
T=5 α=0.1
T=7 α=0.6
T=9 α=0.1

(f)

Figure 13. CNN3 classification accuracy after knowledge distillation with different parameters.
(a) Classification accuracy of student networks corresponding to different α at T = 1; (b) at T = 3; (c)
at T = 5; (d) at T = 7; (e) at T = 9; and (f), the best classification accuracy in each T.
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Figure 14. Mini Inception–Resnet classification accuracy after knowledge distillation with different
parameters. (a) Classification accuracy of student networks corresponding to different α at T = 1; (b)
at T = 3; (c) at T = 5; (d) at T = 7; (e) at T = 9; (f), the best classification accuracy in each T.

Figure 15 depicts the optimal DSCNN3 classification accuracy. Once the SNR exceeded
0 dB, the network’s classification accuracy became flat, and the classification accuracy of
CNN3 was stable at around 78% and that of DSCNN3 around 89%. According to Table 1,
CNN3 had a peak classification accuracy of 0.7981; DSCNN3, 0.8936; Inception–Resnet,
0.9309. Without changing the network’s size or computational effort, knowledge distillation
improved CNN3’s peak classification accuracy by 0.1.
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Figure 15. Classification accuracy of teacher network, student network and the best network after
knowledge distillation. (DSCNN3 represents CNN3 after knowledge distillation).

Figure 16 depicts the optimal DSCNN3 classification accuracy. Once the SNR exceeded
0 dB, the network’s classification accuracy becames flat and the classification accuracy of
the mini-Inception-ResNet was stable around 83% and that of DSminiIRNET around
93%. When the SNR was greater than −6 dB, the classification accuracy curves of the
DSminiIRNET and the Inception–Resnet overlapped, and the curves of the DSminiIRNET
were slightly higher than those of Inception–Resnet. As documented by the Table 1, mini-
Inception-ResNet had a peak classification accuracy of 0.8418 and for DSminiIRNET it was
0.9359, which was greater than the classification accuracy peak of the teacher network.
Without changing the size of the network or the amount of computation, KD improved the
mini-Incepion–ResNet classification accuracy peak by 9.4%.
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Figure 16. The classification accuracy of the teacher network, student network and the best network
after knowledge distillation. (DSminiIRNET represents the mini-Inception–Resnet after knowledge
distillation).
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Table 1. Teacher network classification accuracy peak and comparison of student network classifica-
tion accuracy peaks before and after knowledge distillation.

Inception–Resnet mini-Inception–Resnet CNN3

before KD 0.9309 0.8418 0.7981
after KD 0.9359 0.8936

Knowledge distillation can transfer the relationships between different classifications
as information to the student network for learning, allowing it to have a higher classification
accuracy and outperform the teacher network’s smaller models.

4.2. Computation Complexity

The complexity of an algorithm can be divided into time and space complexity. Time
complexity, which is defined as the time of calculation on the algorithm, can be quantita-
tively analyzed with floating-point operations (FLOPs). Space complexity describes the
memory occupation when the algorithm runs [17].

The total model size is the memory occupied by the model. Total parameters indicates
the number of them in the different models. FLOPs also indicate the complexity of the deep
neural network.

Figure 15 shows that after knowledge distillation, the model’s accuracy can be im-
proved without changing its complexity. Table 2 compares the computational complexity
of the teacher network to that of the best student network.

Table 2. Computational complexity of the teacher network vs. the student network.

Network Estimated Total Size (MB) Total Parameters FLOPs

Inception–Resnet 311.77 32,353,675 3,232,437,248
mini Inception–Resnet 39.69 3,995,787 449,975,296

CNN3 0.37 30,179 1,257,360

5. Conclusions

In this paper, we proposed a scheme to improve the classification accuracy of small
network models for AMC. A highly accurate teacher network induced student network
model training to improve accuracy via knowledge distillation.

We conducted experiments to compare the accuracy of student network models
obtained by using different hyperparameters T,α in knowledge distillation, from which the
best ones were chosen. The peak classification accuracy of the teacher model was 93.09%,
and the model size was 311.77 MB; the peak classification accuracy of two student networks
after knowledge distillation was 93.59% and 89.36%, and the model sizes were 39.69 and
0.37 MB. Knowledge distillation was successful in reducing model size and improving
classification accuracy. When we needed to reduce computational complexity and model
size in memory-limited devices or when real-time performance was required, we found
that KD was a useful approach for solving this problem.

The use of KD on AMC improved the model’s classification accuracy without changing
the model size. Comparing model size, parameter size, FLOPS of the student network
to those of the teacher network demonstrated the efficacy of knowledge distillation in
improving the accuracy of the small network and providing a useful idea for applying
AMC in practice. Knowledge distillation can reduce model complexity while improving
network classification accuracy. It is useful whether the goal is to pursue high accuracy or
reduce complexity. We aim to explore pruning and quantization methods for more details
about AMC to further reduce model complexity and training time.
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