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Abstract: The output capacitorless low-dropout regulator (OCL-LDO) has developed rapidly in
recent years. This paper presents a flipped voltage follower (FVF) OCL-LDO with fast transient
response. By adding a dynamic bias circuit to the FVF circuit, the proposed LDO has the ability
to quickly adjust the gate voltage of the power transistor, without extra power consumption. The
proposed LDO was designed in 0.18 µm CMOS process. The simulation results show that the recovery
time is 52 ns when the load changes from 0.1 mA to 20 mA with a slew rate of 20 mA/ps, while the
quiescent current is 92 µA with 1 V regulated output. The undershoot and overshoot voltage are
242 mV and 250 mV, respectively.

Keywords: low-dropout regulator; flipped voltage; follower capacitorless; dynamic bias

1. Introduction

Power management integrated circuits (PMICs) are playing an increasingly important
role in system-on-a-chip (SOC). The function of electronic products is related to PMICs.
High-performance PMICs with high stability, fast dynamic response and high efficiency
have become more important. With the advantages of simple structure, low quiescent
current, wide bandwidth and noise suppression ability [1–5], LDOs are widely used in
wearable intelligence devices, memory, etc. [6–10].

Due to the existence of a large off-chip capacitor in traditional LDOs [11–18], the
stability of the traditional LDO is not guaranteed. The dominant pole of the traditional
LDO is at the output node, so the dominant pole of the traditional LDO will change under
different load conditions. With an increase in load, the dominant pole moves to a low
frequency, which causes instability of the LDO system. The traditional LDO regulator
with a large output capacitor has the disadvantages of high design complexity, large chip
area and high cost [1,19], and this will limit the fully integrated ability of modern SOCs.
However, in fully integrated LDOs, the transient and stability will degrade significantly
due to the absence of the off-chip capacitor, thus becoming major design challenges.

Many methods have emerged to tackle these issues. For example, in [12,18], a slew-
rate enhancement circuit and dynamic transient control circuit were used to improve the
transient response, but the impedance of the output still changed with the load, so a large
Miller capacitor was used to ensure stability at low load. The FVF structure [20–23] gives
another way of compensation, and it can make the output pole independent of the loading.
Figure 1a shows the FVF circuit. MP is the power transistor, and VSET is the input voltage.
Because of the small impedance of the FVF structure [24], the output pole is independent
of the load and moves to a high frequency. The output impedance can be expressed as

ROUT =
1

gm1
||Rload (1)
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In Equation (1), gm1 is the transconductance of M1. Equation (1) indicates that ROUT is
related to gm1 and much smaller than the load resistance; therefore, the output pole does
not vary with the load, and the stability problem is solved.

In Figure 1a, the FVF structure decreases the output resistance [25,26] and moves the
non-dominant pole, which is constituted by output resistance and output capacitance, into
a high frequency, but the stability issues still need to be considered if the two poles are close
enough. However, the low loop gain of the FVF structure affects the response time, line
regulation and load regulation in the stable output state [8,27,28]. The FVF structure can be
replaced by a folded FVF structure [25,29–32], as illustrated in Figure 1b. With the addition
of cascade transistor M2 in the feedback loop, the loop gain of the folded FVF is improved.
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Figure 1. (a) Structure of an FVF; (b) Structure of a folded FVF.

However, fast transient response is an important requirement in the OCL-LDO because
there is no external output capacitor to decrease the output variations when the transient
occurs. In Figure 1b, Ibias1 and Ibias2 determine the transient response, and a large bias
current will consume more power. The authors of [29] presented a voltage spike detection
circuit based on capacitive coupling. This circuit realized bias current change in load
changes, but the capacitor consumed a greater area. The authors of [33] proposed a novel
positive transient detection circuit to improve the transient response, but the better effect
was achieved only with heavy to light load changes. This paper proposes a dynamic
bias generation circuit for fast charging/discharging of the large gate-source parasitic
capacitance of the power transistor MP by using an MOS to detect changes in the output.
Fast transient response is achieved by dynamically adjusting the bias currents Ibias1 and
Ibias2 when the load changes.

This article is organized as follows. Section 2 elaborates on the structure and principle
of the proposed dynamic bias circuit. In Section 3, the implementation of the LDO circuit is
described. Simulation results are presented in Section 4. Finally, Section 5 concludes the
paper.

2. Proposed Dynamic Bias Circuit

The concept of the proposed dynamic bias circuit is illustrated in Figure 2. The circuit
consists of five MOS transistors, MD1-5, and two constant bias currents, Ibias and I2. VREF is
a constant voltage. The function of MD2 is to detect the change in voltage VOUT directly. I1
is influenced by the change in VOUT and then affects I3 because I3 = I2 + I1. In the steady
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state, VOUT remains constant, and VGS1 is constant to give a fixed current I1. The current I1
can be expressed as

I1 =
1
2

µnCox

(
W
L

)
MD2

(VGS2 −VTH)
2 (2)

In Equation (2), VGS2 is the gate-source voltage of MD2 in the steady state. The gate
and source voltages of MD2 remain unchanged; consequently, I3 is a stationary current in
steady state.
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In the steady state, VOUT equals VREF. However, when VOUT increases instantaneously,
the variation is ∆V. The source of MD2 detects the change, then |VGS2| increases momen-
tarily to increase I1. I1 can be found from

I1 + ∆I1 = 1
2 µnCox

(
W
L

)
MD2

(VG,MD2 −VOUT −VTH)
2

= 1
2 µnCox

(
W
L

)
MD2

(|VGS2|+ ∆V −VTH)
2

(3)

The extract current ∆I1 is given by

∆I1 = 1
2 µnCox

(
W
L

)
MD2

[(|VGS2|+ ∆V −VTH)
2 − (|VGS2| −VTH)

2]

= µnCox

(
W
L

)
MD2

(|VGS2|+ ∆V
2 −VTH)∆V

(4)

Equation (4) shows that large W/L and ∆V are conducive to increasing I1; thus, MD2
injects more transient current into I3. When VOUT returns to a constant voltage level, VGS2
is in a steady state once again, then I1 returns to the stable value.

Similarly, when VOUT decreases, |VGS2| decreases, then I1 is reduced, and I3 is also
affected. Figure 3 illustrates the variation in I1 and I2 when VOUT changes. I1 changes with
the variation in VOUT, and I3 changes as well.
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3. Circuit Design

The proposed LDO circuit structure implementation presented in this paper is shown
in Figure 4.
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Figure 4. Proposed LDO circuit structure.

The proposed LDO is formed by a folded FVF circuit, the proposed dynamic bias
circuit, an amplifier, and a power transistor, MP. To ensure the performance of the circuit,
the folded FVF was adopted to improve the circuit gain. MC1–MC2 and two bias currents
I1–I2 make up the folded FVF circuit. VSET as the input of the folded FVF is generated by
the amplifier. VB is a constant voltage.

Figure 5 shows the dynamic bias circuit. MOS transistors MD1–MD14 comprise the
dynamic bias circuit. VB1 and VB2 are constant voltages. The sources of MD1 and MD4 are
connected to VOUT to achieve direct detection of the voltage spike created at the transient
instant. MD3 and MD6 were developed to generate new dynamic bias voltages VBN and
VBP; they are dynamic bias currents I1 and I2 in the folded FVF circuit.
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Figure 5. Dynamic bias circuit.

In the dynamic bias circuit, the drop (or increase) in VOUT is detected by the source of
MD1 and subsequently decreases (or increases) the gate voltage of MP through the signal
path formed by MD3 and I1. Similarly, MD4 also senses the drop (or increase) in VOUT to
increase (or decrease) the gate voltage of MD6 and finally decrease (or increase) the gate
voltage of MP via the signal path formed by I2 and MC2.

The constant current sources generated by MD2 and MD5 are added to the circuit. This
avoids excessively high or low VOUT resulting in extremely low currents generated by MD1
and MD4.

When ILOAD suddenly increases, VOUT drops rapidly. The signal response is shown in
Figure 6. In Figure 6, the capacitor C is the parasitic capacitor of the gate and source of MP.
The direction of the arrow in the capacitor represents discharge or charge current.
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Figure 6. Signal response when IOUT increases.

The change is sensed by the source of MD1 and MD4. Due to the drop in VOUT, |VGS|
of MD1 increases; thus, the current of MD3 rises. At the same time, the alteration of the
voltage leads to a sharp and momentary decrease in |VGS| of MD4, which reduces the
current of MD4. Because of the drop in VOUT, |VGS| of MC1 decreases, and then the current
of MC1 is diminished. The current flowing through MC2 is

IMC2 = IMB1 − IMC1= IMD1 + ∆IMD1 + IMD2 − (IMC1 − ∆IMC1) (5)
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In Equation (5), IMC1 and IMD1 are the steady-state currents of MC1 and MD1. ∆IMC1
and ∆IMD1 are the variations. We know from Equation (5) that IMC2 increases. The capacitor
C then discharges. The discharge current of C is

Idischarge = IMC2 − IMB2= IMC2 − (IMD4 − ∆IMD4 + IMD5) (6)

IMD4 is the current of MD4 in the steady state, and ∆IMD4 is the variation. Accelerated
discharge of C, decreased gate voltage of MP, and increased output current are achieved
due to MC1, MB1− and MB2. When VOUT is regulated back to the nominal value, the bias
condition of the circuit returns to normal.

Similarly, when ILOAD decreases suddenly, VOUT increases. The signal response is
shown in Figure 7.
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Figure 7. Signal response when IOUT decreases.

The change in VOUT is detected by MD1 and MD4 again to reduce the |VGS| of MD1
and increase the |VGS| of MD4 simultaneously. Due to the sharp increase in VOUT, |VGS|
of MC1 goes up, and the current of MC1 rises. The current flowing through MC2 is

IMC2 = IMB1 − IMC1= IMD1 − ∆IMD1 + IMD2 − (IMC1 + ∆IMC1) (7)

We know from Equation (7) that IMC2 decreases. The capacitor C is then charged. The
charging current of C is

Icharge = IMB2 − IMC2 = (IMD4 + ∆IMD4 + IMD5)− IMC2 (8)

C is charged up to reduce the current provided by MP to the load. The operation is
automatically shut down again when VOUT returns to the steady state.

The small-signal model of the proposed folded FVF LDO is shown in Figure 8.
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RB and CB are the equivalent resistance and capacitance at node B. The resistance and
capacitance are

RB = roMB2 || gmc2 · roMC2 · roMB1 (9)

CB = CGSP + (1 + gmp · Rout)C1 (10)

In Equations (9) and (10), gMC2 and gmp are the transconductances of MC2 and MP;
roMB1, roMB2 and roMC2 are the drain output resistances of MB1, MB2 and MC2; and CGSP is
the gate source capacitance of MP.

The resistance and capacitance of the output node are

ROUT =
1

gmc1
|| 1

gmD1
|| 1

gmD4
||rop||Rload (11)

COUT = C1 + CGSMC1 + CGSMD1 + CGSMD4 + Cpara (12)

In Equations (11) and (12), gMC1, gmD1 and gmD4 are the transconductances of MC1,
MD1 and MD4; rop is the drain output resistor of MP; CGSMC1, CGSMD1 and CGSMD4 are
the gate source capacitance of MC1, MD1 and MD4; and Cpara is the parasitic capacitance in
output node. The large RB and CB determine the position of the dominant pole.

Generally, Rload is larger than 1/gm; then, the output resistance is related to 1/gm, and
this means that the ROUT has little correlation with Rload. The dominant pole is at node B,
and the non-dominant pole at the output node is almost unchanged when the load changes,
so the circuit is stable.

4. Simulation Results

The proposed LDO circuit was designed using 0.18 µm standard CMOS technology.
The supply voltage was 1.8 V. The simulation results are presented here.

Figure 9 shows the frequency response of the proposed LDO at different ILOAD values
(ILOAD = 0.1 mA and ILOAD = 20 mA). It can be seen that the phase margins are more than
85 in all conditions. This circuit is stable.
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Figure 10 displays the quiescent current for different temperatures (−40 ◦C, 27 ◦C and
85 ◦C) and process corners. The quiescent current of the LDO circuit is 92 µA in the TT
corner and at 27 ◦C. During load transition, the change in dynamic bias current causes the
quiescent current to change; however, in the steady state, the quiescent current is constant.
Therefore, the quiescent of LDO is stable at zero load and full load.
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In Figure 11, the transient response simulation results of the LDO without and with
the proposed dynamic bias circuit are shown. The load current changes from 0.1 mA to
20 mA with a rise/fall time of 1 ps.
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Tsettle is the recovery time when VOUT settles back to 1% accuracy [33]. As shown in
Figure 11, the undershoot, overshoot and recovery time of the LDO without the proposed
dynamic bias circuit were about 248 mV, 260 mV and 177 ns, respectively, while those of
the LDO with the proposed circuit were about 242 mV, 250 mV and 52 ns only, respectively.
The transient benefitted from the dynamic bias current and large bias current.

Figure 12 shows the simulated recovery time versus process corners and temperature
variations. As can be seen, across all process corners at −40 ◦C, 27 ◦C and 85 ◦C, the max
recovery time was 59 ns at 85 ◦C in the SS corner, while the min recovery time was 45 ns at
−40 ◦C in the FF corner.
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Figure 12. Recovery time versus process corners and temperature variations.

Figures 13 and 14 present the simulated overshoot and undershoot against process
corners and temperature variations (−40 ◦C, 27 ◦C and 85 ◦C). The max overshoot was
283 mV at 85 ◦C in the SS corner, while the min overshoot was 217 mV at −40 ◦C in the FS
corner. The max undershoot was 280 mV at 85 ◦C in the SS corner, and the min undershoot
was 206 mV at −40 ◦C in the SS corner.
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For the layout of the design, we used a 0.18 µm standard CMOS process. Figure 15
shows the layout of this design, with an active area of approximately 0.0235 mm2 (156.8 µm
× 149.8 µm).
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Figure 15. Layout of the proposed LDO.

Table 1 summarizes the performance of the proposed LDO circuit and compares it
with the prior state of the art in terms of quiescent current, on-chip capacitor, recovery time
spike voltage, load regulation (LDR), line regulation (LNR) and power-supply rejection
ratio (PSRR). Compared with the prior designs in Table 1, this paper achieves the shortest
response time.

Table 1. Performance summary and comparison with the prior state of the art.

Parameter [13] [19] [25] [27] [33] This Work

Process (nm) 65 65 180 65 130 180
VOUT 1 0.98 1.2 1 1.2 1

IQ (µA) 23.7 385 34.5 13.2 100 92
Imax (mA) 50 20 20 50 20 20

Con-chip (pF) 9 9 5 10 1.4 2.8
TEdg (ns) 100 N/A 0.1 500 10 0.001

K 100,000 N/A 10 500,000 10,000 1
∆VOUT (mV) 40 N/A 270 341.63 95 250

Tsettle (ns) 1650 N/A N/A 925 150 52
PSRR (dB) at 1 kHz −52 −92.65 N/A N/A −60 −60.85

LDR (mV/mA) 0.034 2.3 N/A 0.133 N/A 0.088
LNR (mV/V) 8.89 50 N/A 0.217 N/A 0.948

FOM1 45,095 N/A 4.65 1896 4773 1.16
FOM2 782 N/A N/A 244 750 239

In Table 1, FOM1 is defined as in [26,34]; it can be expressed as

FOM1 = K(
∆VOUT · IQ

∆IOUT
) (13)

In Equation (13), K is the edge-time ratio, which is defined by

K =
∆t used in the measurement

the smallest ∆t among the designs for comparison
(14)

In Equation (14), ∆t is the edge time taken for the change in the output current.
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FOM2 [35] can be expressed as

FOM2 =
Tsettle · IQ

ILoad,max
(15)

5. Conclusions

This paper proposed a new dynamic bias technique applied in FVF OCL-LDO circuits.
The output current of the power MOS is changed quickly due to the discharge/charge
current of the gate of the power MOS increasing during the load current transition; thus,
the output voltage returns to the steady state quickly. It achieves a fast transient response
by only changing the bias currents during load transition, without increasing the quiescent
current.

The proposed LDO was realized by a 0.18 µm CMOS process. The result shows that
VOUT recovered to 1% in 52 ns when the load current changed from 0.1 mA to 20 mA, or
back, with an edge time of 1 ps. The quiescent current was 92 µA under light and heavy
load. The total on-chip capacitance was 2.8 pF, and the undershoot and overshoot were
242 mV and 250 mV, respectively. The proposed LDO is satisfactory for digital circuits and
fully integrated body sensor chips.
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