
Citation: Schiller, E.; Esati, E.; Stiller,

B. IoT-Based Access Management

Supported by AI and Blockchains.

Electronics 2022, 11, 2971. https://

doi.org/10.3390/electronics

11182971

Academic Editors: Qingqi Pei and

Rameez Asif

Received: 26 January 2022

Accepted: 31 August 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

IoT-Based Access Management Supported by AI
and Blockchains †

Eryk Schiller *,‡ , Elfat Esati ‡ and Burkhard Stiller ‡

Communication Systems Group CSG, Department of Informatics IfI, University of Zürich UZH,
Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
* Correspondence: schiller@ifi.uzh.ch; Tel.: +41-44-635-4337
† This paper is an extended version of our paper published in CNSM’21.
‡ These authors contributed equally to this work.

Abstract: Internet-of-Things (IoT), Artificial Intelligence (AI), and Blockchains (BCs) are essential
techniques that are heavily researched and investigated today. This work here specifies, implements,
and evaluates an IoT architecture with integrated BC and AI functionality to manage access control
based on facial detection and recognition by incorporating the most recent state-of-the-art techniques.
The system developed uses IoT devices for video surveillance, AI for face recognition, and BCs for
immutable permanent storage to provide excellent properties in terms of image quality, end-to-end
delay, and energy efficiency.

Keywords: management of access control; video surveillance; blockchains; Internet-of-Things IoT;
Artificial Intelligence

1. Introduction

Internet-of-Things (IoT) is transforming the world of things, impacting many economic
sectors, such as manufacturing, transportation, automotive, consumer goods, and health-
care [1]. Thanks to the advances in integrated circuit design, IoT devices are now equipped
with powerful processors of a new generation, handling processing loads efficiently [2,3].
This offers an opportunity to run complex tasks on IoT devices in a distributed fashion.
However, IoT comes with many challenges or gaps that still need to be improved [4],
such as the centralization of various IoT platforms, e.g., Amazon Web Services (AWS)-IoT,
security and privacy issues concerning communication protocols as well as vulnerability to
various attacks related to the poor maintenance of IoT infrastructures, e.g., Mirai [5].

Blockchains (BC) [6,7] offer immutable storage of data records in a distributed ledger
by cryptographic measures. BCs can help IoT infrastructures deal with centralization:
when IoT infrastructures store and process data in a BC; this removes the single-point-
of-failure present in currently available IoT platforms, such as AWS IoT [4,8–10]. BCs
bring significant advantages in terms of information provenance, non-repudiation, and
authenticity (while every originator signs every record with its private key), thus increasing
the overall information security in the system [11]. Finally, Artificial Intelligence (AI)
plays a significant role in providing accurate data analysis in real-time. Nevertheless, the
design and development of an efficient data analysis tool using AI come with challenges,
such as centralization and transparency [12]. Therefore, integrating BCs with AI can
produce a robust approach to resolve those issues. AI is often considered a black box,
providing classifiers or predictors, lacking transparency. However, the transparency can be
materialized by ordering AI decisions among many nodes in a given BC. This provides
a precise, immutable track of AI decisions ordered in time, which can, e.g., form the
basis for managerial access control decisions. Therefore, the simultaneous application of
IoT, BCs, and AI shows a successful synergy transforming data acquisition, analysis, and
storage [11,13,14].

Electronics 2022, 11, 2971. https://doi.org/10.3390/electronics11182971 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11182971
https://doi.org/10.3390/electronics11182971
https://doi.org/10.3390/electronics11182971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2187-0382
https://orcid.org/0000-0002-7461-7463
https://doi.org/10.3390/electronics11182971
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11182971?type=check_update&version=2


Electronics 2022, 11, 2971 2 of 19

Having a closer look at the research in these three domains mentioned above, one
may expect many proposals and architectures. However, no use case exists so far in which
those three technologies may complement each other. Therefore, this paper’s primary
goal is to design and develop a BC-enabled IoT Architecture coupled with AI to efficiently
implement a use case, i.e., an access management approach.

The paper’s contributions are the following. First, we specify a use case in access
management, in which a user is provided with access to a physical resource based on
images collected by an IoT device. Second, we implement a real system in which an ESP32-
based device [2] takes images and locally runs a Convolutional Neural Network (CNN)
of a small size directly on the Micro Controller Unit (MCU) for face detection and face
recognition [15]. The implemented infrastructure transports the image from the IoT device
to a gateway. The gateway embeds the image and its metadata (i.e., user face identifier) into
a transaction and sends the data toward an implemented smart contract. The smart contract
runs on top of the Hyper Ledger Fabric (HLF) [7], handles the data received, and stores
the data directly within the BC. Therefore, external storage systems such as InterPlanetary
File System (https://docs.ipfs.io/ accessed on 25 January 2022) are not needed to handle
images. The experimental validation of the system is based on the prototype developed.

Finally, this paper provides a real experience of the system, in which the AI algorithms
run on the IoT device, i.e., MCU, directly. The information derived by the IoT-based AI is
then provided towards an appropriately selected BC, which can be used as a communication
backend or a storage system for auditing purposes.

The remainder of this paper is organized as follows. Section 2 introduces related work.
While Section 3 provides a new use case and specifies the system architecture, Section 4
details its implementation and evaluates the performance of the system developed. Finally,
Section 5 summarizes the work and adds an outlook on the future work.

2. Related Work

The related work addresses recent research on the integration of AI, BC, and IoT.

2.1. Internet-of-Things IoT

IoT is transforming our interaction with everyday things [1]. Practically almost any-
thing can be equipped with a microcontroller, sensors, and actuators, thus allowing things
to monitor the surrounding environment at a certain level of intelligence. A thing able to
react to changing conditions of the environment is referred to as a smart object, which is
often also connected to the Internet, allowing for the harvesting of information by central-
ized storage (e.g., AWS IoT) [4] and more sophisticated information processing at the fog,
edge, or cloud level as well as actuating in a given environment.

Most IoT devices depend on microcontrollers [2,3] or microprocessors of minimal pro-
cessing power, making them much less power-hungry than, e.g., a smartphone. This design
choice is based on the assumption that processing power comes with significant energy
expenses. Therefore, less efficient computing is energy-efficient, runs with minimal power,
conserves energy, and allows the longer lifetime of an object on a single battery charge.

2.2. Internet-of-Things and Artificial Intelligence

Due to the low processing power of IoT devices, there is a need for green communica-
tion in the IoT domain [16] as well as lightweight approaches in AI. As a result, different
algorithmic approaches are taking place, and more efficient algorithms are being devel-
oped [17]. This gives rise to novel research domains, such as Tiny Machine Learning [18]
and Tiny Deep Learning [19], which can operate on constrained IoT devices. As an exam-
ple, MIT researchers [20] have implemented a system called MCUNet, which has a high
potential to bring deep learning to low-capacity devices such as tiny microcontrollers for
performing tasks such as image, audio, or video recognition.

One of the most recent studies [17] worked in the direction of image processing and
cloud offloading. Two approaches with deep learning were tested, i.e., (i) cloud offloading

https://docs.ipfs.io/


Electronics 2022, 11, 2971 3 of 19

of deep learning platforms and (ii) migrating deep learning to IoT devices. The two
approaches were tested and looked at from the perspective of reduced energy efficiency
and real-time requirements of object recognition. In the first approach, they used CNNs on
the cloud, while the device was responsible for taking images and forwarding them to the
cloud. The results show that executing machine learning on an IoT device consumes more
energy than cloud offloading. However, AI cloud offloading also has drawbacks, leading
to a latency starting from 2 s that goes up to 5 s, which might be longer than the execution
of small AI on IoT devices. This infers the response time variability, making it unreliable
and not valid for real-time AI image processing.

Esp Eye [2], equipped with Tensilica LX6 dual-core processor, is most likely the first
microcontroller device that performs real-time face recognition. However, this does not
mean regular face detection and recognition algorithms have been used here. Esp Eye
is one of its kind that comes with the Esp Who [15] platform, which supports both face
detection and face recognition. To our knowledge, this is the only device that can perform
video streaming combined with real-time face recognition in a microprocessor that lies
outside the main three classes of Central Processing Units (CPUs) such as Intel, AMD, or
ARM processors. Esp Who platform implements a framework called MTMN. MTMN refers
to both Multi-Task Cascaded Convolutional Networks (MTCNN) [21] and MobileNets [22]
as well as Face Recognition model based on Convolutional Neural Network (FRMN) [23].
Several deep learning techniques have been specified and implemented that paved the
way towards face detection. However, MTCNN is a framework that integrates both face
detection and alignment. With the help of MobileNets, it builds lightweight deep neural
networks, which use depth-wise separable convolutions for face detection. The FRMN
is a Convolutional Neural Network mixing local and global image features. It provides
good feature extraction from the mouth, nose, and eyes, delivering enhanced and accurate
face recognition.

2.2.1. Convolutional Neural Networks

CNN emerged with the development of LeNet [24,25]. LeNet was limited to hand-
written digit identification, which could not scale efficiently to all image classes.

2.2.2. Multi-Task Cascaded Convolutional Networks

MTCNN is one of the state-of-the-art approaches [21] for detecting faces in images.
MTCNN can achieve 95% accuracy on a range of benchmark datasets. MTCNN performs a
CNN-based framework that simultaneously performs face detection and alignment, while
other CNN-based frameworks treat face detection and alignment as two distinct processes.

First, once the image is captured, it is then scaled into multiple different sizes based on
different scaling ratios, forming a collection of images called the Image Pyramid [26] that
allows the processing of images at different scales simultaneously. This image processing
is used because it makes detecting faces easier, no matter how far or close they stand in
the image.

The process consists of three CNN stages for every image in the Image Pyramid,
i.e., P-Net, R-Net, and O-Net, capable of detecting faces and landmark locations such as
eyes, nose, and mouth. The three mentioned stages perform independently of each other,
while the output one is used as the input of another. Every step applies Non-Maximum
Suppression (NMS) to merge highly overlapped image candidates. A short description of
the MTCNN stages is provided below.

Proposal Network (P-Net)

This CNN (cf. Figure 1a) is an initial processing stage that obtains images at different
scales from the Image Pyramid. P-Net places a rectangle over a detected face and provides
landmark candidate positions.



Electronics 2022, 11, 2971 4 of 19

Input: 12x12x3 C1: 10x10x10
MP2: 5x5x10

C3: 3x3x16
C4: 1x1x32

face classification
1x1x2

bounding box regression
1x1x4

facial landmark localization
1x1x10

(a)

Input: 24x24x3 C/MP1: 11x11x28
C/MP2: 4x4x48

C3: 3x3x64
face classification

2

bounding box regression
4

facial landmark localization
10

fully 
connected: 128

(b)
Input: 48x48x3 C/MP1: 23x23x32

C/MP2: 10x10x64
C/MP3: 4x4x64

face classification
2

bounding box regression
4

facial landmark localization
10

fully 
connected: 256C4: 3x3x128

(c)
Figure 1. MTCNN CNNs (a) P-Net, (b) R-Net, (c) O-Net.

Refine Network (R-Net)

The structure of R-Net is displayed in Figure 1c. The input of this stage is the bounding
box generated by P-Net. R-Net filters out boxes with low confidence by using a higher
input resolution. This stage helps to alleviate P-Net false-positives.

Output Network or (O-Net)

O-Net (cf. Figure 1c) is the final processing stage of MTCNN, where increased reso-
lution is added and accuracy is significantly increased. In this case, the output of R-Net
serves as the input of this stage.

2.2.3. Face Recognition Model Based on CNN

MobileFaceNets [22] consists of MobileNetsV2 [27] and ArcFace algorithm. The output
of face detection is an aligned face with landmark features. It becomes the input for face
recognition. If a human is detected using the aforementioned model, the face recognition
algorithm executes to generate a face identifier (ID). In order to verify a person, Mobile-
FaceNets has to check if that person exists in a face database. It relies on comparing the
newly generated face ID with Face IDs already existing in the database. Most likely, there
may not be an exact match for face IDs, even if it is from the same person. Hence the idea
is to obtain the distance between the face IDs, which is done by Euclidean or arc distance.
In order to determine if the face ID is from the same person, MobileFaceNets compares
the distance between the Face IDs based on the allowed threshold. The MobileFaceNets
model utilizes deep CNNs, i.e., standardized CNNs of many layers deep, to output a
discriminative vector of 512 values.



Electronics 2022, 11, 2971 5 of 19

2.2.4. MobileNets for Lightweight CNNs

MobileNet (MN) [22] is a CNN architecture developed by Google, which builds light-
weight deep neural networks and uses less computational power than regular CNNs. This
architecture allows face detection and recognition to be run on IoT devices, mobile devices,
and computers with low computational efficiency without compromising the accuracy
of the results. MobilNetV2 [28] is a recent version that comes with refinements of the
MobileNet and the introduction of residual blocks, with skip connections to connect the
beginning and finish of a convolutional block. By combining these states, the network can
now retrieve prior activations that were not updated in the convolutional block, which
proves essential in deep networks. The main idea behind MobileNetV2 is to obtain high
accuracy with less computational power.

Regular Convolution

In a regular convolution, the convolution kernel or the filter is applied simultaneously
to all channels of the input tensor. Let us assume an input tensor DF × DF × M, i.e.,
DF × DF of M channels, convolution stride 1, a convolution kernel of size DK × DK, and
an output tensor (DF − DK + 1)× (DF − DK + 1)× N. In such a case, the kernel is of size
of DK × DK × M × N, and the convolution has a computing effort of DK × DK × M × N ×
DF × DF expressed in Multiply Additions (MAdds).

MobileNets has a different approach. It employees the depthwise convolution using
two parts, i.e., depthwise convolution and pointwise convolution.

Depthwise Convolution

With depthwise convolution instead of applying one kernel to M channels simultane-
ously, MobileNets apply a kernel of size DK × DK × 1 to every channel of the input tensor
separately, i.e., DF × DF × 1. In such a case, there are M kernels of size DK × DK, which
results in DK × DK × M × DF × DF operations, which transform an input tensor into a
(DF − DK + 1)× (DF − DK + 1)× M output tensor.

Pointwise Convolution

To increase the number of channels in the output tensor, a pointwise convolution is
used. Pointwise convolution applies a kernel of size 1 × 1 × M. To obtain N channels,
pointwise convolution applies the same 1 × 1 × M kernel N times. In this way, MobileNet
obtains the same size of feature map as in regular convolutions but with a lower number
of computations.

Parameters and Computing Effort

The number of parameters of a regular and MobileNets convolution is calculated
as DK × DK × M × N and DK × DK × M + M respectively, while the number of oper-
ations for a regular and MobileNet convolution is calculated as DK × DK × M × N ×
DF × DF and DK × DK × M × DF × DF + N × M × DF × DF. Thus, MobileNets are en-
ablers of lightweight computing in IoT architectures, while the number of parameters
and the number of operations decreases by a large factor. As an example, the num-
ber of operations with the help MobileNets decreases by a factor of 1/N + 1/D2

K in
comparison to regular convolutions (similar calculations can be consulted using the fol-
lowing link https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-
convolution-light-weight-model-a382df364b69 accessed on 25 January 2022).

2.3. Internet-of-Things and Blockchains

Narrowing down the scope to BC and IoT systems, one sees research attempts to close
the gaps of IoT systems by removing the centralized control as well as attack the problem
of provenance, non-repudiation, and authenticity in IoT data streams with the help of
BC [4,8–10,29]. Other studies [30] attempt to close security and privacy IoT gaps with the
help of the BC to ensure the reliability and availability of the data.

https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69
https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69


Electronics 2022, 11, 2971 6 of 19

2.4. Artificial Intelligence and Blockchains

There is a high research interest in BC and AI analyzed in various domains and appli-
cations. Some research [31] focuses on the application of AI in the BC for making BCs more
efficient. It concentrates on BC consensus mechanisms and better governance. There are
also research items about the applications of BC in AI. Like IoT, the AI domain also suffers
from security, centralized architecture, and resource limitations. This is what BC promises
to solve. There is a lot of discussion and research in this area. However, most of these are
reviews and solutions that do not develop use cases or provide actual implementations.

2.5. Artificial Intelligence, Blockchains, and Internet-of-Things

Several researchers have attempted to shed light on the benefits of converging IoT, BC,
and AI [11]. However, most of these attempts are either reviews or explorations that lack a
concrete implementation in a use case [13,14]. A more comparative research outcome in
this domain is a so-called BlockIoTIntelligence attempt [12], which proposes an architecture
that utilizes BCs and AI in IoT. BlockIoTIntelligence aims to achieve decentralized big data
analysis considering the security and centralization issues of IoT applications in various
domains such as smart city, healthcare, and intelligent transportation. BlockIoTIntelligence
claims the mitigation of existing challenges to obtain high accuracy, reasonable latency,
and security. Another work examined safe data sharing in Mobile Edge Computing
(MEC) systems supported by blockchain technology. An adaptively privacy-preserving
technique was suggested to safeguard users’ privacy in data sharing. Additionally, the
energy consumption of the MEC system and the blockchain transaction performance was
jointly improved through an asynchronous learning approach. The performance of this
work was studied through simulations [32].

2.6. Approaches Similar to This Work

A use case similar to this work [33] is the design and implementation of a camera-
based sensor for room capacity monitoring. That work aims to count the number of people
present in a room with the help of a Raspberry Pi (RPI) [3] device equipped with a camera.
Their architecture employs AI and IoT. The role of the camera is to take pictures. The
pictures were analyzed with Machine Learning (ML). When the analysis is complete, the
data are sent to a LoraWAN Server [34]. To this end, they have attached a LoraWAN
modem to the RPI. Furthermore, a web application shows the occupation of a given room.
In that work, face detection is performed directly on the RPI. Finally, the algorithm counts
the number of people entering the room and reports the number to the LoraWAN back-end
server. That work still depends on a central server. Furthermore, the data are stored in a
database. Finally, security issues are not considered. This approach differs from our work
because the BC part is absent in [33]. Furthermore, a camera is attached to a powerful RPI
node equipped with a regular Linux operating system.

2.7. The Newly Proposed Approach

This approach differs from related work implementations by providing a solid use
case in access management. Furthermore, this approach combines all three techniques at
the same time, i.e., AI for image processing, BC for immutable tamper-resistant storage
(e.g., for auditing reasons), and IoT for data harvesting (i.e., providing the video stream).
Furthermore, this approach follows the novel TinyML paradigm, in which face detection
and recognition run directly on an IoT device.

3. Use Case and Architecture

Driven by the specific use case, this paper provides an extensive description of the
architecture and gathers an in-depth analysis of the system previously briefly presented
and superficially evaluated in a short conference proceedings paper [35].



Electronics 2022, 11, 2971 7 of 19

3.1. Use Case

The system employees real-time face detection and recognition of authorized indi-
viduals to grant access to an institution. The access is granted or denied by the system
automatically. For example, when access is granted, the door to an institution may open
automatically without any intervention. However, the door will remain closed when
access is denied, preventing the user from accessing a given resource. Every time an
individual needs access, their picture is taken, processed, and stored in the immutable BC,
preventing future tampering with data and enabling immutable storage that provides a
solid foundation for auditing purposes.

This use case (cf. Figure 2) assumes that access is revoked when an individual is not
registered in the system. However, a picture of unknown individuals is still taken and
stored in the BC for auditing purposes. Once a stranger is detected continuously, a warning
is raised to inform the administrator about this issue. Simultaneously, the number of people
entering and leaving an institution or a room can be tracked. Tracking the number of people
entering or leaving the room can be very beneficial in many situations, such as capacity
tracking, infection spread.

Blockchain based surveillance system

Administrator

Enroll face

Potential user

Initiate the device

ESP EYE

Capture image

Input

Processing

Face detection

Output

Face recognition

Allow access

Authorized ?

Yes

No

Store image

Figure 2. High-Level Use Case Overview.

The process involves an individual approaching an entry point of an institution or
a room, where an IoT device equipped with a camera detects and recognizes the person
and grants or rejects access. Face recognition is performed with the help of face alignment,
detection, and recognition. The images processed are forwarded to the BC, where they are
stored in an immutable data structure. The system raises alarms if a continuous presence
in front of the device is detected, where a person may want to perform a security breach.

3.2. Architecture

Based on the hardware components available, the software architecture design and the
reasons for these design decisions taken to materialize the idea of IoT-based AI surveillance
with BC are provided. Furthermore, different approaches, technologies, and communica-
tion protocols, considered throughout the design decisions, are described.



Electronics 2022, 11, 2971 8 of 19

3.2.1. Hardware Components

The image capturing and face recognition are handled by Esp Eye [2] directly, whereas
the BC environment is based upon an Intel-based machine running a macOS. Figure 3,
top left-hand side, displays multiple Esp Eye devices, which communicate with the IoT
gateway within the same WiFi-based (i.e., IEEE 802.11) network. The IoT Gateway serves
as the middle man, which waits for data (i.e., images and metadata) coming from Esp Eye
devices to be inserted into the BC. The communication between Esp Eye devices and the
IoT Gateway is achieved through a wireless communication compliant to the IEEE 802.11
Local Area Network (LAN) protocol. To provide integrated experimental facilities, the
decision was to run a BC locally within the platform provided. However, the BC can be
spanned among multiple machines organized as a BC network on the Internet without any
hassle. Since HLF [7] was selected as the BC platform and its official build is provided for
Intel-based CPUs, the decision was to run the IoT gateway on an Intel-based machine. It is,
however, expected that HLF may run on low-capacity devices, such as ARM-based RPI
devices. To this end, the HLF developer (i.e., IBM) shall provide an appropriate compilation
environment to support ARM-based devices as well.

Figure 3. Hardware Architecture.

Esp Eye [2] integrates an embedded microphone and a camera with two megapixels.
The camera is an OV2640 sensor with a maximum image size of 1600 × 1200 pixels. The
board supports 2.4 GHz WiFi technology to connect to the Internet through a Local Area
Network (LAN). A Micro USB port provides the power supply and also allows for debug-
ging. In addition, it comes with a Universal Asynchronous Receiver-Transmitter (UART)
port, which enables asynchronous serial communication to program the Esp Eye device.
Esp Eye also supports several security features, such as flash encryption and secure boot.
The flash encryption is intended to secure the content of the flash memory. In Esp Eye, flash
encryption is performed using AES-256, and the key is stored in the eFuse (i.e., special-
purpose storage on the chip). eFuse keeps the values intact and cannot be changed by a
software. Furthermore, since the data on the flash are encrypted, a physical readout will not
be possible. Additionally, secure boot can protect the device from uploading unsigned code.
The device uses a typical digital signature method with the Rivest–Shamir–Adleman (RSA)
cryptography. The public key is stored in the device itself, whereas the private key is kept
secret and used upon each code upload. Apart from security, Esp Eye is an outstanding
device due to its performance (i.e., a double-core architecture supporting the 240 MHz CPU
frequency) and a face detection/recognition platform known as Esp Who. As elaborated in
Section 2.2, Esp Who comes with algorithms for face detection (i.e., MTMN) and recognition
(i.e., FRMN), which both run directly on the Esp Eye device.



Electronics 2022, 11, 2971 9 of 19

3.2.2. Software Architecture

Figure 4 depicts a high-level overview of the software components. It is essential to
mention that the software design shall be compatible with many underlying hardware
architectures. However, the Esp Eye is required for the success of this project.

Fabric SDK

ESP Server

ESP Camera

Input

Face Detection
Algorithm 

Face
Recognition
Algorithm 

Video
Streaming

OutputAI

IEEE 802.11 

Internet

IoT Gateway (RPI)ESP EYE

Hyperledger Fabric 

Digital
Certificate

Identity Access Control
Consensus
Mechanism

Smart
Contract

Policies Pluggable Chaincode
lifecycle 

Figure 4. Software Architecture.

At the beginning, two approaches were considered: deployment of the face detec-
tion/recognition on the cloud and on the Esp Eye itself. In the first approach, the image
processing AI is deployed on the cloud, which means the camera of a sensor captures
images and sends them toward the cloud for face recognition. However, this centralized
approach suffered from a single-point-of-failure and was later discontinued. In this work,
Esp Eye uses the camera to capture images. Images are sent to the face detection and face
recognition modules. It is noteworthy that face detection (i.e., MTMN [21,22]) and face
recognition (i.e., FRMN [23]) run directly on the Esp Eye device. The outcome, i.e., an
image accompanied by meta-data, is provided toward the implemented video streaming
service, which connects with the implemented Esp Server running on the IoT Gateway. The
Esp Server provides the image toward the implemented ESP Plugin (cf. the IoT Gateway),
with the help of the HLF Software Development Kit (SDK), to submit the Transaction (TX)
to the immutable ledger. HLF stores images coming from Esp Eye devices in immutable
storage. HLF runs specific services required to run a BC. It consists of identity management,
access control, and a consensus mechanism. Finally, HLF maintains the heart of the system,
which is the smart contract implemented in this work that is responsible for handling data
received from its clients (i.e., Esp Plugin residing on the IoT Gateway). HLF matches very
well the use case (cf. Section 3.1) because a private permissioned BC is better suited for
video surveillance due to privacy, BC block size, and BC block time reasons. The data
gathered by a given organization have to remain protected against malicious third parties.
This work also considered other BCs, for example, Ethereum (ETH) [6]. Although ETH
is a public permissionless BC, it can still be adapted to the needs of this work (e.g., by
running the private network or encrypting data on the chain). However, ETH comes with a
Proof-of-Work (PoW) consensus mechanism, which is energy-demanding and costly. In



Electronics 2022, 11, 2971 10 of 19

contrast, HLF uses a modular architecture; it enables flexibility in selecting pluggable con-
sensus mechanisms from a broader spectrum of candidate algorithms. Furthermore, HLF
is fast, while some configurations allow for high workloads exceeding 20,000 supported
TXs per second [36]. Additionally, HLF does not involve additional costs in terms of TX
execution. Moreover, Hyperledger Fabric allows for splitting the network into multiple
smaller networks (i.e., channels) to separate competing tenants and further improve privacy.
Finally, HLF supports arbitrary user data of large sizes in TXs that do not hold for other
BCs, which allow only short user-generated messages [37]. In our previous work [8,10],
BAZO BC was used, which did not allow the storage of large portions of user data, such
as images. We, therefore, decided to move on to a more suitable BC, i.e., HLF, rather than
using less flexible BCs and storing data (i.e., images) off the chain.

3.2.3. Communication Protocols

Considering communication protocols, Esp Eye is attached to a WiFi network, which
provides Internet Protocol (IP) communication. This work considered two major proto-
cols, i.e., Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol
(HTTP), for the actual data transmission on the application layer, both supported by the
Esp Eye device.

MQTT is a push-based client-server protocol that follows the Publish/Subscribe
(Pub/Sub) communication model. Furthermore, MQTT is data-centric. Since video surveil-
lance works with images, the decision was made to move towards document-oriented
communication instead.

HTTP is a document-oriented client-server communication protocol. HTTP is
employed between Esp Eye and the IoT Gateways to communicate in the client–server
architecture. The Representational State Transfer (REST) architectural style is used for
inter-machine communication because REST is considered a lightweight communication
paradigm. The JavaScript Object Notation (JSON) data-interchange format [38] is em-
ployed to carry the actual information in the system. JSON is a lightweight format of syntax
following the Javascript language notation. It makes JSON easy to read and process with
high-level languages such as Javascript (JS).

3.3. Implementation

The implementation encompasses the data flow between Esp Eye, IoT Gateway, and
HLF as shown in Figure 5, where data circulates from the left (i.e., the Esp Eye device)
to the right (i.e., HLF) [39]. Several Application Programming Interfaces (API) and data
structures are used to materialize the system.

Esp Who [15] analyses each frame with the MTMN face detection and if a face is
detected, the image is provided towards the FRMN face recognition algorithm.

3.3.1. Multi-Task Cascaded Convolutional Networks (MTCNN) with MobileNets (MN)

MTMN is an already trained model for face detection, which is based on the MTCNN
implementation using the MobileNetsV2 convolution framework that significantly reduces
the number of operations expressed in terms of MAdds and the number of model parame-
ters. Table 1 gathers the number of parameters and number of operations in convolutions
for each processing step of the MTCNN convolution network using regular convolutions
(MTCNN) and MobileNetsV2. The calculations are performed for all convolutions within a
given MTCNN step according to Section 2.2.4 (cf. Figure 1).

It can be observed that the MTMN model size, when MobileNetsV2 convolutions are
used, is very compact. Complexity-wise, it is worth noting that MTCNN/MTMN executes
more complex stages (e.g., R-Net) only in the case of the previous operation (e.g., P-Net)
suspecting a face in a given area of the picture. Thus, heavy processing is performed for
picture areas with suspected face candidates. As input, MTMN acquires all images from
the image pyramid constructed from the picture scaled accordingly.



Electronics 2022, 11, 2971 11 of 19

Table 1. MTCNN vs. MTMN.

CNN Stage
Regular MobileNet

Parameters Operations (MAdds) Parameters Operations (MAdds)

P-Net 6318 116,352 327 20,362
R-Net 25,139 2,095,680 550 309,276
O-Net 135,168 15,951,872 1310 2,121,504

O
rdering S

ervice

Commiting 
peer (CP1)

OrderersEndorsing 
Peer (EP2)

Endorsing 
Peer (EP1)

IoT 
Gateway

Esp Eye

txpayload=<deviceID,f
aceID,timestamp,imag
epayload

HTTP POST /esptest

200 OK

tx=<clientID,chainco
deID,txPayload,time
stamp,clientSig

Simulate/Execute 
tx/policycheck
Sign endorsed tx

Verify endorsment,  
check readset OK, 
apply writeset

Figure 5. Sequence Diagram Showing TX Execution.

3.3.2. Face Recognition MobileNets (FRMN)

FRMN is also part of the Esp Who [15] framework. By default, FRMN uses an adapted
MobileNetV2 network, which is tuned to receive 56 × 56 × 3 images, and provide the
output vector of 512 parameters (2 KB). FRMN can use the Euclidean or arc distances to
compute distances between faces. The MobileNet used is a Deep Neural Network (DNN)
with 0.5 mln parameters (2 MB) and has an execution time of 56 M MAdds. The size of the
model provided by Esp Who is massive and takes a large portion of the available memory
on the Esp Eye chip.

3.3.3. Note on MTMN and FRMN Complexity

It is, therefore, concluded that CNN is a well-suited method for IoT devices in terms
of face detection and face recognition. However, CNN has to be used in conjunction with
techniques optimizing the number of CNN parameters (i.e., RAM) and operations (i.e.,
CPU) on constrained devices. MTMN and FRMN from Esp Who [15] are lightweight
versions of more heavyweight models provided in the literature [21,22], where FRMN is
much more expensive than MTMN both in the case of RAM and CPU usage.

3.3.4. Esp Eye Transmission Overview

Hence, if a face is detected, but not necessarily recognized, the HTTP client is activated,
while Esp Eye devices act as clients communicating with the remote server on the IoT
Gateway. The video service takes the image equipped with meta-data (i.e., device ID,
detected face ID, timestamp) and forwards it to the IoT Gateway. This is achieved with
the help of a REST API call using the HTTP POST request. The node.js [40]-based server



Electronics 2022, 11, 2971 12 of 19

located in the IoT Gateway receives the request (e.g., an image with the details of a person
detected provided as meta-data). Furthermore, the role of the node.js server is to properly
acknowledge the successful reception of the transmission coming from Esp Eye devices.

There are four significant parameters to be stored in the BC reflected in the JSON
document (cf. Figure 6a) provided by Esp Eye devices. First, as multiple Esp Eye devices
may be employed in access management, the device ID is essential, since the framework
needs to distinguish particular devices from which the information is coming. Second, a
face ID is needed, allowing for personal identification without processing the captured
frame again. The successfully identified person on the sensor implies that access was
granted to given resources protected by this access management system. Additionally, the
timestamp identifies the time moment when the person is detected. Finally, the image
frame is encoded in BASE64 [41]. As shown in Figure 5, all four parameters are sent as
a JSON document. After receiving the document, the node.js server located on the IoT
Gateway responds with a status code. The Esp Eye is programmed with the help of the
Arduino IDE [42], which has to be equipped with the ESP32 board support. Consequently,
the appropriate board called ESP-CAM has to be selected to program the Esp Eye device.
The WiFiClient library (https://www.arduino.cc/en/Reference/WiFiClient accessed on
25 January 2022) enables establishing the connection to the IoT Gateway by using its IP
address. The Esp Eye issues HTTP requests using the POST method towards the HTTP
API exposed by the IoT Gateway. For submitting JSON documents, the application/json
method is used, which is a standard format for sending structured data. JSON is handful
for sending plain text or any other data types. Since HLF also uses a JSON format to
store assets, this work converts the image into a data type supported by JSON as well.
Hence, the best option is to store the image as a string. To this end, the image is first
converted to BASE64. The Esp Eye converts images to BASE64 and encapsulate the BASE64
representation into a JSON format.

DeviceID

FaceID

Timestamp

Image:base64

(a)

ClientID

ChainCodeID

TXPayload

Timestamp

ClientSig

(b)
Figure 6. JSON Formats Used: (a) Sent From Esp Eye Devices, (b) Included in the HLF TX Proposed.

3.3.5. HLF Transaction Submission

The node.js HTTP server is responsible for receiving the data and forwarding it to the
HLF. In order to interact with HLF, the node.js-based server uses the HLF SDK providing
an API to submit TX to the ledger. The process of submission takes place right after the
image has arrived from an Esp Eye device. The HLF TX data, also referred to as an asset, is
a collection of key-value pairs. Since the JSON format for the image transfer is used from
the start, node.js may forward a similar JSON file to the BC.

https://www.arduino.cc/en/Reference/WiFiClient


Electronics 2022, 11, 2971 13 of 19

Before the HLF TX is initiated, three preconditions have to be fulfilled. (i) The HLF has
to be configured and running. (ii) The HLF channel is established (i.e., HLF subnetwork for
privacy concerns). (iii) The chaincode implemented in this work (i.e., HLF Smart Contract
identified by its chaincode ID) with its endorsement policy is deployed within a given
channel. Every Esp Eye is registered and enrolled with Certificate Authority (CA), while
the Membership Service Providers (MSP) maintain the identities of every Esp Eye device.
For more information, please consult the HLF documentation [7].

The IoT Gateway acts as an HLF client. Therefore, the IoT Gateway initiates the HLF
TX with these four parameters provided as a JSON document by Esp Eye (cf. Section 3.3.4),
which becomes the TX payload. Each Esp Eye is assigned with a public/private key pair,
which is used to sign the HLF TX. In this work, the IoT Gateway retrieves the key pair of a
given Esp Eye device and signs the TX on behalf of the device using the HLF SDK. Although
TX signing is possible in the offline mode, meaning locally on the Esp Eye device, this was
not implemented here, since the HLF client SDK is not ported for Esp Eye devices yet.

Typical BCs, such as ETH, use the order-and-execute paradigm, meaning the TX is first
ordered in blocks and later on executed by all peers in a given BC network. The speed of
the HLF environment is achieved through the application of a so-called execute-and-order
TX submission scheme, which depends on the configurable number of endorsement peers,
which first execute all TXs received. Endorsers endorse a given TX. When the HLF TX
receives endorsements, which satisfies the configured endorsement policy, the TX can be
ordered in blocks by the ordering service according to a configured consensus mechanism
and committed into the ledger by committing peers.

This work configures two endorsers (i.e., EP1 and EP2, cf. Figure 5). They receive
the TX proposal, which includes a client ID, the chaincode ID (i.e., HLF smart-contract
ID), the TX payload, a timestamp, and the clientSignature as presented in Figure 6b. Only
endorsing peers specified by the chaincode receive this TX proposal. The endorsement
policy in this work requires both endorsement peers to endorse the received HLF TX before
the TX might be submitted toward the ordering service. First, EP1 and EP2 check the
format of the TX. Second, every TX has to possess a valid signature of a client appropriately
registered within the MSP. Third, the client has an authorized member of the HLF channel.
When all conditions have been checked, the endorsers invoke the chaincode using the JSON
document received. Eventually, the TX is executed; however, it does not yet update the
ledger. Now, the endorsers sign the proposed TX and send it back to the HLF client on the
IoT Gateway. The intent of the HLF client is to submit the TX to the ordering service and
update the ledger. If the HLF client’s intention was to query the ledger, there is no need to
submit anything to the ordering service.

Before the HLF submits the final version of the TX, HLF clients send the TX endorsed
toward the ordering service. Now, the TX is equipped with signatures of endorsing
peers. While the ordering service may receive TXs from other clients or ESP devices, the
ordering service orders TXs according to a sequence number and packages them into
blocks. When the maximum number of TXs allowed in a block is reached or the maximum
block-time has passed, blocks are sent to committing peers to be included in the ledger for
an immutable storage.

Upon receiving a broadcast message with the created block from the orderers, com-
mitting peers verify the signatures of ordering nodes within a given block. HLF allows for
configuring committing peers. However, typically all peers in a given channel may update
the ledger. If the committing peers fail to verify the signature of ordering peers, the ledger
will not include them and rejects the newly created block.

4. Evaluation

Important criteria for an evaluation include the reliability of the overall design, end-
to-end delay from the moment the image is taken until it is finally submitted into the BC,
the quality of images captured by Esp Eye as well as stored in Hyperledger Fabric, and the
energy efficiency of the solution from an IoT device’s perspective. The evaluation integrates



Electronics 2022, 11, 2971 14 of 19

two Esp Eye sensors (dual-core Tensilica LX6 processor with a maximum frequency of
240 MHz, 4 MB PSRAM, and 4 MB flash) and regular macOS-based computer with 2-core
Intel Core i5 running at 2.7 GHz, 512 GB SDD disk, and 8 GB RAM. To begin testing,
several steps are recommended. (i) The Esp Eye sensors are powered up using an external
charger power bank; 10 face profiles are uploaded on the device. (ii) HLF is started with
the help of docker containers. Currently, one committing peer and two endorsing peers
are supported. The ordering service is set to solo, i.e., one node submitting HLF TXs. The
channel is configured and JS-based chaincode is deployed. (iii) The IoT Gateway starts the
node.js-based HTTP server listening on port 8585.

4.1. Image Quality

The Esp Who platform supports the OV2640 camera embedded in Esp Eye. The
camera can be configured in terms of frame size and pixel format. The frame size may be
set to one of the following options: FRAMESIZE_CIF (400 × 296), FRAMESIZE_QVGA
(320 × 240), FRAMESIZE_VGA (640 × 480), FRAMESIZE_SVGA (800 × 600), FRAME-
SIZE_XGA (1024 × 768), FRAMESIZE_SXGA (1280 × 1024), and FRAMESIZE_UXGA
(1600 × 1200). With FRAMESIZE_QVGA and FRAMESIZE_CIF, the Esp Eye with face
detection and recognition run almost equally well. One difference between them is the
number of frames per second delivered. The larger the image size, the more processing
time it takes to receive the image. Therefore, due to the higher width, the FRAMESIZE_CIF
consumes more processing power, and it can achieve on average 3.2 fps (i.e., 312 ms to
deliver an image). In contrast, with FRAMESIZE_QVGA, the sensor can deliver 5.2 fps (i.e.,
190 ms to deliver an image). Therefore, FRAMESIZE_QVGA was selected as the image
resolution used in this work.

4.2. Processing Delay of Face Detection and Recognition

First of all, the idea of performing face detection and recognition on Esp Eye is a novel
approach because typically face detection and recognition run either on the cloud or on a
local computer. In related work (cf. Section 2), it was previously reported that face detection
and recognition offloading to the cloud takes at least 2 s and sometimes goes up to 5 s.

The real experiment was performed, in which the Esp Eye [2] sensor observed its
surroundings. Two situations were considered. In the first situation, no face is presented
in front of the camera. In the second case, the person registered with the sensor presents
his face in front of the camera at a distance of around 0.4 m. The analysis that followed
was based on the log of the processing time performed by Esp Eye. The processing was
repeated up to five times. For instance, in the situation when no face is detected in the
image delivered (Figure 7), the overall processing needs 174 ms to accomplish, which
involves 122 ms to receive an image from the sensor, 52 ms to perform the face detection
with MTMN, and 0 ms to perform the face recognition with FRMN. Since MTMN has
detected no face, FRMN was not activated, resulting in 0 ms completion time. The standard
deviation calculated for all processing stages (i.e., Reading the Camera, MTMN, and
FRMN) is presented in the figure as well. It is noted that the average overall processing
time varies only a little bit with the relative variation of less than 1.9% experienced in all
the experiments performed. Face detection and recognition take on average 1008 ms (cf.
Figure 8), which includes 126 ms for image acquisition, 172 ms for face detection, and
710 ms for face recognition. The overall processing time experiences a relative variation of
around 7.9% in this experiment.

Furthermore, it is noted that MTMN displays accuracy of around 10%, as the face is
discovered in 1–2 images for every 10 images taken. This is, however, evaluated positively,
as the speed of MTMN is very fast, and several images can be analyzed per second (cf.
Figure 8). FRMN displays higher performance as a face is recognized in one of every
two images. The detection rate of 50% is understandable when considering the small size
of the CNN. Robust networks (e.g., MobileFaceNets [22]) have much higher number of
parameters (e.g., 1 M) and require higher computing cost (e.g., 221 M MAdds).



Electronics 2022, 11, 2971 15 of 19

Camera Reading MTMN FRMN
0

50

100

150

200

Processing Stage on the Device

Pr
oc

es
si

ng
D

el
ay

[m
s]

Esp Eye Processing Delay

Figure 7. Esp Eye Processing Delay When no Face is Detected in Front of the Camera.

Camera Reading MTMN FRMN
0

200

400

600

800

1000

1200

Processing Stage on the Device

Pr
oc

es
si

ng
D

el
ay

[m
s]

Esp Eye Processing Delay

Figure 8. Esp Eye Processing Delay When a Face is Detected in Front of the Camera.

4.3. End-to-End Processing Delay

Many BC platforms suffer from a low TX rate. However, HLF executes TXs in an
execute-and-order way. Thus, HLF gains significant speed in terms of processing delay
to support large TX volumes per second. The end-to-end delay is measured by printing
the timestamp at different individual processing steps to measure (i) image processing
delay on the Esp Eye device, (ii) transmission delay of the collected image from Esp Eye
to the IoT Gateway, (iii) preparation delay of the BC TX on the IoT Gateway, and (iv) BC
TX submission delay from the IoT Gateway to the BC. The image is inserted in the ledger,
and the BC service is finished when the BC TX reaches all peers. Figure 9 displays system
processing stages starting with the Esp Eye image capturing until the image reaches all
peers in the ledger, for an example TX. Similarly, as estimated earlier, face detection (i.e.,
MTMN) and recognition (i.e., FRMN) on Esp Eye take on average 1 s. However, if the
face detection phase is not executed, the image processing is much shorter (i.e., at 200 ms).
Sending the image from Esp Eye to the IoT Gateway takes almost 2 s. Furthermore, the time
it takes from the IoT Gateway until the TX is submitted to HLF is very small compared to
other functions. HLF consumes little more than 2 s. This is influenced by two configurable
parameters, i.e., BatchTimeout and BatchSize. BatchTimeout is essential for this work, since
it refers to a block-time limit. This work configures BatchTimeout at 2 s, which minimizes



Electronics 2022, 11, 2971 16 of 19

the idle time of ordering peers. However, depending on the use case, those parameters
may need to be tuned such that there is no bottleneck in TX arrivals. The end-to-end delay
experienced in the system for this example BC TX is 5.3 s from the moment the image is
taken until the inclusion of the BC TX in the BC. Therefore, almost real-time use cases can
be supported using HLF as a communication backend.

Image
Processing
on Esp Eye

Sending an Image
from Esp Eye to
the IoT Gateway

Preparing a
Blockchain TX on
the IoT Gateway

Submitting TX from
the IoT Gateway
to the Blockchain

0

500

1000

1500

2000

2500

3000

System Processing Stage

Pr
oc

es
si

ng
D

el
ay

[m
s]

The Overall System Processing Time

Figure 9. System Processing Delay.

4.4. Energy Efficiency of Esp Eye

The experimentation setup was used to measure the energy consumption of Esp Eye
against image quality, face detection, and face recognition. After several tests with different
image qualities and parameters, there was no difference experienced in Esp Eye energy
consumption. Throughout the experiment, the energy consumption remained at the
constant level of 600 mW (in total, the device consumed 600 mWh within an hour of
operation), which allows for a 7-hour operation on an alkaline battery of 4200 mWh capacity.
Furthermore, there is no difference in energy consumption when a face is recognized or no
face is detected.

5. Summary and Future Work

This paper provides the first access management system that utilizes Artificial In-
telligence (AI), Blockchains (BC), and Internet-of-Things (IoT) in an integrated use case.
This use case is centered around access management without direct human intervention.
Thus, the user needs to present their face in front of a camera to access a resource. The
system takes an image of their face and checks whether this user has the right to access a
given resource.



Electronics 2022, 11, 2971 17 of 19

For that decision being taken, the face detection and recognition are performed directly on
the IoT device. An MTCNN (Multi-Task Cascaded Convolutional Network) with MobileNets
(MN) was deployed to detect faces. Furthermore, the Face Recognition model is based
upon a Convolutional Neural Network (FRMN). To establish a good level of transparency,
AI decisions on access rights and images taken by the sensor are stored in the immutable,
tamper-resistant storage implemented with the help of the HyperLedger Fabric (HLF).

The system’s performance was evaluated at an excellent level, where a 5.3 s end-to-end
delay is reached. This value reads to be outstanding compared to well-established BC
systems, such as Bitcoin (BTC) or Ethereum (ETH), having a block time configured at the
level of 10 min and 10 s, respectively.

Additionally, the size of data to be persisted inside a block does not lead to high costs,
as for a BTC or ETH case, since HLF does offer “unlimited” storage capacity due to its
private, permissioned characteristic. At the same time, data privacy is ensured since the
private ledger within the HLF implementation will only allow for authorized accesses
by definition.

As this approach taken is considered to be a prototype, two current drawbacks will
have to be taken care of in the next generation:

1. All face descriptors of recognized faces are hard-encoded on Esp Eye devices.
2. The HLF Transaction (TX) signing is not performed directly on Esp Eye devices, since it

is delegated to the IoT Gateway device supporting this process on behalf of the sensor.

Apart from solving these aspects, future work will not only close the gaps as identified
in the currently specified and prototyped system, but will further develop the IoT-BC
integration into operational and reusable software functionality:

1. The face descriptor management will allow an IoT device to retrieve a remote directory
of recognized faces.

2. Porting the HLF Software Development Kit (SDK) to IoT devices will enable an HLF
TX submission directly from IoT devices.

Author Contributions: Conceptualization, E.S.; methodology, E.S.; software, E.E.; validation, E.S.
and E.E.; formal analysis, E.S. and E.E.; investigation, E.S., E.E. and B.S.; resources, B.S.; data curation,
E.S. and E.E.; writing—original draft preparation, E.E.; writing—review and editing, E.S., E.E. and
B.S.; visualization, E.S. and E.E.; supervision, E.S. and B.S.; project administration, B.S.; funding
acquisition, B.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by (a) the University of Zürich and (b) the European
Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 830927, the
CONCORDIA project.

Data Availability Statement: The software generated in this work is publicly available on GitHub
https://github.com/eesati/Master-Thesis/ (accessed on 25 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atlam, H.F.; Walters, R.J.; Wills, G.B. Intelligence of Things: Opportunities Challenges. In Proceedings of the 3rd Cloudification

of the Internet of Things (CIoT’18), Paris, France, 2–4 July 2018; pp. 1–6. [CrossRef]
2. Espressif Systems. ESP-EYE Development Board. Available online: https://www.espressif.com/en/products/devkits/esp-eye/

overview (accessed on 10 December 2020).
3. Raspberry Pi Foundation Group. Raspberry Pi 3 Model B. Available online: https://www.raspberrypi.org/products/raspberry-

pi-3-model-b (accessed on 2 October 2019).
4. Banafa, A. IoT and Blockchain Convergence: Benefits and Challenges. IEEE Internet-of-Things Newsletter. Available online:

https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html (accessed on 25
January 2022) .

5. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. IEEE Comput. 2017, 50, 80–84.
[CrossRef]

6. Valenta, M.; Sandner, P. Comparison of Ethereum, Hyperledger Fabric and Corda. 2017. Available online: http://explore-ip.
com/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf (accessed on 29 December 2021).

https://github.com/eesati/Master-Thesis/
http://doi.org/10.1109/CIOT.2018.8627114
https://www.espressif.com/en/products/devkits/esp-eye/overview
https://www.espressif.com/en/products/devkits/esp-eye/overview
https://www.raspberrypi.org/products/ raspberry-pi-3-model-b
https://www.raspberrypi.org/products/ raspberry-pi-3-model-b
https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html
http://dx.doi.org/10.1109/MC.2017.201
http://explore-ip.com/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
http://explore-ip.com/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf


Electronics 2022, 11, 2971 18 of 19

7. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,
Y.; et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. In Proceedings of the 13th EuroSys
Conference, EuroSys 2018, Porto, Portugal, 23–26 April 2018. [CrossRef]

8. Rafati-Niya, S.; Schiller, E.; Cepilov, I.; Stiller, B. BIIT: Standardization of Blockchain-based I2oT Systems in the I4 Era. In
Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2020), Budapest, Hungary, 20–24 April
2020; pp. 1–9. [CrossRef]

9. Schiller, E.; Rafati-Niya, S.; Surbeck, T.; Stiller, B. Scalable Transport Mechanisms for Blockchain IoT Applications. In Proceedings
of the 44th IEEE LCN Symposium on Emerging Topics in Networking (LCN Symposium), Osnabrueck, Germany, 14–17 October
2019; pp. 34–41. [CrossRef]

10. Schiller, E.; Esati, E.; Niya, S.R.; Stiller, B. Blockchain on MSP430 with IEEE 802.15.4 In Proceedings of the 2020 IEEE 45th
Conference on Local Computer Networks (LCN), Sydney, Australia, 16–19 November 2020; pp. 345–348.

11. Atlam, H.F.; Azad, M.A.; Alzahrani, A.G.; Wills, G. A Review of Blockchain in Internet of Things and AI. Big Data Cogn. Comput.
2020, 4, 28. [CrossRef]

12. Singh, S.K.; Rathore, S.; Park, J. BlockIoTIntelligence: A Blockchain-enabled Intelligent IoT Architecture with Artificial Intelligence.
Future Gener. Comput. Syst. 2019, 110, 721–743. [CrossRef]

13. Singh, S.; Sharma, P.K.; Yoon, B.; Shojafar, M.; Cho, G.H.; Ra, I.H. Convergence of Blockchain and Artificial Intelligence in IoT
Network for the Sustainable Smart City. Sustain. Cities Soc. 2020, 63, 102364. [CrossRef]

14. Parker, B.; Bach, C. The Synthesis of Blockchain, Artificial Intelligence and Internet of Things. Eur. J. Eng. Technol. Res. 2020,
5, 588–593. [CrossRef]

15. Espressif Systems. ESP-WHO Platform. Available online: https://github.com/espressif/esp-who (accessed on 19 September 2020).
16. Abedin, S.F.; Alam, M.G.R.; Haw, R.; Hong, C.S. A System Model for Energy Efficient Green-IoT Network. In Proceedings of

the International Conference on Information Networking (ICOIN’15), Siem Reap, Cambodia, 12–14 January 2015; pp. 177–182.
[CrossRef]

17. Tang, J.; Sun, D.; Liu, S.; Gaudiot, J. Enabling Deep Learning on IoT Devices. Computer 2017, 50, 92–96. [CrossRef]
18. Gopinath, S.; Ghanathe, N.; Seshadri, V.; Sharma, R. Compiling KB-Sized Machine Learning Models to Tiny IoT Devices. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’19), Phoenix,
AZ, USA, 22–26 June 2019; pp. 79–95. [CrossRef]

19. Lin, J.; Chen, W.M.; Lin, Y.; Cohn, J.; Gan, C.; Han, S. Mcunet: Tiny deep learning on iot devices. arXiv 2020, arXiv:2007.10319.
20. Ackerman, D. System Brings Deep Learning to Internet of Things Devices. Available online: https://news.mit.edu/2020/iot-

deep-learning-1113 (accessed on 10 December 2020).
21. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks.

IEEE Signal Process. Lett. 2016, 23, 1499–1503. [CrossRef]
22. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:cs.CV/1704.04861.
23. Shang, S.; Liu, H.; Qu, Q.; Li, G.; Cao, J. FRMN-A Face Recognition Model Based on Convolutional Neural Network. In Proceed-

ings of the IOP Conference Series: Materials Science and Engineering, Hunan, China, 17–18 May 2019; Volume 585, p. 012101.
24. LeCun, Y.; Jackel, D.L.; Bottou, L.; Cortes, C.; Denker, J.S.; Drucker, H.; Guyon, I.; Muller, U.A.; Sackinger, E.; Simard, P.; et al.

Learning Algorithms for Classification: A Comparison on Handwritten Digit Recognition. In Neural Networks: The Statistical
Mechanics Perspective; World Scientific: Singapore, 1995; pp. 261–276.

25. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

26. Adelson, E.H.; Anderson, C.H.; Bergen, J.R.; Burt, P.J.; Ogden, J.M. Pyramid Methods in Image Processing. RCA Eng. 1984,
29, 33–41.

27. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted Residuals and Linear Bottlenecks: Mobile
Networks for Classification, Detection and Segmentation. arXiv 2018, arXiv:1801.04381.

28. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 4510–4520.

29. Rafati Niya, S.; Schiller, E.; Stiller, B., Architectures for Blockchain-IoT Integration. In Communication Networks and Service
Management in the Era of Artificial Intelligence and Machine Learning; Zincir-Heywood, N., Diao, Y., Mellia, M., Eds.; IEEE Press
Series on Networks and Service Management; Wiley-IEEE Press: New York, NY, USA, 2021; pp. 100–137.

30. Waheed, N.; He, X.; Ikram, M.; Usman, M.; Hashmi, S.S.; Usman, M. Security and Privacy in IoT Using Machine Learning and
Blockchain: Threats and Countermeasures. ACM Comput. Surv. 2020, 53, 122. [CrossRef]

31. Dinh, T.N.; Thai, M.T. AI and Blockchain: A Disruptive Integration. Computer 2018, 51, 48–53. [CrossRef]
32. Liu, L.; Feng, J.; Pei, Q.; Chen, C.; Ming, Y.; Shang, B.; Dong, M. Blockchain-Enabled Secure Data Sharing Scheme in Mobile-Edge

Computing: An Asynchronous Advantage Actor–Critic Learning Approach. IEEE Internet Things J. 2021, 8, 2342–2353. [CrossRef]
33. Quadri, S.A.I.; Sathish, P. IoT based Home Automation and Surveillance System. In Proceedings of the International Conference

on Intelligent Computing and Control Systems (ICICCS’17), Madurai, India, 15–16 June 2017; pp. 861–866. [CrossRef]

http://dx.doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1109/NOMS47738.2020.9110379
http://dx.doi.org/10.1109/LCNSymposium47956.2019.9000673
http://dx.doi.org/10.3390/bdcc4040028
http://dx.doi.org/10.1016/j.future.2019.09.002
http://dx.doi.org/10.1016/j.scs.2020.102364
http://dx.doi.org/10.24018/ejers.2020.5.5.1912
https://github.com/espressif/esp-who
http://dx.doi.org/10.1109/ICOIN.2015.7057878
http://dx.doi.org/10.1109/MC.2017.3641648
http://dx.doi.org/10.1145/3314221.3314597
https://news.mit.edu/2020/iot-deep-learning-1113
https://news.mit.edu/2020/iot-deep-learning-1113
http://dx.doi.org/10.1109/LSP.2016.2603342
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3417987
http://dx.doi.org/10.1109/MC.2018.3620971
http://dx.doi.org/10.1109/JIOT.2020.3048345
http://dx.doi.org/10.1109/ICCONS.2017.8250586


Electronics 2022, 11, 2971 19 of 19

34. LoRa Alliance. A Technical Overview of LoRa and LoRaWAN. Available online: https://lora-alliance.org/portals/0/documents/
whitepapers/LoRaWAN101.pdf (accessed on 17 May 2019).

35. Schiller, E.; Esati, E.; Stiller, B. IoT-based Access Management Supported by AI and Blockchains. In Proceedings of the 17th
International Conference on Network and Service Management (CNSM’21), Izmir, Turkey, 25–29 October 2021; pp. 350–354.
[CrossRef]

36. Gorenflo, C.; Lee, S.; Golab, L.; Keshav, S. FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. In
Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency (ICBC’19), Seoul, Korea, 14–17 May 2019;
pp. 455–463. [CrossRef]

37. Scheid, E.J.; Lakic, D.; Rodrigues, B.B.; Stiller, B. PleBeuS: A Policy-based Blockchain Selection Framework. In Proceedings of the
NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–8.
[CrossRef]

38. Pezoa, F.; Reutter, J.L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations of JSON Schema; International World Wide Web Conferences
Steering Committee: Geneva, 2016; pp. 263–273. [CrossRef]

39. Esati, E. IoT-Based Access Management, GitHub Repository. Available online: https://github.com/eesati/Master-Thesis
(accessed on 25 January 2022).

40. Tilkov, S.; Vinoski, S. Node. js: Using JavaScript to Build High-Performance Network Programs. IEEE Internet Comput. 2010,
14, 80–83. [CrossRef]

41. Josefsson, S. The BASE16, BASE32, and BASE64 Data Encodings; Technical Report, IETF RFC 4648; The Internet Society: Reston,
VA, USA, October 2006.

42. Badamasi, Y.A. The Working Principle of an Arduino. In Proceedings of the 11th International Conference on Electronics,
Computer and Computation (ICECCO’14), Abuja, Nigeria, 29 September–1 October 2014; pp. 1–4. [CrossRef]

https://lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
https://lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
http://dx.doi.org/10.23919/CNSM52442.2021.9615523
http://dx.doi.org/10.1109/BLOC.2019.8751452
http://dx.doi.org/10.1109/NOMS47738.2020.9110386
http://dx.doi.org/10.1145/2872427.2883029
https://github.com/eesati/Master-Thesis
http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1109/ICECCO. 2014.6997578

	Introduction
	Related Work
	Internet-of-Things IoT
	Internet-of-Things and Artificial Intelligence
	Convolutional Neural Networks
	Multi-Task Cascaded Convolutional Networks
	Face Recognition Model Based on CNN
	MobileNets for Lightweight CNNs

	Internet-of-Things and Blockchains
	Artificial Intelligence and Blockchains
	Artificial Intelligence, Blockchains, and Internet-of-Things
	Approaches Similar to This Work
	The Newly Proposed Approach

	Use Case and Architecture
	Use Case
	Architecture
	Hardware Components
	Software Architecture
	Communication Protocols

	Implementation
	Multi-Task Cascaded Convolutional Networks (MTCNN) with MobileNets (MN)
	Face Recognition MobileNets (FRMN)
	Note on MTMN and FRMN Complexity
	Esp Eye Transmission Overview
	HLF Transaction Submission


	Evaluation
	Image Quality
	Processing Delay of Face Detection and Recognition
	End-to-End Processing Delay
	Energy Efficiency of Esp Eye

	Summary and Future Work
	References

