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Abstract: Underwater sensing and detection still rely heavily on acoustic equipment, known as sonar.
As an imaging sonar, side-scan sonar can present a specific underwater situation in images, so the
application scenario is comprehensive. However, the definition of side scan sonar is low; many objects
are in the picture, and the scale is enormous. Therefore, the traditional image segmentation method is
not practical. In addition, data acquisition is challenging, and the sample size is insufficient. To solve
these problems, we design a semantic segmentation model of side-scan sonar images based on a
convolutional neural network, which is used to realize the semantic segmentation of side-scan sonar
images with few training samples. The model uses a large convolution kernel to extract large-scale
features, adds a parallel channel using a small convolution kernel to obtain multi-scale features, and
uses SE-block to focus on the weight of different channels. Finally, we verify the effect of the model
on the self-collected side-scan sonar dataset. Experimental results show that, compared with the
traditional lightweight semantic segmentation network, the model’s performance is improved, and
the number of parameters is relatively small, which is easy to transplant to AUV.

Keywords: side-scan sonar; segmentation; CNN; SE-block; multi-channel

1. Introduction

With the continuous improvement of the technical level, robot perception and recogni-
tion have begun to develop toward intelligence and automation in the underwater research
field. Recognition and perception rely on front-end equipment capturing environmental
features, which is sonar for the underwater environment. Therefore, correlation analy-
sis and processing methods of sonar images have received extensive attention in recent
years [1–3]. Side-scan sonar transmits sound waves and receives echoes from underwater
objects to image underwater objects and calculate approximate distances [4]. The original
sonar image has low resolution, serious noise interference, and a fuzzy target shape, which
greatly complicates the recognition work of researchers [5].

However, achieving a lasting effect through a manually designed filtering algorithm in
a complex and changeable underwater environment is not easy. If the judgment depends on
experienced personnel, it will significantly increase the cost and reduce efficiency. Therefore,
it is of great significance to design a feature extraction model for sonar images that can
replace, or at least assist, human judgment.

Image processing models based on deep learning algorithms have made great progress re-
cently. Among them, classical image classification models, such as VGG-net [6], GoogLeNet [7],
and Resnet [8], have achieved good results on many camera image datasets. Image seg-
mentation models represented by FCN [9], U-net [10], PSPNet [11] have also attracted the
attention of many researchers. GAN networks are also widely used in machine learning
data generation to solve the problem of insufficient data [12–14]. Given the good results
of these algorithms, the researchers hope to apply them to underwater acoustic images,
thereby advancing the field of underwater sensing and detection.
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Song et al. [15] proposed a preliminary segmentation model of side-scan sonar image
based on the FCN network model. Their model divides the image into the target area,
shadow area, and seabed reverberation area. Finally, MRF is used to process the classi-
fication results to improve accuracy. Chen et al. [16] proposed a semi-supervised CNN
network model, which uses many unlabeled or weakly labeled samples and a few densely
labeled samples to segment the SAR images. Wu et al. [17] proposed a convolutional neural
network model for side-scan sonar named ECNet. The network structure consists of an
encoder and a decoder. The encoder obtains contextual features, and the decoder is used
for image restoration. In addition, a single-stream deep neural network with multiple side
outputs is added to optimize edge segmentation. Huo et al. [18] proposed a semi-synthetic
sonar data generation method. For the input optical image, the CNN model combines
image segmentation with intensity distribution simulation in different regions to generate
synthetic sonar images of the plane and the drowning person to enrich the sonar image data
set. Zhou et al. [19] added the Laplacian energy filter based on the CNN model, and the
two-channel pulse-coupled neural network was used to fusion the side-scan sonar images
and achieved good results. In the work of Połap et al. [20], a method based on a neural
network model is proposed to search for target signals in ocean areas and restore areas
with low image quality. Zhu et al. [21] used the convolutional neural network model to
extract the target features of side-scan sonar images and input them into the trained SVM
for classification.

Side-scan sonar is a kind of active imaging sonar. Its imaging principle is to send a
short acoustic pulse with a slight horizontal opening angle (about 1 degree) and a large
vertical opening angle to one or both sides of the vertical direction of the survey ship.
After the pulse reaches the seabed, it is continuously reflected according to the distance
from the seabed to the transducer. The sonar image with uneven gray level changes is
drawn according to the strength of the reflected signal. Sonar images can be used to observe
changes in the seafloor topography, whether there are obstacles to the navigation, and the
type of seabed substrate. When the side-scanning sonar emission pulse propagates in
water and meets the target, the target scatters the acoustic energy in all directions, and the
transducer receives the backscattered echo. In contrast, the acoustic energy is difficult to
reach the side and rear of the target (called the blind area).The sonar array moves forward
with the carrier, and in the process of moving forward, sonar continues to transmit, receive
and form sonar images [22]. As a result, the target (strong echo signal of the target) and its
shadow (blind area behind the side of the target) appear at the corresponding position on
the sonar image. It can be seen that the side-scan sonar reflects the echo intensity of the
detected target so that the side-scan sonar image can be understood as a single-channel gray
map, and the target with stronger reflection has greater brightness. However, the difference
in brightness of most underwater targets is not apparent, so there must be a particular
dimension of the color channel that contains most of the target information in the image.

On this basis, in this paper, a side-scan sonar image segmentation model is proposed
based on the CNN network. Compared with camera images, side-scan sonar images are
more challenging to acquire and have less data, so the network model needs to control the
depth to avoid overfitting. In addition, due to the low color richness of side-scan sonar
images, each channel contains a relatively large amount of information, so it is necessary to
focus on the information in essential channels.

The main contributions of this paper are as follows:

(1) We introduced the SE module to increase channel attention in the feature extraction
process and increase independent weight for each channel so that the more critical
channels obtain a higher weight to improve the overall segmentation accuracy.

(2) We increased the convolution kernel size used from 3 × 3 to 7 × 7, which proved
effective in sonar images with a larger size. Meanwhile, DW convolution was adopted
to reduce the number of parameters given the increase in the number of parameters
caused by the expansion of the convolution kernel size.
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(3) Simply increasing the convolution kernel size cannot effectively improve the quality
of feature extraction. Therefore, we constructed a parallel feature extraction channel
using a small-size convolution kernel and concatenated its output with the leading
network to achieve multi-scale feature extraction.

(4) We used a full convolution layer to restore the output of the decoder to the original
image size and output the segmentation results. Then we conducted a contrast
experiment with other lightweight CNN.

The rest of this paper is divided into five sections: Section 2 introduces the work of
other researchers related to the model design; Section 3 presents the structure and details of
the model; Section 4 uses the self-collected side-scan sonar data to verify the performance
of the model; and Section 5 gives the conclusion.

2. Related Work

In this section, some essential concepts for model design are introduced, including
the basic principle of the CNN network, the U-NET network’s design idea, and the SE
module’s influence.

2.1. Principles of CNNs

Neural network models with CNN were completed by Lecun Y [23] and carried for-
ward by AlexNet [24]. In the classical CNN model, data have two directions: forward
propagation and backward propagation. Forward propagation realizes data feature ex-
traction through the convolutional layer, pooling layer, activation function layer, and fully
connected layer. The convolution layer is processed by multiple convolution checks to
extract high-dimensional feature maps. The pooling layer compresses the parameters while
preserving the main features. Finally, the activation function ensures the nonlinearity of the
multi-layer network structure, and the last fully connected layer implements the mapping
from image features to classification categories. According to the comparison between the
output results of the forwarding propagation and label data, backpropagation performs
gradient descent on network parameters layer by layer in reverse to improve the network
performance. Finally, the network achieves due performance after multiple forward and
backward propagation.

2.2. U-Net and FCN

There are many excellent models for semantic segmentation tasks, such as DeepLabV3 [25],
hrnet [26], Transformer [27], etc. However, the original design concept of the segmentation
model comes from FCN. The initial neural network model can only be applied to the
classification task, and the emergence of FCN brought it into the field of image segmentation.
Pioneering the model using the convolution layer instead of full connection as the last
layer of the network’s output solved the problem that the whole connection layer limits
the input size. In addition, the model outputs from a one-dimensional probability vector
into a two-dimensional probability matrix. That is, every pixel can be classified. FCN uses
deconvolution and linear interpolation for image restoration and uses the feature fusion
method of skip layer. It concatenates image features of high and low dimensions, which
greatly impacts the design idea of the subsequent segmentation model. The structure of
the FCN network model is shown in Figure 1.
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Figure 1. (a) FCN model with VGG as a backbone [9]. (b) Skip layer of FCN: There are three versions
of the FCN network, namely FCN-8S, FCN-16S, and FCN-32S. The 32S version directly performs
image restoration after a feature fusion, so the output quality is the lowest, but the number of
parameters is the lowest. The 8S version can obtain the highest precision output after three times of
feature fusion. 16S is relatively balanced.

U-net is an image segmentation network model that draws on the FCN model.
The model still adopts the design idea of deconvolution restoration and full convolu-
tion instead of complete connection. However, it gives up using the VGG network as a
backbone and designs a symmetric four-layer codec structure instead. At the same time,
feature fusion is carried out between encoding and decoding structures at the same level,
similar to skip layer. The u-net model is still the mainstream algorithm in all minor sam-
ple segmentation problems, such as medical image segmentation, due to its low depth,
fewer parameters, and good segmentation effect. The U-NET model structure is shown in
Figure 2.
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Figure 2. U-Net model [10]: classical symmetric codec structure with feature concatenate.

2.3. The Effect of SE-Block

SENet [28] is the ImageNet 2017 champion model. The SE-block structure is shown
in Figure 3. Its full name is squeeze-and-excitation congestion networks. The main contri-
bution is a channel attention extraction module called Se-block that can be added to any
network structure.

Figure 3. The structure of SE-block [28].

The module consists of two parts: the squeezing part, which compresses the original
3D data input into a one-dimensional vector, implemented mainly by global average
pooling (this operation can extract the global features of each channel); and the crimping
section, which uses a full connection layer to map the output of the compression module
to a predicted weighting sequence, which is multiplied by all the channels for weighting.
This module can effectively extract important channel features and ignore minor channels.

3. Method

The design ideas of our model are derived from U-NET, and we adopt a coding–
decoding structure similar to U-NET and SENet, as well as the large convolution kernel and
re-parameterizing mentioned in RepLKNet [29], but improve it for our downstream tasks.
First, we added Se-block to the encoder, namely the feature extraction module, to obtain
the weight of different feature channels. The network model will find the channel that
significantly impacts the segmentation output result (the channel added after multiple
convolutions, rather than the original RGB), increases the weight proportion of its corre-
sponding parameters, and focuses on adjustment. Then, the large and small convolution
kernels are used to capture features of different scales in parallel. Finally, after fusion and
restoration, the image segmentation results are output.

3.1. Multi-Scale Feature Fusion

Due to the increasing complexity of images, multi-scale feature fusion has become a
necessary capability for a qualified segmentation network. The skip layer of FCN, the codec
information interaction of U-NET, and the ASPP module of the Deeplab model all belong
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to this kind of structure. The RepLKNet model proposes a structure-reparameterization
method. The model uses a large convolution kernel (31 × 31) for feature extraction, and a
parallel feature extraction channel using a conventional 3 × 3 small convolution kernel
is added. After the parameter training of the convolution kernel is completed, the small
convolution kernel is directly inserted into the large convolution kernel to realize the feature
fusion of different levels of size and scale.

Due to the difficulty of obtaining side-scan sonar images, we cannot provide the mas-
sive amount of data required for training large convolutional kernels and deep networks,
such as RepLKNet. Therefore, after slightly expanding the size of the convolution kernel,
we did not insert the small convolution kernel directly into the large convolution kernel
because this would destroy the feature extraction ability of the large convolution kernel
itself. Instead, we use the concatenate method to incorporate features of different scales
before restoring images using deconvolution.

3.2. Depthwise Separable Convolution

The concept of depthwise separable convolution was first proposed by MobileNet [30].
The standard convolution operation is decomposed into two steps: the first step is deep
convolution, and the second step is point convolution. A specific example is used to
compare the difference between this method and standard convolution: assuming that the
size of the input image is 12 × 12 × 3 (3 represents three channels), and the desired output
result is 8 × 8 × 128, so 128 5 × 5 × 3 convolution kernels are needed for convolution,
and the number of operations in the whole process is 9600.

If deep convolution is used first, three 5 × 5 × 1 convolutions are used to convolve
the three channels of the image, and the output result of 8 × 8 × 3 is obtained. Then point
convolution is used, 128 1 × 1 × 3 convolution kernels (equivalent to one pixel contain-
ing three channels) are used to convolve the previous output results again, and finally,
the output results of the same size are obtained. Still, the number of operations is reduced
to 5 × 5 × 3 + 1 × 1 × 3 × 128 = 469.

The deep separable volume reduces the amount of network computation at the cost of
increasing the depth of the network, which may affect the output results of the network
while speeding up the calculation speed. Therefore, this practice may not play a positive
role for networks mainly using small convolution kernels, but it is indispensable for
our model.

3.3. Model Structure

The structure of our model is borrowed from the design of U-NET, and the central
part is the four-layer codec, shown in Figure 4.

The encoder consists of four layers in total, and each layer contains an encode block.
Each encode block uses a convolution kernel size of 7 × 7 (DW convolution is used to
improve the operation rate while adding padding). The number of output channels in
each layer is 32, 64, 128, and 256. Meanwhile, SE-blocks are added parallel to each layer to
predict the channel weights.

Another parallel feature extraction channel uses a small-size convolution kernel; the
main structure is similar to the central part.

The decoder input is the high-dimensional feature map extracted by the encoder,
and the channel is 256. The decoder uses deconvolution to up-sample layer by layer. First,
concatenate with the same dimensional features output by the feature channel using a small
convolution kernel, then convolve twice and input to the next layer. After four repetitions,
the image segmentation results are obtained through the full convolutional layer.
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Figure 4. The structure of our model.

4. Experiment and Analysis

All experiments were conducted with Intel Core i9-10900F CPU@2.8 Ghz × 20, 64 GB
RAM, Nvidia Geforce 3090 GPU, 24 GB of video memory, by CUDA Toolkit 11.3, CUDNN
V8.2.1, Python 3.6, PyTorch-GPU 1.10.1, Ubuntu18.04.operating system.

4.1. Dataset Collection

We used Hydro 3060 dual-frequency side-scan sonar to collect sonar data needed
for the experiment in the Lake District of Jiande, Hangzhou, China. The original image
captured frame by frame was 960 × 960 pixels in size, and its effect is shown in Figure 5.

The side-scan sonar is mounted on an AUV and emits sound waves to both sides as
the subject moves, collecting echoes from underwater objects to build an image. The bright
parts of the image represent the targets with strong echoes, such as rocks and metals, while
the parts without echoes will appear black, such as water bodies and blocked parts.

Our model is based on supervised learning, which requires manually annotated ac-
curate data labels as training data. We annotated the data using LabelMe, open-source
software on the Ubuntu platform. For the whole dataset, we divided the data into five cate-
gories (not every image contains labels from all five categories): (1) water; (2) the mountain
part; (3) the land; (4) shaded part; and (5) unmarked area (background). The unlabeled area
mainly refers to the debris area left after the first four types of image labeling. The labeled
image is shown in Figure 6.
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Figure 5. The original sonar image (each sonar image is cropped down the middle into two images).

Figure 6. (a) Original image, (b) label.

4.2. Data Augmentation

As mentioned before, collecting side-scan sonar data is challenging, so the amount of
data is not very rich. Therefore, we adopted the method of data amplification to increase
the number of samples to ensure the training effect, and the method used is shown in
Figure 7.

(1) The most common method is to flip the image at different angles, amplifying the data
but also breaking the location correlation and making the network more generalized.

(2) Image translation is also a standard method, which controls the image translation in
four directions by some random numbers, but not too much. Otherwise, it will destroy
the feature structure of the image.

(3) By randomly clipping the original image, the size of the image can be reduced while
the data are expanded, and the training can be accelerated.

The sonar image is less dependent on shape features but more on color features, so
no color data amplification was carried out. The size of the original sonar data collected is
960 × 960, and the number is about 300. After data amplification, the data size is 860 × 860,
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and the number is increased by about four times. We randomly selected 60 percent as the
training set, and the validation and test sets were 20 percent.

Figure 7. Data augmentation (a) image inversion, (b) image panning, (c) random crop.

4.3. Verification Indicators

We measure the model from two perspectives: the consumption of computing re-
sources, and the model’s accuracy. Computing resources are measured by the total number
of network parameters and the FLOPs indicator, which refers to floating point operations.
More FLOPs mean more computing resources consumed by the model. The calculation
formula of the convolution layer FLOPs of the convolutional network is as follows:

FLOPs = (2cink2 − 1)HWcout (1)

cin and cout represents the number of input and output channels in the convolution layer,
and k represents the size of the convolution kernel. The size of the output feature graph is
H ×W.

OA (overall accuracy) and MIoU (mean intersection over union) will measure the
model accuracy. The calculation formula of OA is as follows:

OA =
TP + TN

TP + TN + FP + FN
(2)

TP, TN, FP, FN mean true positive (positive sample is judged as a positive sample), true
negative (negative sample is judged as a negative sample), false positive (negative sample
is misjudged as a positive sample), and false negative (positive sample is misjudged as a
negative sample).
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The calculation formula of MIoU is as follows:

MIoU =
1
k

k

∑
i=1

p ∩ g
p ∪ g

(3)

P means prediction, and G means ground truth.

4.4. Network Model Training

We use the processed sonar data for network training, and the hyperparameters used
in the training process are listed in Table 1. The loss function used in the training process is
the cross-entropy loss function, and the training process is shown in Figure 8.

Figure 8. We use TensorBoard to draw the convergence curve of the training process, and the network
has basically converged at 200 epochs. (a) train loss, (b) train MIoU, (c) val MIoU.
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Table 1. Hyper-parameter.

Type Value

num of workers 8
batch size 6
optimizer SGD

learning rate 0.01
learning policy poly

step size 10,000

H(p, q) = −
n

∑
i=1

p(xi)log(q(xi)) (4)

The cross-entropy function is used to measure the difference between two probability
distributions. For example, machine learning tasks represent the difference between the
network output and the label.

4.5. Performance and Comparison

In the experiment, the quantitative analysis of the segmentation results of U-Net,
FCN, and PSPNet, which are typical lightweight networks, and our method is conducted.
The comparison results are shown in the tables, and the recovered images are shown in
Figure 9.

Figure 9. The segmentation results of the model output are shown in the figure. The original
image, label, and output result are left to right. The colors in the picture are blue for water, gray
for rocks, yellow for flat land, black for shadows, and white for fruitless areas (areas that are hard
to distinguish).

Due to the small sample size, we used K-fold cross-validation on the dataset to
calculate the model performance indicators. We set the value of K as 5, randomly divided
all the data into five parts, and selected one of them as the validation set and the rest as the
training set each time. Finally, the results obtained five times were averaged. The model
indicators of five-fold cross-validation are shown in Table 2. The results shown in Table 3
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show that the average OA and MIoU of our model in the dataset are 0.87159 and 0.67893,
the highest of the four models. The total number of parameters is 21,340,813, which was
above the average of the four models. The FLOPs are slightly higher because the currently
used code and computing devices do not support DW convolution perfectly, and there is
still room for further improvement.

Table 2. K-fold cross validation (K = 5).

K OA MIoU

1 0.869394 0.685063
2 0.856123 0.678424
3 0.854726 0.656946
4 0.884486 0.699488
5 0.856770 0.668848

avg 0.872299 0.677754

Table 3. Different model performance.

Model OA MIoU Num of Para FLOPs

FCN 0.864415 0.663187 18,643,845 212.4 G
U-Net 0.871427 0.674909 34,525,391 487.71 G

PSPNet 0.849124 0.651908 65,576,517 673.94 G
Ours 0.872299 0.677754 21,340,813 647.94 G

In order to test the effect of increasing the size of the convolution kernel, we carried
out relevant comparative tests and adjusted the size of the convolution kernel from 3 × 3
to 11 × 11. The performance changes are shown in Table 4, and it can be found that the
parameters currently used are the best ones.

Table 4. Model performance with different kernel size.

Size OA MIoU

3 × 3 0.864976 0.663328
5 × 5 0.862365 0.667896
7 × 7 0.872299 0.677754
9 × 9 0.866372 0.673241

11 × 11 0.862757 0.658241

5. Conclusions

This paper proposes a semantic segmentation model for side-scan sonar images based
on the CNN network. The model uses a symmetric codec structure as the main body, adds
a convolution kernel of different scales to extract multi-scale features, adds SE modules to
focus on the weight of essential channels, and finally fuses at the output end. We verify
the accuracy and reliability of the model on the self-collected sonar data and find that the
model has a low computational cost and high portability. Our method achieves multiple
classifications of side-scan sonar images at the semantic level. At the same time, most other
researchers focus more on the recognition of objects with specific shapes or the simple
binary classification of images. In addition, our model also has high portability. The large
neural network model proposed by many researchers is inferior in real-time performance
on AUV. After loading our model into the AUV control terminal, it can still complete the
task and has low dependence on high-performance computers, which is also a significant
advantage. In the future, we will consider further increasing the network depth and
convolution kernel and find ways to make them effective in a small sample environment.
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