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Abstract: Global existence and uniqueness conditions for a dimensionless fourth-order integro-
differential model for an electrostatic-elastic MEMS device with parallel plates and fringing field
contribution were recently achieved by the Authors. Moving from this work, once the dielectric
profile of the deformable plate according with experimental setups has been assigned, some technical
conditions of applicability for the intended use of the device as well as the mechanical tension of
the deformable plate are presented and discussed. Then, highlighting the link between the fringing
field and the electrostatic force, finite differences were exploited for recovering the deformable plate
profile according both global existence and uniqueness conditions. Moreover, the influence of the
electro-mechanical properties of the deformable plate on both the numerical approach and on the
intended uses of the device is discussed, comparing the results with experimental setups regarding
pull-in voltage and electrostatic pressure.

Keywords: 3D electrostatic-elastic MEMS; Pelesko–Driskoll’s theory for fringing field modeling;
finite difference approaches; profile recovering; ghost solutions

1. Introduction

In the last decade, a high synergy between the skills of scientific research and the
world of industry has emerged for the development of technologically transferable physical-
mathematical models capable of formalizing the increasingly performing behaviors of
micro-electro-mechanical systems (MEMS) [1–3]. Today, these devices are considered
“intelligent” because they combine electrical, electronic, mechanical, optical and other
behaviors, managing highly complex industrial processes [4–9]. Among these, electrostatic
MEMS with parallel metal plates are widely used devices in the industry, as they are easy
to construct and exhibit high versatility [1,10,11]. Today, theoretical modeling of these
devices is so advanced as to evaluate any correspondences between mechanical stresses
of the deformable elements and the intended use of the device without neglecting the
possibility of carrying out functionality tests in operation, which would normally require
the destruction of the device itself [12,13]. Whatever the intended use of the device, it is
necessary that there are no electrostatic discharge phenomena inside it, caused by contact
between deformable and fixed elements, which would damage the device itself [14–16].
Therefore, it appears necessary to reduce, as much as possible, the physical causes, such
as the fringing field, to produce an excessive approach between deformable and fixed
elements [17–19]. The fringing field, which strongly depends on the length/width ratio of
the device, produces important effects on the bending of the lines of force of the electric
field, E, inside it, manifesting this influence near the edges; however, in the center, this
effect is almost nil [20,21]. Among these models is an important dimensionless integro-
differential model of the fourth order, studied with a high level of attention to detail in [22],
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which, being endowed with global existence results, opened interesting scenarios regarding
future developments. However, due to its formulation, the dimensionless model studied
in [22] is not very suitable for technology transfer, since some of its analytical elements do
not correctly model the behavior of some elements present in the device. This impasse was
overcome in [17] where, starting from [22], a new formulation of the dimensionless model
was presented and studied, more in keeping with the industrial reality of the MEMS devices
produced, which also considers the effects due at the fringing field. This dimensionless
model takes the form:





∆2u(x) =
(

β
∫

Ω |∇u(x)|2dx + γ
)

∆u(x)+

+ λ f (x)

(1−u(x))2
(

1+χ
∫

Ω
dx

(1−u(x))

)2 + λδ|∇u(x)|2

u(x) = 0, ∇u(x) = 0 x ∈ ∂Ω,
0 < u(x) < 1 x ∈ Ω ⊂ RN , N < 4.

(1)

where

• Ω represents the smooth bounded domain (MEMS device);
• u : Ω→ R defines the profile of the deforming plate;
• f : Ω → R+ is a bounded function which considers the dielectric properties of the

material constituting the deformable plate;
• λ is a positive dimensionless parameter depending on the applied voltage, V, defined

as in (3) which represents the ratio of a reference electrostatic force to a reference elastic
force;

• β is a positive dimensionless parameter which takes into account the stiffness of the
deformable plate;

• γ is a positive dimensionless parameter which takes into account the stretching effect
in the deformable plate;

• χ, defined as in (8), is a positive dimensionless parameter which takes into account
the non-local dependence of V on the solution due to a possible non-uniform electric
charge distribution;

• δ is a positive dimensionless parameter (usually constant) that weighs the effects due
to the fringing field.

• λδ|∇u(x)|2 takes into account, according to the Pelesko–Driscoll theory, the effects
due to the fringing field [17,23].

In the past, simplified physical-mathematical models, containing terms due to the fringing
field but poorly adhering to industrial realities, have been proposed, studied, and validated
[23,24].

Model (1) appears interesting for many reasons. On one hand, λδ|∇u(x)|2 allows easy
software/hardware implementations, while on the other hand, it is voltage controllable
(presence of λ that, as specified in (3), depends on V), even if the dependence of δ on the
applied external voltage has not yet been highlighted (satisfactory limitations of δ have
been obtained for membrane MEMS devices [17,23,24]). However, even if the stability
of (1) has not yet been studied (for which any unstable positions of the deformable plate
would risk causing unwanted electrostatic discharges), the device is controlled in voltage
(presence of λ). In such cases, appropriate destinations of use (such as biomedical ones, at
reduced voltage) reduce the risk of electrostatic discharges. We also observe that, in (1),
there are terms due to stiffness and self-stretching (identifiable by the parameters β and
γ) of the deformable element to take into account the mechanical phenomena of fatigue
due to the continuous rising-lowering of the deformable element. Furthermore, with the
deformation of the plate, significant variations of electrostatic capacitance occur inside
the MEMS, making it necessary to express its dependence on the geometric parameters of
the device and on an auxiliary electrostatic capacitance (C f ) capable of opposing sudden
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voltage variations applied (presence of χ in (1)) [1,17]. Finally, f (x) in (1) (present in the
“capacitive” term of the model) models the dielectric properties of the plates.

Equation (1) does not allow to obtain u(x) explicitly, thus in [17], important conditions
of global existence and uniqueness for the solution have been obtained by opening possible
scenarios for the numerical reconstruction of u(x) profiles without representing ghost solu-
tions (i.e., approximate solutions not satisfying the conditions of existence and uniqueness
for (1)). Therefore, the main aims of this paper can be summarized in the following items:

• Exploiting the conditions of global existence and uniqueness for (1), fundamental
results are discussed highlighting that, starting from the reference energy state, the
solution is unique ensuring that the profile of the deformable plate is uniquely de-
termined without highlighting anomalies in the curvature of the deformable plate
(especially in the start-up phase). This item is very important because, compared to
what is already known in the literature, the existence and uniqueness of the solution
for (1) is studied starting from a reference energy state, thus linking the important
properties of existence and uniqueness with the minimum energy level necessary to
move the deformable plate.

• After selecting the dielectric profile, f (x) (in order to satisfy binding physical require-
ments allowing comparison with experimental setups known in the literature), we
discuss important industrial implications in terms of limitations both for the applied
voltage, V, and for the mechanical tension of the deformable plate at rest, T, providing
both a graphical differentiation of areas allowed in the plane (V, T) and reference
energy states. So, unlike what is already known in the literature (where in the dimen-
sionless mathematical models f (x) is set equal to the unit), in this paper we provide a
useful criterion for selecting the intended use of the device, based on (V, T), starting
at f (x).

• We study how the fringing field affects the electrostatic force in the device, obtaining an
increase for it depending on both V (which affects the intended use of the device) and
T (which influences the choice of material of the deformable plate). In the literature,
there are no increases for either V or T, thus failing to provide maximum admissible
values for both. This item of the present work fills this gap.

• Following a simplification in the model that does not affect the goodness of the results
obtained, the numerical recovering of the deformable plate profile was obtained by
the finite difference method (implemented in MatLab® R2019a running on an Intel
Core 2 CPU at 1.45 GHz) “gold standard” for model as (1), under different operating
conditions, giving results compatible with the conditions of global existence and
uniqueness of the solution (thus not representing ghost solutions).

• We also provide an effective criterion for choosing the intended use of the device
(strongly linked to V) starting from the choice of the material constituting the de-
formable plate (strongly dependent on T) and vice versa very useful for any industrial
applications (unlike the scientific works known in the literature where such a criterion
has never been elaborated).

• Furthermore, how the electro-mechanical properties of the deformable plate affect
the numerical profile recovering is studied and discussed also selecting the most
important intended uses of the studied device.

• Finally, important comparative results with experimental setups concerning pull-in
voltage and electrostatic pressure are presented.

The reminder of the paper is organized as follows: Beginning with the description
of the device and analyzing both behavior and analytical models (Section 2), the most
important results of global existence and uniqueness for the solution for (1) are summarized
in Section 3. Next, after selecting the dielectric profile of the deformable plate as specified
in Section 4 (according to several industrial applications), Section 5, starting the above-
mentioned inequality governing the global existence and uniqueness for (1), discussions
and important limitations for both the intended use of the device and the mechanical
properties of the deformable plate are deduced, respectively. Once Section 6 formalizes the
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link between the fringing field and electrostatic force in the device, a numerical approach
is proposed and applied in Section 7 to recover the profile of the deformable plate, the
results of which are presented and discussed in Section 8. Section 9 discusses an interesting
limitation for the mechanical tension of the deformable plate, while Sections 10 and 11,
respectively, discuss some details concerning the possible influence of the properties of the
deformable plate on the numerical procedure and the possible intended uses of the device.
Finally, Section 12 presents the results concerning the pull-in voltage and the electrostatic
pressure. Further conclusions and perspectives on these issues complete this work.

2. The Behavior of the MEMS Device: The Analytical Model with Fringing Field

The electrostatic MEMS studied in this paper is an elastic system consisting of two
parallel plates (of the same material and equal thickness) of which the upper one (non-
deformable) is at V > 0 electric potential, while the lower plate (bound to the edges and at
electric potential reference, V = 0) deforms towards the top plate without touching it (to
avoid unwanted electrostatic discharges) (for further details, ref. [17]). Figure 1 displays a
3D schematic of the device (the deformable plate is in its rest position).

Figure 1. Schematic representation of the electrostatic MEMS under study.

As already detailed in [17], if V is the drop voltage, the load function F(x) (which
establishes how the deformable plate is stressed when V is applied, determining E which
locally activates an electrostatic pressure deforming the plate) can be written as [17]

F(x) =
λ f (x)

(1− u(x))2 , (2)

with

λ =
ε0V2L2

2d3T
, (3)

where ε0 is the permittivity of the free space, d is distance between the plates, and L is the
length of the MEMS. (2), according the Pelesko’s procedure [1,25], is necessary to formulate

K1(x)∆2u(x) = K2(x)∆u(x) + F(x) = K2(x)∆u(x) +
λ f (x)

(1− u(x))2 . (4)

where K1(x) and K2(x) are specific weight functions as below defined. It should be noted
that (2) cannot electrically control the MEMS because the applied V must be controlled in
order to avoid sudden deformation of the deformable plate. Then, a capacitive control de-
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vice (such as the one hypothesized in [17]) can be used to avoid this drawback. Particularly,
considering the series of a source voltage, Vs, and a capacitor, C f , it follows that

V =
Vs

1 + C
C f

(5)

in which [17]

C ≈ εL2

d

∫

Ω

dx
1− u(x)

(6)

achieving

V =
Vs

1 +
εL2

d
∫

Ω
dx

1−u(x)
C f

. (7)

Therefore, setting

χ =
ε0L2

C f d
, (8)

from (7), we can write ( V
Vs

)2

︸ ︷︷ ︸
control action

=
1

(
1 + χ

∫
Ω

dx
(1−u(x))

)2 . (9)

Finally, (2) becomes

F(x) =
λ f (x)

(1− u(x))2

( V
Vs

)2
=

λ f (x)

(1− u(x))2
(

1 + χ
∫

Ω
dx

(1−u(x))

)2 (10)

so that (4) assumes the final form

K1(x)∆2u(x) = K2(x)∆u(x) +
λ f (x)

(1− u(x))2
(

1 + χ
∫

Ω
dx

(1−u(x))

)2 . (11)

We also observe that χ mainly depends on the capacity [1] and, furthermore, χ ∈
[0, 1) [17], thus avoiding a dangerous bifurcation phenomena which can make the device
highly unstable (particularly if χ → 1− the rupture of the device can takes place [17]).
Finally, ∆u(x) being an operator indicative of the curvature assumed by the plate during
deformation [26], it can be proved that K1(x)∆2u(x), in elastic regimes, takes the form [17]:

K1(x)∆2u(x) =

(
β
∫

Ω
|∇u(x)|2dx + γ

)

︸ ︷︷ ︸
K2(x)

∆u(x)+ (12)

+
λ f (x)

(1− u(x))2
(

1 + χ
∫

Ω
dx

(1−u(x))

)2 ,

and being K1(x) = D
L2T ≈ 1 [1,17,26] (D, flexural rigidity of the material constituting the

deformable plate) achieves the following model:




∆2u(x) =
(

β
∫

Ω |∇u(x)|2dx + γ
)

∆u(x) + λ f (x)

(1−u(x))2
(

1+χ
∫

Ω
dx

(1−u(x))

)2

u(x) = 0, ∇u(x) = 0 x ∈ ∂Ω,
0 < u(x) < 1 x ∈ Ω ⊂ R3

(13)
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studied in [1,25], highlighting important results regarding the bifurcation. Finally, to take
into account the effects due to the fringing field (physical phenomenon, heavily dependent
on the ratio L/d, that manifests itself with the curvature of the E lines of force, more
evident at the edges of the device and negligible in its center), we use the Pelesko–Driscoll
formulation [23] that quantifies these effects through the addend λδ|∇u(x)|2 (for details,
[17,22,23]), achieving model (1). Table 1 lists all symbols present in (1).

Table 1. List of Dimensionless Parameters in Model (13).

Symbol Meaning

f (x) dielectric profile of the deformable plate
β parameter that weighs the deformation energy of the deformable plate
λ ratio of a reference electrostatic force to a reference elastic force
γ stretching parameter

We observe that, under the effect of the fringing field, the electrostatic capacity of
MEMS varies considerably and can also be formulated through empirical approaches [1,18,25].
Recently, many MEMS models with fringing field have been studied according to the
Pelesko–Driscoll theory [24] (which, however, propose studies on highly simplified models).
Obviously, even if (1) models a detailed behavior of the MEMS under study, it does not
consider further non-linearities (local mechanical stresses, bifurcations), and thus introduces
a degree of uncertainty. However, to take into account local mechanical stresses would mean
to introduce in the model a terms depending, for example, on the Piola-Kirchhoff tensor
which, usually, exhibits discontinuities along the surface of separation between different
zones of the deformable plate. This additional term would reduce the amplitude of the
deformation of the membrane profile by approximately 5%. Therefore, not considering
the contribution due to this term allows us to affirm that the numerical recovering we
will obtain will be overestimated but for the sake of safety since we are sure that the real
deformation of the deformable plate is below that reconstructed numerically (certainty
that the deformable plate does not touch the upper wall of the device). Furthermore,
considering λ < λ∗ (λ∗, pull-in voltage) assures us that bifurcation phenomena cannot
take place.

Remark 1. It is worth noting that model (1) represents of a generalization of the model extensively
studied in [27]. In fact, when β = γ = χ = 0 (i.e., in the presence of a deformable membrane), it is
easy to achieve

∆2u(x) =
λ f (x)

(1− u(x))2 + λδ|∇u(x)|2 (14)

which represents the model studied in [27].

Remark 2. From (3), it is easy to deduce that by selecting the type of device (that is, by choosing
T), its intended use is determined (λ is proportional to V2). The converse is also valid: once the
use of MEMS has been identified, the material constituting the deformable plate can be selected (in
other words, the intended use of the device sets an important limitation for λ). Therefore, as already
verified in the past for other devices [28], the link between the intended use of the device and the
mechanical properties of the deformable plate is confirmed.

Remark 3. Equation (2), as already mentioned, represents the type of load on the deformable plate
applying V externally (V determines E between the two plates by generating the electrostatic force
which, per surface unit, is transformed into electrostatic pressure acting on the deformable plate).
Then, the need for (2) to depend on V is confirmed.

Remark 4. We observe that the dielectric properties of the material constituting the deformable
plate are decisive for the operation of the device when the deformation is the maximum allowed [1,25].
In fact, indicating with d∗ the minimum distance allowed between the two plates, it follows that
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u(x) < 1− d∗ (this is due to the fact that, physically, the deformable plate must not touch the
upper plate and, mathematically, in (1) u(x) < 1.). If u(x) = 1− d∗, from the equation of model
(1), it follows that f (x) = 0, so that (2) is canceled. Industrially, this is highly important, because
f (x) contributes to determine the electrostatic load in the device. Therefore, (1) represents a good
formulation for the device, since it takes into account f (x) (as already experimentally tested for
similar devices [29]).

Remark 5. Equation (1) models electrostatic MEMS for industrial applications that require small
displacements of the deformable plate (u(x) ≈ 10−6). In fact, if A� d2 (d the distance between the
two plates at rest, A the surface of the plates) the effects due to the fringing field would be negligible
(i.e., λδ|∇u(x)|2 = 0). However, from A � d2 > u2(x) it would follow u(x) �

√
A ≈ 10−6

which does not fit well with the hypothesis of small displacements. This confirms that (1) is a good
model for industrial developments.

Remark 6. Unlike other analytical models [29,30], Equation (1) was built on very simple device
geometry; this was necessary to carry out the analytical study [17] obtaining results which, even
if they have not yet achieved an experimental confirmation, have provided a significant theoretical
contribution.

3. An Important Result of Global Existence and Uniqueness

The main global existence and uniqueness result for (1) was presented in [17] (How-
ever, Equation (1) does not allow to achieve explicit solutions). For simplicity of reading,
we report the fundamental Theorem.

Theorem 1. Let us consider a smooth bounded domain Ω ⊂ RN , with N < 4 on which to consider
the problem (1). Moreover, let us consider f (x) ∈ L∞(Ω) and α, β, γ, χ > 0. Then, there exists, λ∗

3′ ∀λ ∈ (0, λ∗), problem (1) has a solution u ∈ H4(Ω) with the diameter of Ω, dΩ , sufficiently
small (dΩ � 1) and δ ∈ (0,+∞).

We note that Ω (deformable plate), industrially, has dimensions of the order of 10−6.
Therefore, the diameter of the domain can be considered� 1 (as predicted by Theorem 1).
Furthermore, the constraint N < 4, even if more stringent than N < 8 [31], does not affect
the industrial validity of the result (which requires 3D formulations).

The fact that the result requires f (x) ∈ L∞(Ω) is equivalent to stating that f (x) is
measurable, i.e.,

|| f ||∞ = inf{S ≥ 0 : | f (x)| ≤ S a.e.}. (15)

Then, for each point of the deformable plate, | f (x)|must be bounded. So, (15) makes
sense because f (x) represents the dielectric profile of the deformable plate which must be
measurable (and in any case positive and bounded). Furthermore, Theorem 1 dictates that
∃λ∗ 3′ ∀λ ∈ (0, λ∗) : λ < λ∗ because λ∗, is pull-in voltage (i.e., λ such that there are no
solutions for λ ≥ λ∗). Finally, the continuity of higher order curvatures (u ∈ H4(Ω)) is
required by imposing that the deformable element, during its movement, must not undergo
substantial deformations such as to make the device unusable (especially when fatigue
phenomena caused by prolonged and continuous exploitation take place [26]). Obviously,
this condition is more restrictive with respect to the conditions required when membrane
MEMS are considered. It is worth nothing that, even though λ is controllable by V, δ is not;
this dependence is expressed by the product λδ in (1). In the future, this would require an
incisive effort on the possible generalization of the Pelesko–Driskoll theory.

The proof of Theorem 1, exploiting a well-known topological result presented in [32],
is divided into five points preliminarly defining the following two suitable sets:

X = R+ ×R+ ×R+ × { f ∈ L∞(Ω) : |x : f (x) > 0| 6= 0} (16)
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and

Y =

{
u ∈ H4(Ω) ∩ H1

0(Ω) : 0 < u < 1,
∫

Ω

dx
(1− u)16 < M, (17)

∫

Ω
|∇u|4dx < M2 and

∫

Ω
|∆u|2dx < M1, M, M1, M2 > 0

}
.

where M, M1 and M2 are suitable positive constants. Moreover, if Z = L2(Ω), B = ∆2 and
x0 = (0, 0, 0, f0) ∈ X with y0 ∈ Y such that u0 = y0(0, 0, 0, f0) = y0(x0) where u0 is the
solution of 




∆u0 = λ f0
(1−u0)2 + λδ|∇u0|2 on Ω

0 < u0 < 1
u0 = 0 on ∂Ω,

(18)

the following important inequalities governing both global existence and uniqueness for (1)
have been achieved:

∫

Ω
|F(x, y0)− F(x0, y0)|2dx ≤ (19)

≤ 4β2
( ∫

Ω
|∇y0|2dx

)2 ∫

Ω
|∆y0|2dx + 4γ2

∫

Ω
|∆y0|2dx+

+4λ|| f − f0||2∞,Ω

∫

Ω

1
(1− y0)2 dx + 4|Ω|χ2|| f0||2∞,Ωλ

∫

Ω

1
(1− y0)

dx,

∫

Ω

∣∣∣B(y1)− B(y2)− (F((β, γ, χ, f , y1)− F(β, γ, χ, f , y2))
∣∣∣
2
dx ≤ (20)

≤ C(β, λ, γ, δ, χ, M, M1, M2, f )d
N
2

Ω

∫

Ω

∣∣∣B(y1)− B(y2)
∣∣∣
2
dx,

∫

Ω
|G(β, γ, y1)− G(β, γ, y2)|2dx ≤ (21)

≤ 2
(

βCd2
Ω M1 + γ

)2
Cd4

Ω

( ∫

Ω
|∆2(y1 − y2)|2dx

)
+

+8Cd6
Ω M2

1β2
∫

Ω
|∆2(y1 − y2)|2dx

where 



G(β, γ, u(x)) =
(

β
∫

Ω |∇u(x)|2dx + γ
)

∆u(x)

g(χ, u(x)) =
(

1 + χ
∫

Ω
dx

(1−u(x))

)2

F(β, γ, χ, f , y(x), δ) =

= ∆2y(x)− G(β, γ, y(x))− λ f (x)
(1−y(x))2g(χ,y(x)) − λδ|∇y(x)|2.

(22)

and x = (β, γ, χ, f ) with y = u(x).

4. Analytical Modeling of f (x)

As proved in [33], regardless of how the dielectric constant profile is chose, the pull-in
instability cannot be avoided [1,25,29]. Thus, it seems legitimate to ask whether a physically
valid formulation of f (x) can influence the solutions. It is worth nothing that in [17] it
has been proved that the smooth solution u(x) are symmetric, concave and, moreover,
u(x) < 1. From the heuristic point of view, the most unstable area of the device is its center,
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where the influence of E is very strong and the influence in the supporting boundaries
appears rather weak [33]. This is due to the fact that |E| is proportional to

λ

(1− u(x))2 (23)

so that at the center of the device, by virtue of the symmetry and concavity of the solutions,
1 − (x) assumes a minimum value (i.e., maximum value of |E|). Therefore, it seems
reasonable to try to reduce |E| in the center of the device as such possible by allowing it to
be stronger near the boundaries (more stable parts of the device). So, by choosing

f (x) = |x|α, α ≥ 0 (24)

it follows that

|E| ∝
λ f (x)

(1− u(x))2 =
λ|x|α

(1− u(x))2 (25)

which represents the load function (see (2)). However, we speculate whether specific
formulations of f (x) can affect the numerical solutions (and any multiplicity) without
neglecting the pull-in voltage and the stable operating range of the device. In this work,
f (x) is chosen to satisfy a symmetric power law such as

f (x) = |x|α, α ≥ 0. (26)

In addition, a large number of experimental and industrial applications are based
on (26) [1,33–36]. Finally, for α = 0, f (x) = 1.

5. On the Global Existence of the Solution and Industrial Implications
5.1. On the Reference Energy State

Let us first observe that the satisfaction of (18) by u0 means that, in (x0, u0), the
deformable plate behaves like a membrane. In fact, (18) is a typical semi-elliptical nonlinear
model describing an electrostatic membrane MEMS device. This is confirmed by the fact
that, by definition,

(x, y) = ((β, γ, χ, f ), u = y(x)) (27)

from which
(x0, y0) = ((β = 0, γ = 0, χ = 0, f ), u = y(x)). (28)

Therefore, β = 0 means that the energy accumulated by the deformable plate is zero
(reference energy state). Moreover, γ = 0 implies that the effects due to stretching are
nil, while χ = 0 imposes that C f → ∞ with immediate consequence that V = Vs (i.e., the
drop-voltage equivalent to the external voltage applied). This is in accordance with the
experimental and industrial experience according to which the deformable plate, in the
start-up phase, is similar to a membrane [1,25,26].

Furthermore, in [17], it has been shown that B(Y) is a neighborhood of z0 = B(y0).
Therefore, there exists a ball S(z0, r) ⊂ B(Y), with radius r, and a neighborhood of x0,
V(x0), such that {

F(x, y(x)) = 0 ∀x ∈ V(x0)

y(x0) = y0
(29)

has a single solution
y : V(x0)→ B−1(S(z0, r)). (30)

Then, there exists a neighborhood of x0 = (β = 0, γ = 0, χ = 0, f0) such that

∆2u(x) =
λ f (x)

(1− u(x))2 + λδ|∇u(x)|2 = 0 (31)
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and, starting from (31), the solution is unique in the neighborhood of x0. This highlights
the fact that, starting from the reference energy state, it is guaranteed that the solution is
unique (due also to the fact that the deformable plate behaves like a membrane [1,25,26]).

5.2. On the Continuity of x → F(x, y0)

Considering the elastic deformation regime of the plate valid, the elastic force will be
proportional to the increase of the surface, so that the stretching energy is writable as

Es =
(

β
∫

Ω
|∇y0|2dx

)2
+ γ2 (32)

so that (19) (deriving, according to [32], from the study of the continuity of the mapping
x → F(x, y0)) becomes

∫

Ω
|F(x, y0)− F(x0, y0)|2dx ≤ (33)

≤ 4E2
s

∫

Ω
|∆y0|2dx + 4λ|| f − f0||∞,Ω

∫

Ω

1
(1− y0)2 dx+

+4|Ω|χ2|| f ||∞,Ωλ
∫

Ω

1
1− y0

dx.

However, being y0 ∈ Y, ∫

Ω
|∆y0|2dx < M1; (34)

moreover, 1− y0 > d∗, χ = ε0L2(C f d)−1 and |Ω| = L · l. Therefore, by (26),

|| f − f0||∞,Ω = M3 < +∞ (35)

from which || f ||2∞,Ω < M4, so that, also considering (3), (33) becomes

∫

Ω
|F(x, y0)− F(x0, y0)|2dx ≤ 4

{
E2

s M1 +
ε0V2L3l
2d3Td∗

[M3

d∗
+

L3lM4

C f d

]}
= (36)

= C1 + C2V2 � 1,

where (once the geometry of the device and the material constituting the deformable plate
have been chosen) C1 and C2 are constants. This means that in these cases, the continuity of
x → F(x, y0), is voltage controlled, highlighting that, in the reference energy state, there are
no appreciable anomalous phenomena of curvature of the deformable plate. This is in line
with the experimental and industrial experience according to which the deformable plate
does not show evident deformations (and/or curvatures) in the start-up phase [37,38].

5.3. On the Injectibility of B On Y

The deformable plate structurally responds to the theory of Sophie-Germain La-
grange [26,37,38] according to which, qualitatively,

∆2u(x) =
p(x)

D
, (37)

where p(x) is the mechanical pressure, ∆2 = B, u(x) are admissible profiles of the de-
formable plate (u(x) ∈ Y) and D flexural stiffness of the plate, is

D =
Et3

12(1− ν)
(38)

in which t is the thickness of the deformable plate and E and ν are the Young and Poisson
modules, respectively. Then, due to both the uniqueness of ∆2 and its injectivity on Y, it
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is legitimate to state that, given the load p(x), the distribution of the deformations of the
plate is completely defined. Then, by means of constitutive laws [26], it is possible to obtain
T(x) (mechanical tension of the deformable plate which, however, is a bounded function,
and therefore increased by a constant) particularly useful for the choice of the material
constituting the deformable plate.

5.4. An Interesting Limitation for Applied Voltage V

It seems only right to specify that in (20)

C(β, λ, γ, δ, χ, M, M1, M2, f )d
N
2

Ω � 1 (39)

(because dΩ � 1, from which d
N
2

Ω � 1), so that

C(β, λ, γ, δ, χ, M, M1, M2, f ) < d−
N
2

Ω . (40)

In addition, being dΩ � 1, it follows that d−
N
2

Ω � 1, from which

C(β, λ, γ, δ, χ, M, M1, M2, f ) ∈ [0, d−
N
2

Ω ) (41)

where [0, d−
N
2

Ω ) is a sufficiently wide range of values capable of verifying the (20) for a
variety of devices.

In [3], C(β, λ, γ, δ, χ, M, M1, M2, f ) has not been made explicit (limiting its indication
in terms of functional dependence). In this paper, retracing each step of the proof of the
Theorem 1, we obtain:

C(β, λ, γ, δ, χ, M, M1, M2, f ) = (42)

= d6
Ω

{
4M2

1β2 + 576λ|| f ||2∞,Ω
8√M3(d∗2

√
M8 + χ6)D6N+2

Ω + 16λδ2M2dΩ
− N

2 < 1

from which, considering both (3) and (39), focusing our attention on 3D formulation
(N = 3), and selecting numerical values for the geometric parameters typical of many
industrial applications (d∗ → 0 and dΩ =

√
3 [1,25,38]), we achieve the following limitation

for V:

V <

√√√√√
T
(

1033 − 19.68·1024 f 4

T4d4

)

2549 · 10−28 8
√

10.94·1036 f 6

d6 + 17.8 ·
√

3M2

(43)

where δ was fixed equal to 2 (worst case, as proved in [17]). Finally, exploiting (26), (43)
becomes

V <

√√√√√
T
(

1033 − 19.68·1024|x|4α

T4d4

)

2549 · 10−28 8
√

10.94·1036|x|6α

d6 + 17.8 ·
√

3
. (44)

Finally, setting |x| ≤ 0.5 and d = 11, α = 2, (44) becomes

V < 23.7 · 107
√

1021T − 19.68 (45)

from which
T > 10−21(18 · 10−10V2 + 19.68). (46)

Remark 7. It is worth noting that the decimal numbers obtained in both (45) and (46) are the
result of numerical approximations.
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Remark 8. Figure 2 offers a graphical representation of (46) (where both T and V are no longer
dimensionless), differentiating the areas allowed from those forbidden. Particularly, it is evident
that the studied device allows a high number of intended uses (V ∈ [0, 100] Volt), allowing the
employment of a wide range of materials for the deformable plate (T ∈ [1.968× 10−20, +∞)
N/m2).

Remark 9. It is worth noting that the maximum allowed voltage, as obtained in (44), is strongly
dependent on the electromechanical properties of the material constituting the deformable plate.

Remark 10. To achieve (44), χ→ 1 to take into account possible incipient breakage of the device
(bifurcation). Moreover, as specified in [17], all constants (M, M1 and M2) were set to 1.

Remark 11. Equation (1) does not allow explicit obtaining of solutions. Therefore, to obtain
approximate solutions satisfying the analytical model (no ghost solutions), we rely on a numerical
procedure which is considered the “gold standard” for this type of model.

Figure 2. A representation of (46) when V changes: in it both the forbidden and permitted areas are
indicated as regards the values of V.

6. How Fringing Field Affects Electrostatic Force

It is known that [17],

|E|2 =
ε0L2V2

2θd3T(1− u(x))2 , θ ∈ R+ (47)

so that the electrostatic force, fel , becomes:

fel =
ε2

0L3V2

4θd3Td3(1− u(x))2 . (48)

Moreover, if E f ringing f ield is the fringing field, one achieves

λδ|∇u(x)|2
(1− u(x))2 = η|E f ringing f ield|2, η ∈ R2. (49)
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Therefore, the related electrostatic force becomes

[ fel ]E f ringing f ield =
0.5λδ|∇u(x)|2
(1− u(x))2 (50)

so that, by (3), one easily achieves

[ fel ]E f ringing f ield =
ε0δV2|∇u(x)|2
T(1− u(x))2

( L
d

)3
. (51)

Therefore, the total electrostatic force becomes:

( fel)TOT = fel + [ fel ]E f ringing f ield = (52)

=
[ ε2

0
4θd3(1− u(x))2 +

ε0δ|∇u(x)|2
(1− u(x))2

](V2

T

)( L
d

)3

confirming that the ( fel)TOT inside the device depends not only on δ but also on L/d
(algebraic ratio indicative of the possible presence of the fringing field). Here, ( fel)TOT also
depends on both x and T so that, increasing T, ( fel)TOT decreases as required physically. To
further confirm the applicability of (52) in industrial applications [39,40], when increasing
V, ( fel)TOT also increases. We finally note that, since 1

(1−u(x))2 < 1
d∗2 , and in our case (no

longer dimensionless) d∗ ≈ 10−9 and L ≈ 10−6, from (52), we achieve a limitation for
( fel)TOT

( fel)TOT < (24.12 · 1038 + 21.14 · 10−24δ)
V2

T
(53)

highlighting, once again, that the increase of T causes a decrease in the effects due to the
fringing field.

Remark 12. According to Section 5.3, T(x) is a bounded function such that T = supx{T(x)}, so
that (53) is valid.

Remark 13. While it appears that (44) does not depend on δ, (53) ensures that T limits ( fel)TOT
where δ exists.

Remark 14. Both (52) and (53) confirm the important experimental issue according to which
the effect due to E f ringing f ield depends on L/d. Particularly, if L/d � 1, the effects due to the
E f ringing f ield will be significantly reduced (as experimentally verified in [41,42]).

7. Deformable Plate Profile Recovering: A Numerical Approach

Equation (1), due to the way it is structured, is not suitable for numerical processing.
Therefore, some simplifications in compliance with the conditions of global existence and
uniqueness must be made.

7.1. Some Due Simplifications of the Analytical Model

From (1), taking into account (8) and considering that [17]

V =
Vs

1 + χ
∫

Ω
dx

1−u(x)

, (54)

we can easily achieve ∫

Ω

dx
1− u(x)

=
Vs − 1

χ
(55)
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so that (1) becomes




∆2u(x) =
(

β
∫

Ω |∇u(x)|2dx + γ
)

∆u(x) + λ f (x)
(1−u(x))2(Vs)2 + λδ|∇u(x)|2

u(x) = 0, ∇u(x) = 0 x ∈ ∂Ω,
0 < u(x) < 1 x ∈ Ω ⊂ RN , N < 4.

(56)

Again, setting 1
V2

s
= K1 (constant), we achieve





∆2u(x) =
(

β
∫

Ω |∇u(x)|2dx + γ
)

∆u(x) + λK1 f (x)
(1−u(x))2 + λδ|∇u(x)|2

u(x) = 0, ∇u(x) = 0 x ∈ ∂Ω,
0 < u(x) < 1 x ∈ Ω ⊂ RN , N < 4.

(57)

Assuming that γ takes precedence over β, (57) takes its final form:




∆2u(x) = γ∆u(x) + λK1 f (x)
(1−u(x))2 + λδ|∇u(x)|2

u(x) = 0, ∇u(x) = 0 x ∈ ∂Ω,
0 < u(x) < 1 x ∈ Ω ⊂ RN , N < 4

(58)

which represents the simplified version of (1) numerically implementable by the finite
difference approach (the “gold standard” procedure for this type of problem which enables
us to avoid the risk of approximate solutions representing ghost solutions).

Remark 15. We observe that (58), even if it is a simplified version of (1), does not invalidate the
verification of all the properties tested in the previous sections (we omit the proof for reasons of space,
as it retraces the five steps of the proof of Theorem 1 [17]).

7.2. Derivation of the Numerical Model: Finite Difference Approach

In this section, we derive the finite difference method for the non linear boundary
values problems (58) in 2D space. In particular:





∆2u(x) = γ∆u(x) + λK1 f (x)
(1−u(x))2 + λδ(v(x)2 + w(x)2)

u(x) = 0, v(x) = 0, w(x) = 0, x ∈ ∂Ω
0 < u(x) < 1 x ∈ Ω ⊂ R2,

(59)

where we assume v(x) = ux(x) and w(x) = uy(x). We consider the computational domain
−1 ≤ x ≤ 1,−1 ≤ y ≤ 1 and use a uniform Cartesian grid consisting of grid points (xi, yj),
where xi = i∆x and yj = j∆y, for i = 0, · · · , I and j = 0, · · · , J, with ∆x and ∆y increments
in x−direction and y−direction, respectively. In this context, we consider the special case
where ∆x = ∆y = h, so that I = J = N number of intervals in both directions.

Let Uij be the approximation to the exact solution u(xi, yj) at the grid points (xi, yj).
To discretize the model (59) at each grid point (xi, yj) of the computational domain, we use
the following second order centered finite differences

uxx ≈ Ui+1,j − 2Uij + Ui−1,j

h2 ,

uyy ≈ Ui,j+1 − 2Uij + Ui,j−1

h2 ,

ux ≈ Ui+1,j −Ui−1,j

2h

uy ≈ Ui,j+1 −Ui,j−1

2h
.
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Let Vij and Wij be the approximations to the x− and y−derivatives ux(xi, yj) and
uy(xi, yj) of the exact solution, respectively; thus, we obtain the finite difference method

s2Ui−1,j + s1Ui+1,j − 4Uij + s2Ui,j−1 + s1Ui,j+1 = h2F(Uij)

Ui+1,j −Ui−1,j − 2hVij = 0 (60)

Ui,j+1 −Ui,j−1 − 2hWij = 0,

for i, j = 1, · · · , N − 1, with s1 = 1− 0.5hγ and s2 = 1 + 0.5hγ and where

F(Uij) =
λK1 f (xi, yj)

(1−Uij)2 + λδ(V2
ij + W2

ij). (61)

The finite difference Equations (60) at points near the boundary involve the known
boundary values, which, are generally moved to the right-hand side. However, the zero
boundary conditions do not contribute to the model under study. We thus obtain a system
of 3(N − 1)2 nonlinear equations in 3(N − 1)2 unknowns, Uij,Vij and Wij, that can be
expressed in the vector form

AU = F(U) (62)

where U is the vector of the unknowns

U =




U
V
W


 (63)

with U, V, W assigned by the natural row-wise ordering

Z =




Z[1]

Z[2]

...
Z[N−1]


 where Z[j] =




Z1j
Z2j

...
ZN−1j


 for j = 1, · · · , N − 1,

with Z = U, V, W.
The A matrix is a very sparse square of size 3(N − 1)2 × 3(N − 1)2

A =




A1 A4 A7
A2 A5 A8
A3 A6 A9


 (64)

with a block structure as shown in Figure 3. Since each finite difference equation involves
at most five unknowns, each row of the matrix A has at most five non-zeros elements.
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Figure 3. Example of the A matrix for N = 5.
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Each sub-matrix Ak, k = 1, · · · , 9, has a block form

Ak =




T S1
S2 T S1

S2 T S1
. . . . . . . . .

S2 T




(65)

where each block, T, S1 and S2, is a (N − 1)× (N − 1) matrix.
In particular, for the sub-matrix A1, T has a tridiagonal form

T =




−4 s1
s2 −4 s1

s2 −4 s1
. . . . . . . . .

s2 −4




(66)

with s1 = 1− 0.5hγ and s2 = 1 + 0.5hγ. S1 and S2 are diagonal matrices with elements
equal to s1 and s2, respectively. The non-zeros values of the matrices S1 and S2 are separated
from the diagonal by N − 1 zeros, since these coefficients correspond to grid points lying
above or below the central point in the stencil, and are hence in the next or previous row of
unknowns. For the sub-matrix A2, it has

T =




0 s1
s2 0 s1

s2 0 s1
. . . . . . . . .

s2 0




(67)

with s1 = −1 and s2 = 1. The matrices S1 and S2 are null. For the sub-matrix A3, it has T
null matrix and S1 and S2 diagonal matrices with element equal to s1 = 1 and s2 = −1.

The sub-matrices A5 and A9 are diagonal, with principal elements equal to −2h; the
other sub-matrices are null. Next, the fsolve.m Matlab®R2019a routine, running on an Intel
Core 2 CPU at 1.45 GHz , is used to solve the nonlinear algebraic system (62), with initial
guess U0 = 0.
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The numerical results reported in Figure 4 are obtained by setting γ = 0.1, λ = −0.1,
δ = 0.2 and K1 = 0.9 with f (x) = |x|0.2 and h = 0.05.

0
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-1 -1

Figure 4. Recovering of the deformable plate profile when γ = 0.1, λ = −0.1, δ = 0.2 and K1 = 0.9
with f (x) = |x|0.2 and h = 0.05.

Remark 16. We observe that the obtained matrix is sparse and (at times) large, requiring the use of
iterative techniques for solving linear systems based on Krylov sub-spaces ([43]). However, in this
paper, the dimensions of the array are not such as to require the imperative use of these methods.
Furthermore, since the application under study is of an off-line type, the calculation times performed
by fsolve.m do not affect the validity of the proposed procedure.

Remark 17. The finite difference method approximates the value of the derivative of a function in
a point (for which it would be necessary to know all the values of the function (therefore infinite)
in a neighborhood of the same point), with an expression that takes them into account only a finite
number (often very small). This is passed from the limit operation to the incremental ratio operation.
This allows to transform a differential equation into an algebraic problem whose sparse matrix
strongly depends on the number of values used in the approximation of the derivatives. Starting
from the considerations on the orders of accuracy of the derivative approximation formulas, it is
easy to prove that the error made by approximating the second derivative is a O(h2). Moreover, the
approximation error between the true solution u(x) of the problem (1) and the approximate one is
of the second order. In fact, introducing the truncation error τj, and exploiting the Taylor series
developments, it is easy to achieve:

||τj|| =
h2

12
||g′′(xi)|| = O(h2) (68)

where g must be at least C2. Moreover, introducing the vector of the global error, H, we can easily
achieve:

||H|| ≤ ||A−1|| ||τ|| (69)

and again ||τ|| → 0 (which ensure the consistency of the numerical approach) and ||A−1|| ≤ C,
with C independent on h (which ensure the stability of the numerical approach).

8. Some Interesting Numerical Results
Approximate u(x) and Ghost Solutions

Equations (19), (20) and (21) depict the conditions which numerical solutions must
satisfy to avoid representing ghost solutions. Once implemented, the numerical procedure
was tested for several experimental cases intended for industrial applications. Particularly,
assuming f (x) = |x|0.2, h = 0.05, K1 = 0.9 [33], max Uij have been achieved when δ
increases (see Table 2 where it is also highlighted that max Uij satisfy (19), (20) and (21)).
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The max Uij obtained shows that the hypothesis of small displacements is also confirmed
in the numerical recovering of the deformable plate profile, with a slight increase due to
the growth in the effects caused by the fringing field. The results shown in Table 2 refer to a
deformable plate with γ = 0.1; however, different values of γ did not produce significant
changes in max Uij with respect to the case γ = 0.1. This is because γ, in (1), has little impact,
compared to the other addend, in weighing ∆u(x) (which governs the curvature of the
deformable plate). Moreover, as δ increases, the contribution due to V increases, thus even
high values of V (19), (20) and (21) are verified. In addition, the effects due to δ affect ∆2u(x):
there is a prevalence of the effect due to δ as sanctioned by (1), because u(x) increases
its concavity when δ increases (Efringing field favors the deformation of the deformable
plate). However, |∇u(x)|2 in (1), has little effect numerically (for implementation reasons),
therefore the underestimation of max Uij could be compensated for by amplifying factors
to be researched experimentally.

We observe that the numerically constructed regularity of u(x) suggests that the
performance of the approach is satisfactory even if the high computational complexity
(with respect to other numerical approaches, [44]) would make the approach inconvenient
for any real-time industrial applications (i.e., when short plate recovery times are required).
However, these applications are currently not widespread on a large scale.

Table 2. max Uij when f (x) = |x|0.2, h = 0.05, K1 = 0.9.

δ γ λ max Uij (19) (20) (21)

0.2 0.1 −0.1 0.023028788820237 verified verified verified
0.2 0.3 −0.1 0.023000926902868 verified verified verified
0.2 0.5 −0.1 0.022920240529700 verified verified verified
0.2 0.1 −0.2 0.047876393295838 verified verified verified
0.2 0.3 −0.2 0.047808989792072 verified verified verified
0.2 0.5 −0.2 0.047625803377756 verified verified verified
0.2 0.1 −0.5 0.139135198053765 verified verified verified
0.2 0.3 −0.5 0.138790292277593 verified verified verified
0.2 0.5 −0.5 0.138011485983744 verified verified verified
0.2 0.1 −0.8 0.300973743344764 verified verified verified
0.2 0.3 −0.8 0.298510411698396 verified verified verified
0.2 0.5 −0.8 0.293792489940541 verified verified verified

Figures 5–9 show some recovering of deformable plate profile as the amplitude of λ
increases. From these profiles it can be deduced once again how, as this amplitude increases
(and therefore as the externally applied V increases) the profile of the deformable plate
rises more and more. Obviously, the values of max Uij are not such as to fear the risk of the
deformable plate touching the top plate of the device.
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Figure 5. Recovering of the deformable plate profile for δ = 0.2 and K1 = 0.9 with f (x) = |x|0.2 and
h = 0.05 when (a) γ = 0.3, λ = −0.1 and (b) γ = 0.1, λ = −0.2.



Electronics 2022, 11, 3010 19 of 27

0

1

0.01

0.02

0.5 1

0.03

0.5

0.04

0

0.05

0
-0.5

-0.5

-1 -1

(a)

0

1

0.01

0.02

0.5 1

0.03

0.5

0.04

0

0.05

0
-0.5

-0.5

-1 -1

(b)

Figure 6. Recovering of the deformable plate profile for δ = 0.2 and K1 = 0.9 with f (x) = |x|0.2 and
h = 0.05 when (a) γ = 0.3, λ = −0.2 and (b) γ = 0.5, λ = −0.2.
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Figure 7. Recovering of the deformable plate profile for δ = 0.2 and K1 = 0.9 with f (x) = |x|0.2 and
h = 0.05 when (a) γ = 0.1, λ = −0.5 and (b) γ = 0.3, λ = −0.5.
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Figure 8. Recovering of the deformable plate profile for δ = 0.2 and K1 = 0.9 with f (x) = |x|0.2 and
h = 0.05 when (a) γ = 0.5, λ = −0.5 and (b) γ = 0.1, λ = −0.8.
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Figure 9. Recovering of the deformable plate profile for δ = 0.2 and K1 = 0.9 with f (x) = |x|0.2 and
h = 0.05 when (a) γ = 0.3, λ = −0.8 and (b) γ = 0.5, λ = −0.8.
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Remark 18. It is worth noting that in (1) λ is a parameter which, apparently, would turn out to be
positive. However, the numerical recovering of the deformable plate profile required negative values of
λ. This is due to the fact that λ > 0 would derive from an external V inversely polarizing the device.

9. A Further Limitation for T

The following results yield:

Proposition 1. For (1), the following limitation for T holds:

10−21(18 · 10−10V2 + 19.68) < T <
1

K1 f (x)

(1
θ
+

1
η

δH
) ε2

0V4L4

8d9 (70)

Proof. From (57), we achieve

λ

(
K1 f (x)

(1− u(x))2 + δ|∇u(x)|2
)

=
(

θ|E|2 + η|E f ringing f ield|2
)

, (71)

from which, by (3), (47) and (49), we achieve

θλ =
ε2

0V4L4

4d6T2

(
K1 f (x)

(1− u(x))2 + δ|∇u(x)|2
)

1(
1
θ

ε0L2V2

2d3T(1−u(x))2 +
1
η

ε0V2L2δ|∇(x)|2
2d3T(1−u(x))2

) . (72)

From (72), considering that |∇u(x)|2 is bounded [17], therefore |∇u(x)|2 < H (H
constant). Moreover, being u(x) < 1, it is easy to achieve

T <
1

K1 f (x)

(1
θ
+

1
η

δH
) ε2

0V4L4

8d9 < H1V2 (73)

with H1 = 1
K1 f (x)

(
1
θ + 1

η δH
)

constant (because f (x) is a bounded function). Therefore,
by (46) and (73), we achieve (70), which represents a good limitation for T, depending on
both x (due to f (x)) and δ. Moreover, (73) also depends on |E| (by θ). In addition, fixed L,
plates with higher T can be destined in MEMS with plates very close to each other (reduced
values of d), because high values of T force the deformable plate not to touch the plate
superior. On the contrary, if fixed d, deformable plates with reduced T can be exploited in
MEMS with reduced value of L.

Remark 19. We observe that d9 (with d = 10−9) in (70) allows us to validate Remark 8.

Remark 20. Figure 10 displays the link between T and V as governed by (73). Therefore, as
qualitatively deduced in [27], T = KV2, so that once the intended use of the MEMS has been
established, the straight line parallel to the ordinate axis (passing through (V, 0)) intercepts the
curve at a point, in this case, all the points below it select T eligible. As in [27], Figure 10 can be
employed to choose the intended use, beginning with the selected material.
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Figure 10. T and V: an important link.

10. On the Influence of the Properties of the Deformable Plate on the
Proposed Procedure

As verified, obtaining the limitations for T and V depend on the electro-mechanical
properties of the material constituting the deformable plate (presence of both θ and λ) influ-
encing the concavity of u(x), highlighting that the increments of T reduce the amplitudes
of u(x). On the other hand, the increase of T produces smaller deformations at the edges.
Furthermore, the numerical approach depends on the above parameters which, in a certain
sense, govern the convergence. Finally, as in [27], these electro-mechanical properties
influence the choice of T starting from V, and vice versa. Particularly, the presence of T
in the denominator in the limitation of V strongly influences ( fel)TOT , and therefore |E|
total which, through (1), affects ∆2u(x) (higher order curvatures of the deformable plate);
thus, the greater the T, the lower the concavity of the deformable plate (also confirming
that plates that are more mechanically resistant show reduced deformations at the edges).
Furthermore, λ in (19), (20), and (21) ensure that T also influences the algebraic conditions
of existence and uniqueness of the solution for (1).

We highlight that the numeric procedure depends on λ, γ, and δ, which govern the
convergence of the method obtaining u(x) which satisfy (19), (20), and (21). Finally, by (53),
it becomes clear that both V and T act effectively on ( fel)TOT . In other words, both the
intended use of the device and the mechanical properties of the deformable plate affect
the behavior of the device. To summarize, the model studied is more versatile than other
simplified models where the intended use of the device imposed T and vice versa.

11. Possible Intended Uses of the MEMS Under Study

Industrially, the device presented here does not require particular construction re-
quirements, and therefore the production costs would be low. Furthermore, both (45)
and (46) ensure that the device is usable for a wide range of industrial applications (i.e.,
biomedical applications, micro-pumps for intravenous drug administration, and surgical
micro-systems). Obviously, the exact value of V strictly determines the intended use of
the device.

Nowadays, parallel plate devices are industrially widespread, especially when their
use is integrated in further electro-mechanical devices. However, even if the electronic tests
on MEMS have reached high levels of reliability, the mechanical tests still do not present
similarly high levels of performance. Despite this, in recent years, the joint use of electronic
and mechanical components mounted on a single chip has allowed very high performances
of micro-sensors used in robotics and electronics for use, for example, in large metropolitan
areas/Smart Cities.

12. Concerning the Pull-In Voltage and Electrostatic Pressure

In MEMS, applying V, is its deformable element. However, high values of V (beyond
the “pull-in” value) generates instability, because the electrostatic forces exceed the elastic
ones (a potentially destructive phenomenon). In other words, from (3), if λ > λ∗ (with λ∗,
pull-in value), (1) does not admit solutions. Conversely, if λ < λ∗ the solution for (1) exists.
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As known in the literature, λ∗ has been proved both mathematically [1] and experimen-
tally [45–47]. Particularly, following the approach proposed in [27], we plot the trends of u0
(maximum deflection of the deformable plate) versus λ (starting from λ = 0, there will be a
value of λ , indicated with λ∗ below which there are two solutions while above there is no
solution, thus λ∗ represents the bifurcation point). Figure 11 depicts the rends of u0 − λ,
both without fringing field (δ = 0) and with it (δ = 1), respectively. Both trends highlight
the superimposition with experimentally obtained bifurcation diagrams [45]. In fact, in non
dimensionless conditions, the pull-in voltage, Vpull-in, depending on the gap between the
two plates, is displayed in Figure 12 whose trend is completely similar to those displayed in
Figure 6 in [45] and Figure 6 in [48] where an experimental setup, consisting of two plates
separated by a distance d (each plate was acrylic sheet coated with conductive aluminum)
highlighting that (1), even if referred to a simplified geometry, in terms of pull-in voltage,
has a well-established experimental confirmation in the literature.

Figure 11. Dimensionless λ∗ as a function of dimensionless u0.

Figure 12. Pull-in voltage as function of distance d.

This important experimental finding is confirmed by the fact that, from (3), it is easy
to achieve

Vpull-in =

√
2d3Tλ∗

ε0L2 (74)

which is completely analogous to (11) achieved in [45]. In addition, (74) is still analogous
to (3) in [49] where a MEMS switch with perforated serpentine (Au) was designed, sim-
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ulated, fabricated and characterized. Not last, (74) is quite similar to (1) in [48] where an
electrostatic MEMS with parallel plates was considered.

We also note that, from (45), we can write:

Vmax admissible = 23.7 · 107
√

1021T − 19.68. (75)

Therefore, considering the usual values for each parameter, we achieve Vpull-in ≈
Vmax admissible, with the consequence that the obtained Vmax admissible is compatible with the
experimental setups known in the literature. Particularly, Table 3, after fixing the geometry
of the device and varying the material constituting the deformable plate as in [49], reports
the values of Vmax admissible achieved which result similar to those obtained in [49].

Table 3. Performance in terms of dimensions and materials.

Material Tickness Length Width Vmax admissible Vmax admissible Deviation
(µm) (µm) (µm) (V) in [49] (V) (V)

Au 1.5 320 200 10.45 10.50 0.05
Au 1 320 200 8.12 8.20 0.08
Au 0.5 320 200 6.62 6.50 −0.12
Al 1.5 320 200 7.12 7.10 −0.02
Al 1 320 200 5.81 5.70 −0.11
Al 0.5 320 200 3.77 3.85 0.008
Cu 1.5 320 200 8.23 8.45 0.22
Cu 1 320 200 6.15 6.25 0.10
Cu 0.5 320 200 4.28 4.39 0.11

As already highlighted, the effects due to the fringing field depend on the aspect
ratio L/d. Then, the pull-in voltage is also affected by this relationship. Figures 13 and 14
highlight, for aspect ratio L/d = 1, 2, the trends of Vpull-in using both the numerical
procedure used in [45] and with the procedure proposed here. It should be noted that
the d increase produces a deviation from the trend obtained using [45], while agreeing
with the experimental trend (as also highlighted in [45]). So, once again, we highlight
the adherence of the theoretical results discussed in this paper (Deriving from (1)) with
important experiments of electrostatic deflections.

Figure 13. Trend of Vpull-in: L/d = 1. It should be noted that the agreement between numerical
results and experimental findings already occurs from extremely small values of distance between
the plates.
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Figure 14. Trend of Vpull-in: L/d = 2. Even in the presence of intense effects due to the fringing
field (δ = 2), the concordance of the theoretical results discussed in this work with the experimental
evidence is still evident.

Finally, from (51), the electrostatic pressure due to E f ringing f ield can be written as:

[pel ]E f ringing f ield =
ε0δV2|∇u(x)|2
T(1− u(x))2

L2

d3 (76)

which, combined with (74), provide the link between [pel ]E f ringing f ield and Vpull-in that pro-
duce the following trend (as shown in Figure 15):

Figure 15. Vpull-in versus [pel ]E f ringing f ield . The adherence of the theoretical result with the experimental
evidence obtained in [50] is evident.

Quite similar to that obtained in [50], concluding once again that (1) is in line with
many important experimental results already known in the literature.

Remark 21. We observe that, as discussed in Section 12, the results obtained are mainly comparable
with experimental setups obtained on electrostatic membrane MEMS devices. This is due to the fact
that the global existence and uniqueness conditions for (1) have been obtained starting from (31)
(reference energy state), which models an electrostatic membrane MEMS device with fringing field.
Furthermore, the hypothesis of small displacements, together with the fact that β and γ in (1), do
not vary during the deformation, the results for (1) agree with the experimental setups for membrane
devices. In the near future, we hope to use β and γ variables to extend the comparison to further
experimental setups.
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Remark 22. Regarding the possible experimental confirmation of the results achieved for T,
Figure 12 depicts the link obtained between the pull-in voltage and the distance between the plates of
the device. This link was found to be superimposable to experimental links known in the literature.
Therefore, by (74), also T, indirectly, is verified experimentally.

13. Conclusions and Perspectives

In this paper, a dimensionless fourth-order integro-differential model known in the
literature was considered while modeling the behavior of an electrostatic MEMS device
with metal parallel plates in which the effects due to the fringing field are modeled, ac-
cording to the Pelesko–Driscoll theory, by means of an easily implementable addend via
software/hardware whose weight can be controlled in voltage (parameter λ). This model
was formalized so that the device can be controlled in voltage by a suitable capacitive
control circuit. Starting from the conditions of global existence and uniqueness, the analyti-
cal results were discussed, highlighting the most important and captivating implications
for our industrial realities. In particular, the choice of a particular dielectric profile of
the deformable plate (satisfying mandatory physical requirements) led to obtaining im-
portant limitations for the external electrical voltage, for the mechanical tension of the
deformable plate, and for the total electrostatic force (including the contribution due to
the fringing field) highlighting relevant adherence with experimental evidence known
in the literature. It is undoubtedly worth noting that both the limitations for V and for
T allow you to reconstruct u(x) profiles (model solutions) in complete safety. In other
words, once a particular device is fixed (i.e., by fixing T of the material constituting the
deformable plate), the external V applied satisfying the above limitations, it will allow
u(x) profiles of the deformable plate complying with the safety standards according to
which the deformable element must not touch the upper wall of the device. Conversely,
by selecting the intended use of the device (i.e., V satisfying the above limitations), it is
possible to choose a particular material for the deformable plate (whose T satisfies the
relative limitation) capable of guaranteeing solutions u(x) of high security. Since the model
does not allow the explicit recovering of the deformable plate, a numerical technique based
on finite differences (the “gold standard” for this particular type of analytical models) was
used to obtain profiles that are fully compatible with the conditions of global existence
and uniqueness. Furthermore, a simple criterion for choosing the intended use has been
provided, beginning with the mechanical tension of the deformable plate and vice versa,
which can be particularly useful for industrial applications. In particular, the high value of
Vmax admissible allows the device studied to be used also in intended uses where V would
be high (industrial applications that require up to Class 3B micro devices (characterized
by high fault electrical voltage) according to the ESD/CEI classification). Furthermore,
the direct dependence of Vmax admissible on T allows us to confirm what is required by the
industry according to which the device characterized by a deformable plate with high
rigidity allows uses with an even higher Vmax admissible (with profiles u(x) such as not to
compromise the functionality of the device). The quality of the results obtained was also
confirmed by comparison with experimental setups known in the literature, highlighting
that the hypothesis of small displacements, together with the non-variability of some me-
chanical parameters during the deformation of the plate, allows an exhaustive comparison
of performing models of electrostatic devices membrane, which are famously easier to im-
plement. Thus, the possibility emerges of opening a new line of research into comparisons
between complete (but difficult to implement) models and simplified models representing
devices that are well-suited to experimental performances. We underline that the model,
being an ordinary derivative one, does not lend itself to being solved using FEM techniques
(particularly suitable for dynamic partial derivative models). Therefore, it is necessary to
reformulate the model in the near future so that its most important dynamic aspects are
considered (including the dependence on electrical conductivity and temperature), on one
hand, to obtain the more general conditions of global existence and uniqueness, and, on
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the other, to proceed with the recovering of the deformable profile using FEM techniques
(performing for software/hardware applications).
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