
Citation: Aljofey, A.; Rasool, A.;

Jiang, Q.; Qu, Q. A Feature-Based

Robust Method for Abnormal

Contracts Detection in Ethereum

Blockchain. Electronics 2022, 11, 2937.

https://doi.org/10.3390/

electronics11182937

Academic Editor: Cheng-Chi Lee

Received: 25 July 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Feature-Based Robust Method for Abnormal Contracts
Detection in Ethereum Blockchain
Ali Aljofey 1,2 , Abdur Rasool 1,2 , Qingshan Jiang 1,* and Qiang Qu 1

1 Shenzhen Key Laboratory for High Performance Data Mining, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China

2 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences,
Shenzhen 518055, China

* Correspondence: qs.jiang@siat.ac.cn; Tel.: +86-186-6532-6469

Abstract: Blockchain technology has allowed many abnormal schemes to hide behind smart contracts.
This causes serious financial losses, which adversely affects the blockchain. Machine learning
technology has mainly been utilized to enable automatic detection of abnormal contract accounts
in recent years. In spite of this, previous machine learning methods have suffered from a number
of disadvantages: first, it is extremely difficult to identify features that enable accurate detection of
abnormal contracts, and based on these features, statistical analysis is also ineffective. Second, they
ignore the imbalances and repeatability of smart contract accounts, which often results in overfitting
of the model. In this paper, we propose a data-driven robust method for detecting abnormal contract
accounts over the Ethereum Blockchain. This method comprises hybrid features set by integrating
opcode n-grams, transaction features, and term frequency-inverse document frequency source code
features to train an ensemble classifier. The extra-trees and gradient boosting algorithms based
on weighted soft voting are used to create an ensemble classifier that balances the weaknesses of
individual classifiers in a given dataset. The abnormal and normal contract data are collected by
analyzing the open source etherscan.io, and the problem of the imbalanced dataset is solved by
performing the adaptive synthetic sampling. The empirical results demonstrate that the proposed
individual feature sets are useful for detecting abnormal contract accounts. Meanwhile, combining all
the features enhances the detection of abnormal contracts with significant accuracy. The experimental
and comparative results show that the proposed method can distinguish abnormal contract accounts
for the data-driven security of blockchain Ethereum with satisfactory performance metrics.

Keywords: fraud detection; blockchain security; abnormal contracts; feature transformation; ensemble
learning model

1. Introduction

Fraud detection is a set of activities to prevent acquiring money or property through
false claims. It is pragmatically applied in various online and offline services, such as
internet services of banking or cryptocurrencies. Due to the development of artificial
intelligence and data mining techniques, the need to share the most diverse data has in-
creased; meanwhile, fraudulent activities have also emerged extremely in internet services.
Unfortunately, the generation of this data belongs to several different security areas, so
there is difficulty in sharing it, especially when there is information related to privacy and
security. The inclusion of automation in the blockchain has led to the rapid adoption of
technology in different sectors involving online finance, the internet of things, supply chain
management, healthcare, insurance, etc. [1]. Blockchain is a shared and immutable ledger
that facilitates the process of recording transactions between receiving and sending parties,
and tracking assets in the business network [2,3]. Meanwhile, Ethereum is a decentralized
blockchain platform that creates a peer-to-peer network that securely implements and veri-
fies application code, named smart contract accounts. Smart contracts allow participants to

Electronics 2022, 11, 2937. https://doi.org/10.3390/electronics11182937 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11182937
https://doi.org/10.3390/electronics11182937
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1494-5107
https://orcid.org/0000-0001-5334-9001
https://orcid.org/0000-0002-8040-0308
https://doi.org/10.3390/electronics11182937
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11182937?type=check_update&version=1

Electronics 2022, 11, 2937 2 of 24

transact with each other without a trusted central authority. The blockchain is a globally
shared transaction database [4–6]. A block includes many transactions, and a transaction in
Ethereum is a message sent from one account address to another, which carries the import
information, for example, a function parameter, a contract bytecode, etc. Ethereum has two
categories of accounts typically involved in the transactions on the platform: externally
owned accounts and smart contract accounts. The substantial variance is that the smart
contract account includes executable code, while the externally owned account does not [7].

Ethereum, the most popular platform for smart contract accounts, has a market
capitalization of over USD $21 billion [8,9]. When smart contract accounts are written in
a high-level language such as Solidity, they must be compiled into bytecode, and then
uploaded to Ethereum to be executed and validated by each Ethereum node. As a popular
and open-source blockchain platform, Ethereum publishes many smart contract accounts
to implement different businesses. At the same time, the technical characteristics come
from a combination of many advanced technologies based on data-driven approaches,
which increases the complexity of the blockchain and leads to increased technical limitations
between smart contract accounts and investors. High technical limitations prevent investors
from familiarizing themselves with the specific trading logic of smart contract accounts
that run on the Ethereum network. These obstacles allow fraudsters to introduce abnormal
contract accounts into the blockchain investment ecosystem.

The abnormal contract accounts such as High Yield Investment Programs (HYIP) or
Ponzi schemes are a deceptive investment masquerading as a hopeful high rate of return for
investors. Abnormal contracts are smart contract accounts with special characteristics. Due
to their fraudulent nature, abnormal contracts differ from other contracts in several ways:
(i) in most cases, abnormal contracts send Ether to their investors; (ii) it is possible for some
accounts to receive more payments than their investment counts, such as the creator who
frequently charges fees through contracts; and (iii) to maintain the image of fast and high
returns, abnormal contracts might pay back investors once they have sufficient balances,
resulting in a low balance [10]. On the other hand, a normal contract account on blockchain
refers to a smart contract, which is a type of Ethereum account. Therefore, they can send
transactions via the network since they have a balance. Although they are not controlled
by users, they are deployed to the network and run according to their programming. Users
can then submit transactions that execute the functions defined in a smart contract. The
smart contract account can be used to define rules that are automatically enforced by the
code, just like a regular contract. By default, smart contract accounts cannot be deleted, and
interactions with them cannot be undone. The abnormal contract accounts create returns to
early investors by getting new investors. They present automated peer-to-peer transactions
while taking advantage of the decentralization benefits provided by blockchain technology.
As stated by [10], from August 2015 to May 2017, 191 abnormal contract accounts alive on
Ethereum raised almost $500,000 from over 2000 different users. Recently, online financing
systems such as crowdfunding and peer-to-peer networking have become very popular.
At the same time, abnormal contract accounts appeared in between, causing a very bad
social impact [11]. Scientists note that abnormal contracts embedded in the blockchain
are pervasive.

Data-driven security (DDS) effectively balances such impacts by an activity com-
pelled with data derived from any security application instead of theoretical or personal
experience. DDS is an evolving interdisciplinary area that concentrates on research and
development by applying machine learning, data mining, data science, and deep learning
approaches to tackle the high-security issues in the HYIP. In order to achieve success in this
balance, there is a need to use effective security measures through DDS to minimize losses
and prevent crimes for blockchain and cryptocurrency investors. However, there are quite
a few studies on detecting abnormal contracts through DDS in Ethereum.

Existing abnormal contract detection techniques on the blockchain mostly include
manual analysis or machine learning [10,12,13]. Manual analysis techniques employ ether-
scan.io, an analytics platform for observing transactions and wallet addresses on the

Electronics 2022, 11, 2937 3 of 24

Ethereum blockchain, to retrieve contracts that have been verified with the source code and
manually inspect the contract source code to confirm the type of smart contract account.
However, these detection techniques are challenging to analyze the many new contracts
being created daily on the blockchain system for DDS. Thus, it is impractical to detect smart
contract accounts only through manual analysis. Recent detection methods [14–17] depend
on opcodes or account data of contract accounts using machine learning methods to detect
abnormal contract accounts automatically.

However, previous machine learning methods for identifying abnormal contract ac-
counts suffer from the following problems: first, it is difficult to obtain features that can
effectively detect abnormal schemes, and statistical work around the features is also un-
helpful. Extracting effective features is an important task in a machine learning-based fraud
detection solution. Some new features may be limited due to the technical enhancement of
blockchain technologies. Overall, feature extraction is a difficult process and researchers
continue to monitor any potential feature, which can improve the fraud detection perfor-
mance of malicious contracts by conducting experiments on the standard dataset. Second,
although some work has been done using machine learning methods to detect fraud in
smart contract accounts, the accuracy is inadequate for data-driven analysis. For instance,
the random forest method achieves a 95% precision rate and 69% recall rate [15] which is
due to the smaller number of instances of abnormal contracts compared to normal contracts.
It is obvious that abnormal contract accounts can be detected more accurately. A number of
applications, including critical power system applications, have utilized ensemble learners
to enhance performance. By compensating for the weaknesses of individual classifiers with
the strengths of others, ensemble learning provides a superior performance [17]. Using Gra-
dient Boost algorithms and Extra-Tree algorithms, we developed an ensemble classification
model to detect abnormal contract accounts more accurately. Third, the problem of severe
data imbalance may affect the performance of machine learning classification algorithms
on large datasets. As indicated by research [18], 96% of Ethereum smart contract accounts
are duplicates. As stated by a report on etherscan.io, the total number of normal accounts
and transactions on Ethereum is over 500 million and 3.8 billion, respectively. In contrast,
the total number of phishing accounts deployed on etherscan.io is only 2041 and searching
for abnormal smart contracts is like searching for a needle in a haystack [19]. This issue
will lead to overfitting and weak generalization of the detection model.

Therefore, this paper presents a data-driven robust solution to detect fraud-based ab-
normal contract accounts over the Ethereum blockchain, which extracts three-fold features
from contract opcodes, transaction history, and contract source code. In particular, we
propose a hybrid feature set including n-gram opcodes features of contract account without
expert participation, different transaction features from contract account transaction data,
and TF-IDF character level features from contract account source code. These features are
integrated and fed to train the proposed method through an ensemble of Extra-Trees and
Gradient Boosting Machine classifiers based on weighted soft voting to enhance the fraud
detection efficiency for abnormal contract accounts. Extensive experiments show that the
proposed detection method has competitively performed on real Ethereum blockchain
datasets in various evaluation metrics. Accordingly, this paper presents the following main
contributions.

• This paper proposes a robust fraud detection method with a supervised learning-
based data-driven solution, which can automatically and accurately identify abnormal
contracts using a hybrid feature set of a contract account.

• In terms of feature extraction, we combine various transaction features with opcode
n-grams and source code characters features extracted by the TF-IDF model to get
more comprehensive features and then compare various machine learning techniques
using these features set to measure efficiency.

• We released a public dataset of addresses, codes, and their transaction history for
Ethereum contract accounts, which can hopefully be used to further research and
applications on this topic.

Electronics 2022, 11, 2937 4 of 24

• We designed an ensemble classification model combining Extra-Trees and Gradient
Boost algorithms to enhance the detection accuracy of abnormal contract accounts.

The rest of this paper is structured as follows. Section 2 presents a brief review of
related work on the detection of abnormal contracts. A detailed explanation of the data
collecting and prepossessing, extracted features, and classification model is provided in
Section 3. Empirical results and analysis are summarized in Section 4. Finally, we conclude
the paper in Section 5.

2. Literature Review

This section reviews some of the current relevant work related to the detection of
abnormal contract accounts. Recently, many scams have appeared frequently on finial
online models [20,21] and have caused huge losses to investors. Thus, the detection of
abnormal contract accounts aroused the interest of researchers.

Bian et al. proposed a machine-learning-based Initial Coin Offerings (ICOs) rating
system called ICORATING. They analyzed 2251 smart contract accounts for ICO and rela-
tive information such as white papers, founding team, GitHub repository, website, etc., to
correlate the life span and the price change of a digital currency with various levels [22].
Our method employs the Ethereum network information and considers all abnormal con-
tracts, thus not only deceptive ICOs. Vasek and Moore anatomized 1780 bitcoin-based
Ponzi schemes from http://bitcointalks.org (accessed on 1 July 2022) and denoted that
the social interaction between scammers and victims influences the lifespan of frauds [13].
Bartoletti et al. [10] provided a comprehensive review of Ponzi contracts on Ethereum.
They analyzed the behavior of the Ponzi schemes for smart contract accounts using sim-
ilarities between the contract account bytecodes to classify 184 of them. However, these
methods cannot handle the large number of new contracts being constructed every day.
Nerurkar et al. [23] proposed a supervised learning model to detect illegal activities in
bitcoin. Nine features were designed to train the proposed model, and 1216 bitcoin users
are categorized into 16 classes.

To detect abnormal activity on the Ethereum blockchain, Farrugia et al. classified
accounts based on their transaction data using the XGBoost algorithm. A total of 42 account
features were obtained using the collected transactions. The time differences between the
first and last transaction, the total Ether balance, and the minimum Ether value received by
an account was identified as the most significant three features [24]. Depending on the two
dominant account types—externally owned accounts (EOA) and smart contract accounts—
Kumar et al. [25] identified malignant nodes using supervised machine learning-based
fraud detection in the account’s transactions data. Wuet et al. [18] developed a network
embedding algorithm named trans2vec to obtain the features of Ethereum accounts and
built a one-class SVM to classify the malicious nodes. Chen et al. [26] proposed a deep
learning-based solution called MTCformer for detecting Ponzi schemes. The MTCformer
first employs Structure-Based Traversal (SBT) method to create the token sequence to hold
the structural information and then uses a TextCNN and a multichannel transformer to au-
tomatically obtain the structural and semantic features from the source-code and to find out
the long-term dependencies between the tokens. Wang et al. [27] presented a Ponzi schemes
detection approach based on oversampling-based Long Short-Term Memory (LSTM). The
proposed approach integrates the features of transaction data with opcodes features of
smart contract accounts to detect Ponzi schemes on Ethereum blockchain. In the work
of Chen et al. [28], a semantic-aware detection model has been proposed to detect Ponzi
contracts in the Ethereum. They provided a guiding symbolic implementation approach
to first creating semantic information for each potential pathway in smart contracts and
then defining investor-related conversion behaviors and approved distribution strategies
through strict adherence to the definition of Ponzi schemes. Liang et al. [29] proposed a
data driven security system for detecting a Ponzi scheme. The system employs a dynamic
graph embedding technique to automatically recognize the representation of an account
based on the account’s opcode and transaction data.

http://bitcointalks.org

Electronics 2022, 11, 2937 5 of 24

In a bid to moderate illicit activity through the Ethereum blockchain via detecting
Ponzi schemes deployed as contract accounts. Fan et al. [30] classified contracts based
on their operation codes (opcodes). They proposed an anti-leakage smart Ponzi schemes
detection (Al-SPSD) method based on the idea of ordered boosting. The method of [16]
applied data-mining techniques to identify bitcoin addresses relative to Ponzi scheme
contracts. Their method was able to classify 31 out of 32 Ponzi schemes with a 1% false
positive. Rahouti et al. [31] reviewed data-mining-based techniques for detecting anomalies
in bitcoin, including [16]. However, it inspired the approach of [15], which describes a
similar method using transaction features but also added opcode features based on contract
bytecode stored on the blockchain. They created three classification models, account,
opcode, and account + opcode, using a random forest classifier, and the best outcomes come
from opcode model, with an f1-score at 73% and recall at 82%. Jung et al. [32] extracted
more transaction features based on the [15] method, but the data set simplification is
probably causing the method to overfitting. We have taken four different steps in building
our detection method. First, we extended the abnormal contracts dataset that has been
verified by etherescan.io [10]. Second, we extracted new opcodes and transaction features
that are more effective in detecting abnormal contracts; furthermore, the method and
strategy of the observational with respect to the interpretation of these features [15] are
implemented differently in our method. Third, we added source code features, which
we call TF-IDF source code features. Fourth, we used a different classification model and
achieved better performance. Table 1 shows a detailed comparison of the abnormal contract
detection methods.

Table 1. Summary of the literature review.

Author Description Dataset Classifiers

Bian et al. [22]

- Propose deep-learning system to help
investors detect scam initial Coin Offerings
(ICO) projects.

- It considers just fraudulent ICOs, not all
Ponzi schemes.

A private dataset of 2251 past ICO
projects, which includes white papers,
website information, and GitHub
repositories from various providers.

Hierarchical LSTM, LDA

Bartoletti et al. [10]

- Provide a comprehensive review of
abnormal contracts on Ethereum, analyze
their behavior and impact from different
views

A public dataset of 184 Ponzi schemes
deployed on Ethereum (goo.gl/CvdxBp)

Manual analysis of the
smart contract source
code

Nerurkar et al. [23]

- Ensemble model of decision trees to detect
illegal activities in the Bitcoin network.

- General understanding of machine learning
algorithms to detect malicious users in the
bitcoin network

A public dataset of 1216 Bitcoin
addresses categorized into 16 categories

Ensemble tree, SVM,
Logistic Regression,
Random Forest, XGBoost

Farrugia et al. [24]

- A machine learning approach to detect illicit
accounts on Ethereum based on their
transaction history

- A total of 42 account features were extracted
using the collected transactions.

A public data of 2179 illicit accounts
coupled with 2502 normal accounts. XGBoost classifier

Wuet et al. [19]

- Proposed a method to detect malicious
frauds on the Ethereum network by mining
its transaction data.

- Extract features automatically using
network embedding algorithm regarding
timestamp and amount.

A private dataset consisting of
500 million accounts, 3.8 billion
transactions, and 1259 addresses were
labelled as phishing addresses.

Network embedding
algorithm called
trans2vec, one-class SVM

Fan et al. [30]

- Introduced method for detecting smart
Ponzi contracts in Ethereum
blockchain-based opcode features.

- Predict the shift caused by the targeted
leakage of smart contract category features
using the idea of the ordered boosting
algorithm.

A private dataset includes 386 smart
Ponzi contracts and 3239 non-Ponzi
contracts.

Ordered boosting
algorithm

Electronics 2022, 11, 2937 6 of 24

Table 1. Cont.

Author Description Dataset Classifiers

Bartoletti et al. [16]

- Applied data-mining algorithms to identify
bitcoin addresses relative to abnormal
contract accounts.

- An open-source tool that extracts the dataset
from the bitcoin blockchain

A public data set of addresses and
features of bitcoin abnormal contracts
(32 instances) with 6400 randomly
chosen non-Ponzi instances.

RIPPER, Bayes Network,
Random Forest.

Chen et al. [15]

- Proposed a machine learning model to
identify smart Ponzi contracts on Ethereum
based on opcodes and transaction data.

- Raise the number of Ponzi scheme contracts
and the account features from their previous
work (Chen et al. [12])

A public dataset of 200 Ponzi contracts
and 3580 non-Ponzi contracts

Decision trees, SVM,
XGBoost

Jung et al. [32]

- Use data-mining techniques to present a
identification model for Ponzi contracts on
Ethereum, improving Chen et al. [13] work.

- Added more account features

3203 non-Ponzi schemes and 172 Ponzi
schemes based on [10] work

J48, Random Forest,
Stochastic Gradient
Descent

Chen et al. [26]
- Employ Multi-Channel TextCNN and

Transformer to detect Ponzi Scheme
Contracts.

They conducted experiments on [15]
dataset, which contains 200 Ponzi
contracts and 3588 non-Ponzi contracts.

Combines multi-channel
TextCNN and
Transformer

Liang et al. [29]

- A data-driven system that can automatically
recognize a representation of the account
based on the input data.

- The system generates a feature vector based
on the structural information of the
transaction network, the account control
logic, and the dynamic changes of the
transaction network.

1251 normal contract accounts and
131 abnormal contract accounts based
on [14] work.

MultiLayer Perceptron
(MLP)

Chen et al. [28]
- Proposed a Ponzi detection approach based

on semantic information extracted from
contracts opcodes

A public dataset which consists of
133 Ponzi contracts and 1395 non-Ponzi
schemes based on [14,15] work

A prototype system that
compares semantics
extracted from opcodes
with summarized Ponzi
scheme patterns

Our proposed
method

- It uses machine learning techniques to
provide abnormal contract detection model
for the security of the Ethereum network.

- It extracts three-fold features from opcodes,
transaction history, and contract account
source-code.

A public dataset of 1596 normal
contracts and 308 abnormal contracts

Ensemble of GMB and
Extra-Trees algorithms

The features extracted in some existing works are based on manual analysis and need
extra labor because these features require resetting according to the dataset, which may
affect the generalization of abnormal contract detection methods. We proposed three new
feature sets to improve the accuracy of detecting abnormal contract accounts. We got the
impetus from the above works and proposed our method in which the current work extracts
n-gram features from opcodes without expert intervention, various transaction features
from transaction data, and TF-IDF characters level features from contract account source
code. Moreover, our method integrates and trains these features through a combination of
bagging and boosting tree algorithms to detect new abnormal contract accounts. The further
details of these feature sets and the proposed detection methods are comprehensively
presented in Section 3.

3. Proposed Methodology

In this section, the proposed work for detecting abnormal contracts in the Ethereum
network is presented, including workflow, data acquisition and preprocessing of extracted
features, and classification model. Figure 1 illustrates the general workflow of our method
in four phases.

Electronics 2022, 11, 2937 7 of 24

Electronics 2022, 11, x FOR PEER REVIEW 7 of 25

network. - It extracts three-fold features from op-
codes, transaction history, and contract
account source-code.

The features extracted in some existing works are based on manual analysis and
need extra labor because these features require resetting according to the dataset, which
may affect the generalization of abnormal contract detection methods. We proposed
three new feature sets to improve the accuracy of detecting abnormal contract accounts.
We got the impetus from the above works and proposed our method in which the current
work extracts n-gram features from opcodes without expert intervention, various trans-
action features from transaction data, and TF-IDF characters level features from contract
account source code. Moreover, our method integrates and trains these features through
a combination of bagging and boosting tree algorithms to detect new abnormal contract
accounts. The further details of these feature sets and the proposed detection methods are
comprehensively presented in Section 3.

3. Proposed Methodology
In this section, the proposed work for detecting abnormal contracts in the Ethereum

network is presented, including workflow, data acquisition and preprocessing of ex-
tracted features, and classification model. Figure 1 illustrates the general workflow of our
method in four phases.

Figure 1. The schematic workflow of our proposed methodology for the abnormal contract detec-
tion.

The proposed method consists of four primary modules to create an efficient
method for detecting abnormal contracts on Ethereum, which are explained below.
1. Data Preparation: The bytecodes, transactions, and source code of all the contract

accounts in our data are obtained from etherescan.io. Then, the duplicate smart

Figure 1. The schematic workflow of our proposed methodology for the abnormal contract detection.

The proposed method consists of four primary modules to create an efficient method
for detecting abnormal contracts on Ethereum, which are explained below.

1. Data Preparation: The bytecodes, transactions, and source code of all the contract
accounts in our data are obtained from etherescan.io. Then, the duplicate smart
contracts bytecodes are removed and decoded into opcodes, and their transactions
are preprocessed and saved into one table.

2. Feature Transformation: Three types of features such as n-grams, behavior, and TF-
IDF characters are extracted from the opcodes, transaction data, and source code of
smart contract accounts.

3. Ensemble Learning Model: The ensemble classifier combines extra-trees classifier
(ETC) and gradient boosting machine (GBM) to train the extracted features. To syn-
thesize more abnormal account contracts, the adaptive synthetic sampling (ADASYN)
approach is used to sample density in the abnormal contracts to match the number of
normal contracts.

4. Abnormal Contracts Detection: The process to differentiate whether the unknown
contract accounts are abnormal or not.

3.1. Data Preparation

A training dataset is required for both normal and abnormal contract accounts in
Ethereum. Obtaining data is often the most difficult for fraud detection projects, which
require manual analysis and careful research to classify abnormal from normal contracts.
To this end, we used a web crawler to obtain unique bytecodes for 1904 contracts verified by
etherscan.io, engaged in at least ten transactions, which were labeled as abnormal contracts
(308) and normal contracts (1596). The abnormal addresses are obtained from [33], while
the normal ones are obtained from [34].

We converted these bytecodes into opcodes using a disassembler called the pyevmasm
library (https://github.com/crytic/pyevmasm, accessed on 1 July 2022), and removed the
operands after some opcodes, for example, PUSH5 and its operands (such as 0x174876e800).
We have also crawled the source codes of addresses collected using Etherscan API [35].

https://github.com/crytic/pyevmasm

Electronics 2022, 11, 2937 8 of 24

Moreover, we obtained all the corresponding transactions that reacted with these contract
accounts using the Etherscan API [36]. The transactions include an ‘isError’ field, which
indicates whether the transaction is successful or not. We use all the successful and un-
successful transactions in our method. We used the DBMS (i.e., pgAdmin) with Python
to import and setup the dataset. Our data consists of three files: the first file contains
the bytecode of normal and abnormal smart contract accounts, while the second file con-
tains the transaction records for these contracts. This file is extremely large, including
3,575,183 transaction records, making it necessary to include a varying number of transac-
tions for each contract. Finally, the source code for these contract accounts is included in a
last file as well. The data set was randomly divided into 80:20 ratios for training and testing,
respectively. Our dataset of contract accounts and all the transaction data are available at
this link: https://github.com/abdul-rasool/Abnormal-Contracts-Detection (accessed on 1
July 2022).

Figure 2 shows bytecode length distributions in our dataset for both abnormal and
normal contract accounts. As shown in the figure, most normal contracts have a length of
between 5000 and 8000 bytes, while most abnormal contracts contain lower than 5000 bytes.
The highest length of the normal contract accounts is 45,000, and the highest length of
abnormal contract accounts is 35,000.

2

(a) (b)

Figure 2. Distribution of contracts’ bytecodes size in our dataset in (a) abnormal contracts and
(b) normal contracts.

Data Resampling Procedure

The defiance of working with imbalanced-class datasets is that most machine learning
techniques will ignore and therefore perform incompletely in the rare class, although their
performance in the rare class is the most important. One method to deal with imbalanced-
class datasets is to oversample the rare class. The simplest method involves iterating
tuples into the classes of interest class until there are an equal number of positive and
negative tuples. Alternatively, new tuples can be made from existing tuples. In our
training data, the ratio of abnormal contract accounts to normal contracts is 1:5. We employ
Adaptive Synthetic Sampling (ADASYN) algorithm to generate more abnormal contract
accounts to match the number of normal contract accounts to improve efficiency. The
ADASYN algorithm uses the density distribution as a criterion to indicate the number
of synthetic tuples that must be automatically created for each rare data tuple [37]. The
purpose of adaptive synthetic sampling is to generate fewer synthetic examples in regions
of the feature space where minority examples are low, and more or none in regions where
minority examples are dense. In ADASYN, data samples of minority classes are adaptively
generated according to their distributions, with a greater amount of synthetic data being

https://github.com/abdul-rasool/Abnormal-Contracts-Detection

Electronics 2022, 11, 2937 9 of 24

produced for minority class samples that are difficult to learn than those minority samples
that are easier to learn. In this way, biased training will be prevented against a particular
group in the data set. Figure 3 shows the distribution of normal and abnormal contracts
before and after balancing our data. As part of the training stage, we used only ADASYN
to analyze the training data, but the test data was not equally distributed or visible. The t-
Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality reducing
approach in which interrelated high dimensional data is mapped into low-dimensional data
while preserving the significant structure of original high dimensional data [38]. Figure 4
illustrates the t-SNE transformation implemented to the original feature space concerning
the smart contract class label (normal or abnormal).

Electronics 2022, 11, x FOR PEER REVIEW 10 of 25

(a) (b)

Figure 3. Distribution of normal (0) and abnormal (1) contracts before and after balancing our da-
taset. (a) Original training class labels. (b) Oversampled training class labels.

(a) (b)

Figure 4. Two-dimensional scatter plot following t-SNE transformation concerning contract label.
Red and blue data points clarify the abnormal and normal contracts, respectively, in (a) original
and (b) oversampled training data.

3.2. Feature Extraction and Transformation
In Python, a custom code has been implemented that takes the account contract as

an input and obtains information based on opcodes, transaction history, and source code
for that account. To determine if a particular contract account is an abnormal contract or
not, these extracted features are fed into a machine learning model. The extracted con-
tract account-based features are categorized into three sets:
• Opcode n-grams;
• Transaction data;
• Source code characters.

3.2.1. Opcode N-Gram Features
The Ethereum contract account is composed of a chain of hexadecimal representa-

tions of contracts on the Ethereum blockchain. By converting the bytecodes to opcodes,
which are similar to natural language, the opcodes become readable to humans. As
shown in Table 2, the opcodes comprise instructions mnemonics (i.e., ADD, SSTORE
JUMP, LT, MOD, etc.) as well as their operands.

Figure 3. Distribution of normal (0) and abnormal (1) contracts before and after balancing our dataset.
(a) Original training class labels. (b) Oversampled training class labels.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 25

(a) (b)

Figure 3. Distribution of normal (0) and abnormal (1) contracts before and after balancing our da-
taset. (a) Original training class labels. (b) Oversampled training class labels.

(a) (b)

Figure 4. Two-dimensional scatter plot following t-SNE transformation concerning contract label.
Red and blue data points clarify the abnormal and normal contracts, respectively, in (a) original
and (b) oversampled training data.

3.2. Feature Extraction and Transformation
In Python, a custom code has been implemented that takes the account contract as

an input and obtains information based on opcodes, transaction history, and source code
for that account. To determine if a particular contract account is an abnormal contract or
not, these extracted features are fed into a machine learning model. The extracted con-
tract account-based features are categorized into three sets:
• Opcode n-grams;
• Transaction data;
• Source code characters.

3.2.1. Opcode N-Gram Features
The Ethereum contract account is composed of a chain of hexadecimal representa-

tions of contracts on the Ethereum blockchain. By converting the bytecodes to opcodes,
which are similar to natural language, the opcodes become readable to humans. As
shown in Table 2, the opcodes comprise instructions mnemonics (i.e., ADD, SSTORE
JUMP, LT, MOD, etc.) as well as their operands.

Figure 4. Two-dimensional scatter plot following t-SNE transformation concerning contract label.
Red and blue data points clarify the abnormal and normal contracts, respectively, in (a) original and
(b) oversampled training data.

3.2. Feature Extraction and Transformation

In Python, a custom code has been implemented that takes the account contract as
an input and obtains information based on opcodes, transaction history, and source code
for that account. To determine if a particular contract account is an abnormal contract or
not, these extracted features are fed into a machine learning model. The extracted contract
account-based features are categorized into three sets:

• Opcode n-grams;
• Transaction data;
• Source code characters.

Electronics 2022, 11, 2937 10 of 24

3.2.1. Opcode N-Gram Features

The Ethereum contract account is composed of a chain of hexadecimal representations
of contracts on the Ethereum blockchain. By converting the bytecodes to opcodes, which
are similar to natural language, the opcodes become readable to humans. As shown in
Table 2, the opcodes comprise instructions mnemonics (i.e., ADD, SSTORE JUMP, LT, MOD,
etc.) as well as their operands.

Table 2. Contract address, bytecode, opcode, and label.

Address Bytecode Opcode Label

0xff7c3b7f4e426009 . . . 60806040526040516 . . . DUP1 PUSH1 0x40 MSTORE PUSH1 . . . 1
0x8d790f3989b6d24 . . . 60606040523415620 . . . PUSH1 0x60 BLOCKHASH MSTORE . . . 0
0xe029d93dbf50331 . . . 61005857508251601 . . . STOP PC JUMPI POP DUP3 MLOAD . . . 0
0x7384c268c27c216 . . . 010155b1561006257 . . . ADD SSTORE JUMP LT MOD . . . 1
0x8f4e3d448a318c1 . . . 0160a060020a0316ff . . . PUSH1 0xa0 PUSH1 0x02 EXP SUB . . . 1

The use of operation codes has been successfully applied to various fundamental
issues of contract accounts in previous studies [18,39]. Therefore, we extract the n-gram
features from the opcode sequences of the contract accounts to detect abnormal schemes.
The n-grams are used frequently in the field of natural language processing (NLP). However,
it is also very common in malware detection tasks. In this section, opcodes for contract
accounts are analyzed using n-grams without relying on any other interventions from
experts to characterize them. N-grams are set between 2 and 3 bytes in length, making
them language independent. However, they can be large for large documents, resulting in
great computational complexity [40]. Figure 5 shows a comparison of some normal and
abnormal opcodes based on average frequency values for each opcode in our data. The
occurrence of each contract’s opcode is calculated and saved in the database. Opcodes that
frequently occur, such as PUSH, DUP, and SWAP, and those with a frequency less than zero,
are filtered out. Fifty-nine different opcodes were extracted from 1904 contract accounts.
The Ethereum yellow paper appendix [41] includes a complete list of EVM opcodes.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 25

Table 2. Contract address, bytecode, opcode, and label.

Address Bytecode Opcode Label
0xff7c3b7f4e426009… 60806040526040516… DUP1 PUSH1 0x40 MSTORE PUSH1… 1
0x8d790f3989b6d24… 60606040523415620… PUSH1 0x60 BLOCKHASH MSTORE… 0
0xe029d93dbf50331… 61005857508251601… STOP PC JUMPI POP DUP3 MLOAD… 0
0x7384c268c27c216… 010155b1561006257… ADD SSTORE JUMP LT MOD… 1
0x8f4e3d448a318c1… 0160a060020a0316ff… PUSH1 0xa0 PUSH1 0x02 EXP SUB… 1

The use of operation codes has been successfully applied to various fundamental
issues of contract accounts in previous studies [18,39]. Therefore, we extract the n-gram
features from the opcode sequences of the contract accounts to detect abnormal schemes.
The n-grams are used frequently in the field of natural language processing (NLP).
However, it is also very common in malware detection tasks. In this section, opcodes for
contract accounts are analyzed using n-grams without relying on any other interventions
from experts to characterize them. N-grams are set between 2 and 3 bytes in length,
making them language independent. However, they can be large for large documents,
resulting in great computational complexity [40]. Figure 5 shows a comparison of some
normal and abnormal opcodes based on average frequency values for each opcode in our
data. The occurrence of each contract’s opcode is calculated and saved in the database.
Opcodes that frequently occur, such as PUSH, DUP, and SWAP, and those with a fre-
quency less than zero, are filtered out. Fifty-nine different opcodes were extracted from
1904 contract accounts. The Ethereum yellow paper appendix [41] includes a complete
list of EVM opcodes.

Figure 5. Distribution of some opcodes for both abnormal and normal contracts in our dataset.

3.2.2. Transaction Features
Investors who join abnormal contracts receive a huge payout when they invest early,

but later investors receive only a small payout. Many investors never get their money
back from abnormal contracts due to the fact that the sooner one invests, the bigger the
reward. Behavior-based features use contract’s intelligent interactions with its users, i.e.,
transactions. These features catch logical and relevant insights that reflect the behavior of
contract accounts. Smart abnormal contracts are characterized by their intrinsic charac-
teristics, which can be used to determine if they are smart abnormal schemes. Using the

Figure 5. Distribution of some opcodes for both abnormal and normal contracts in our dataset.

3.2.2. Transaction Features

Investors who join abnormal contracts receive a huge payout when they invest early,
but later investors receive only a small payout. Many investors never get their money

Electronics 2022, 11, 2937 11 of 24

back from abnormal contracts due to the fact that the sooner one invests, the bigger the
reward. Behavior-based features use contract’s intelligent interactions with its users, i.e.,
transactions. These features catch logical and relevant insights that reflect the behavior
of contract accounts. Smart abnormal contracts are characterized by their intrinsic char-
acteristics, which can be used to determine if they are smart abnormal schemes. Using
the Ethereum blockchain data, we are able to obtain all transactions made by normal and
abnormal contracts that reflect the main behavior of a contract. All transactions are stored
in a JSON file format. We use the JSON library in Python to load the file, analyze it, and
extract portions of information from stored transactions. For these transactions, we get
the respective fields defined in Table 3 to perform feature extraction. The respective fields
include information such as which account paid the amount of Ether to the respective
contract account and when. This information is then used to observe the behavior of the
contract account and convert them into features for classification. In our feature extraction
stage, we created 57 explanatory variables concerning transaction data to analyze smart
contract accounts. Explanatory variables are described in Table 4. A small subset of the
features extracted was comparable to those gained in similar works [15,32,42]. Although
all extracted transaction features are not necessary for classifier training, some of them
do not participate in improving the efficiency of the classification model. Thus, we use
the XGBboost feature importance algorithm as a feature-reducing method to decrease the
dimensions of the feature vector component. We choose the top 32, with the highest score
in information gain, as shown in Figure 6.

Table 3. Transaction fields of interest.

Field of Interest Description Data Type

Timestamp The date and time at which a transaction is mined UNIX time
From The sending address of the transaction 20-byte value
Interacted with The receiving address of the transaction 20-byte value
Value The amount of Ether to be transferred to the recipient with the transaction Long Integer

Transaction Fee The amount of Ether paid to the miner for processing the transaction, which is computed
by multiplying the amount of gas used by the gas price Long Integer

Gas Price The amount of Ether (in a small unit called gwei) that must be paid to miners for
processing transactions Long Integer

Gas Limit The maximum amount of gas provided for a transaction to happen Long Integer
Gas Used The exact units of gas that was used for the transaction Long Integer
iserror A value that determines whether a transaction is successful or not Boolean

Table 4. List of transaction features.

S.N Extracted Feature Rank Description

1 Min_Eth_Sent 4 The minimum Ether value sent
2 Avg_Eth_Sent 23 The average Ether value sent
3 Max_Eth_Received 30 The maximum Ether value received
4 Avg_Eth_Received 11 The average Ether value received
5 Txn_Fee_Received 8 The total of transaction fees spent in received transactions
6 Total_Txn_Fee 26 The total of transaction fee spent on all received and sent transactions
7 GasUsed_Received 27 The total of gas used value in received transactions
8 Failed_Txn_Received 10 The total number of failed received transactions
9 Failed_Txn_Sent 3 The total number of failed sent transactions
10 Total_Failed_Txn 31 Total number of failed transactions
11 Success_Txn_Received 25 The total number of successfully received transactions
12 Total_Success_Txn 17 The total number of successful transactions
13 Std_Eth_Received 20 The standard deviation of ether value received
14 Std_GasPrice_Received 19 The standard deviation of gas price value used in received transactions
15 Avg_Gas_Used_Received 29 The average gas value used in received transactions
16 GasPrice_Received 16 The total number of gas price values used in received transactions

Electronics 2022, 11, 2937 12 of 24

Table 4. Cont.

S.N Extracted Feature Rank Description

17 GasPrice_Sent 6 The total number of gas price values used in sent transactions
18 Gas_Sent 5 Total of gas value used in sent transactions
19 Gas_Received 32 Total of gas value used in received transactions
20 Avg_GasPrice_Received 18 The average gas price value used in received transactions
21 Avg_GasPrice_Sent 2 The average gas price value used in sent transactions
22 Txn_Received 21 The total number of received transactions
23 Total_Txn 1 The total number of transactions sent and received
24 Total_Eth_Received 9 The total ether value received
25 Unique_Txn_Received 13 The total number of transactions received from unique addresses

26 Unique_Address_Received 24 The total distinctive addresses from which contract received
transactions

27 Time_Diff_Between_First_and_Last 22 The time difference between the first and last transaction in minutes
28 Txn_Fee_Contract_Create 15 The transaction fee paid in contract generation
29 GasUsed_Contract_Create 7 Gas spent during contract creation
30 GasPrice_Contract_Create 12 Gas price used in contract creation

31 Gini_Eth_Sent 14 Gini coefficient calculated over the Ether value amount of sent
transactions

32 Gini_Eth_Received 28 Gini coefficient calculated over the Ether value amount of received
transactions

Electronics 2022, 11, x FOR PEER REVIEW 13 of 25

17 GasPrice_Sent 6 The total number of gas price values used in sent transactions
18 Gas_Sent 5 Total of gas value used in sent transactions
19 Gas_Received 32 Total of gas value used in received transactions
20 Avg_GasPrice_Received 18 The average gas price value used in received transactions
21 Avg_GasPrice_Sent 2 The average gas price value used in sent transactions
22 Txn_Received 21 The total number of received transactions
23 Total_Txn 1 The total number of transactions sent and received
24 Total_Eth_Received 9 The total ether value received
25 Unique_Txn_Received 13 The total number of transactions received from unique addresses

26 Unique_Address_Received 24 The total distinctive addresses from which contract received
transactions

27
Time_Diff_Between_First_and_Las
t 22 The time difference between the first and last transaction in minutes

28 Txn_Fee_Contract_Create 15 The transaction fee paid in contract generation
29 GasUsed_Contract_Create 7 Gas spent during contract creation
30 GasPrice_Contract_Create 12 Gas price used in contract creation

31 Gini_Eth_Sent 14 Gini coefficient calculated over the Ether value amount of sent
transactions

32 Gini_Eth_Received 28
Gini coefficient calculated over the Ether value amount of received
transactions

Figure 6. The ranking of the transaction features as determined by the XGBoost classifier.

Based on our dataset, Table 5 shows the frequency of the top 10 transaction-based
features among abnormal and normal contract accounts. It is evident from the table that
abnormal and normal contracts have very different statistics. As a first point of observa-
tion, normal contracts have larger standard deviations than abnormal contracts for most
features. It implies that smart abnormal contracts may behave similarly, leading to lower
standard deviations. It is apparent that abnormal contracts are a special type of smart
contract account based on the significant differences in statistics of some features. In
normal contracts, for example, the total number of transactions sent and received, the

Figure 6. The ranking of the transaction features as determined by the XGBoost classifier.

Based on our dataset, Table 5 shows the frequency of the top 10 transaction-based
features among abnormal and normal contract accounts. It is evident from the table that
abnormal and normal contracts have very different statistics. As a first point of observation,
normal contracts have larger standard deviations than abnormal contracts for most features.
It implies that smart abnormal contracts may behave similarly, leading to lower standard
deviations. It is apparent that abnormal contracts are a special type of smart contract
account based on the significant differences in statistics of some features. In normal
contracts, for example, the total number of transactions sent and received, the total number
of failed received transactions, and the total number of failed sent transactions are greater

Electronics 2022, 11, 2937 13 of 24

than those in abnormal contracts. Normal contract accounts use a greater number of gas
price values and gas values in their sent transactions than abnormal contract accounts.
Using the MinMaxscaler technique, we scaled each input feature in the 0–1 range separately
before modeling in order to achieve maximum precision.

Table 5. Statistics of top 10 transaction-based feature frequency.

Feature
Abnormal Normal

Avg Stdev Avg Stdev

Total_Txn 351.35 1126.15 2628.41 4714.27
Avg_GasPrice_Sent 998,606,557.39 4,718,588,870.74 6,857,603,992.97 35,865,147,124.55
Failed_Txn_Sent 3.13 54.07 44.75 382.46
Min_Eth_Sent 0.004 0.057 6.91 0.00025
Gas_Sent 2,574,176.26 40,909,530.65 89,496,313.95 388,481,804.54
GasPrice_Sent 381,970,128,912.006 6,252,354,182,317.71 15,696,757,925,289.8 109,755,731,881,321
GasUsed_Contract_Create 0.84 0.22 0.75 0.29
Txn_Fee_Received 2.87 1.04 2.54 1.83
Total_Eth_Received 3025.48 36,738.49 44,868.01 541,176.68
Failed_Txn_Received 21.72 97.88 179.71 667.36

3.2.3. Source Code Features

TF-IDF stands for Term Frequency-Inverse Document Frequency. A term’s significance
is directly proportional to how many times it appears in a set of documents. The weight
of the TF IDF is a statistical measure that represents the significance of a term in a set of
documents. The weight of a TF-IDF is calculated by multiplying two different scales:

1. Term frequency (TF): There are several ways to calculate this frequency, the simplest
being the number of instances where a term appears in a document. Then, there are
ways to adapt the frequency, depending on the length of the document or the raw
frequency of the most common term in the document.

2. Inverse document frequency (IDF): This means the importance of a term in the entire
corpus. The closer it is to 0, the more common a term is. This metric can be computed
by taking the total number of documents, dividing it by the number of documents
containing a term, and computing the logarithm.

The TF-IDF score for the term t in document d from the collection of documents D is
calculated as follows [40]:

TF− IDF(t, d, D) = TF(t, d) ∗ IDF(t, D) (1)

where
TF(t, d) = log(1 + f req(t, d)) (2)

IDF(t, D) = log
(

N
count(d ∈ D : t ∈ d)

)
(3)

and N is documents count in D.
There are different levels of input tokens that can be generated using the TF-IDF

technique (words, letters, and n-grams). One limitation is that the TF-IDF technique may
fail if the extracted keywords are irrelevant, misspelled, or skipped. The source code for
the contract account is written in high-level language programming (i.e., solidity [5]). Since
solidity source code in our method is extracted from the selected contract account using
JSON parser, the TF-IDF character level technique is employed with max features as 10,000.
To get appropriate text information of the contract account source code, the extra parts are
removed by regular expressions, including punctuation symbols, numbers, spaces, newline,
etc., as shown in Figure 7. Finally, the TF-IDF object is used in order to transform the text of
the smart contract source code.

Electronics 2022, 11, 2937 14 of 24

Electronics 2022, 11, x FOR PEER REVIEW 15 of 25

bers, spaces, newline, etc., as shown in Figure 7. Finally, the TF-IDF object is used in or-
der to transform the text of the smart contract source code.

Figure 7. The process of generating source code features.

3.3. Ensemble Learning Model
In order to construct a labeled dataset, we apply feature vectorization to extract the

features for each smart contract. We combine opcode n-grams with source code charac-
ters and transaction features to generate a feature vector needed for training the pro-
posed method through an ensemble classifier of Extra-Trees and grading boosting ma-
chine algorithms. Our goal in combining bagging with boosted models is to create a
strong classifier that balances the weaknesses of individual classifiers in a given data set.
There are different approaches to create an ensemble of classifiers [43]. A soft voting en-
semble learning model is applied using the scikit-learn package (http://scikit-learn.org,
accessed on 1 July 2022), and features are extracted using Python. Extremely Randomized
Trees (Extra-Trees Classifier, ETC) is a type of bagging learning model which builds
randomized trees whose structures are independent of the output values of the learning
sample. Bagging, also known as (bootstrap aggregation), is an ensemble learning method
commonly used to reduce variance within a noisy data set. In bagging, random subsets
of data in the training set 	 is chosen with replacement. In this case, the average or
majority of votes is used for the prediction of all trees and is therefore more powerful
than a single decision tree. A base learner () is trained based on the random subsets

, and the prediction of the ETC classifier is voted as follows [44]: () = ∈ , ∑ ∅ () = (4)

where ∅ is the characteristic function to finding the best parameters that best fit the
training data and labels, is the set of unique class labels, and is the number of a
base learner.

Meanwhile, another classifier, Gradient Boosting Machine (GBM), is a machine
learning classifier for tree boosting used in classification and regression tasks. It provides
a strong predictive model in the form of a group of weak learning models, which are
usually decision trees [45]. Suppose there are contract accounts in the dataset (,)|	 = 1,2, … , , where ∈ are the extracted features associated with the i-th
contract account ∈ 0,1 are the class label, such that = 1 if and only if the contract
account is a labeled abnormal contract. The GBM introduces additive modeling, which
means that first builds a model, find its residual, and build another model () on the
residual. Thus, the generalized equation for a boosting algorithm at iteration can be
calculated by following the mathematically model [45]: () = () + () (5)

The term gradient boost comes from incorporating gradient descent into boosting. A
method based on gradient descent is used to determine the alpha or step size that
minimizes the average value of the loss function on the training set. For alpha computa-
tion, at step , first pseudo-residual () or negative gradient is calculated, and the new
model () (or base learner, e.g., tree) is generated on the training set , . The
pseudo-residual is calculated by [45]:

Figure 7. The process of generating source code features.

3.3. Ensemble Learning Model

In order to construct a labeled dataset, we apply feature vectorization to extract the fea-
tures for each smart contract. We combine opcode n-grams with source code characters and
transaction features to generate a feature vector needed for training the proposed method
through an ensemble classifier of Extra-Trees and grading boosting machine algorithms.
Our goal in combining bagging with boosted models is to create a strong classifier that
balances the weaknesses of individual classifiers in a given data set. There are different
approaches to create an ensemble of classifiers [43]. A soft voting ensemble learning model
is applied using the scikit-learn package (http://scikit-learn.org, accessed on 1 July 2022),
and features are extracted using Python. Extremely Randomized Trees (Extra-Trees Clas-
sifier, ETC) is a type of bagging learning model which builds randomized trees whose
structures are independent of the output values of the learning sample. Bagging, also
known as (bootstrap aggregation), is an ensemble learning method commonly used to
reduce variance within a noisy data set. In bagging, random subsets D of data in the
training set N is chosen with replacement. In this case, the average or majority of votes is
used for the prediction of all trees and is therefore more powerful than a single decision
tree. A base learner cj(x) is trained based on the random subsets Dsubsetj

, and the prediction
of the ETC classifier is voted as follows [44]:

etc(x) = argmini∈{0,1}∑m
j=1 ∅

(
cj(x) = i

)
(4)

where ∅ is the characteristic function to finding the best parameters that best fit the training
data xi and labels, i is the set of unique class labels, and j is the number of a base learner.

Meanwhile, another classifier, Gradient Boosting Machine (GBM), is a machine learn-
ing classifier for tree boosting used in classification and regression tasks. It provides a strong
predictive model in the form of a group of weak learning models, which are usually decision
trees [45]. Suppose there are N contract accounts in the dataset {(xi, yi)| i = 1, 2, . . . , N},
where xi ∈ Rd are the extracted features associated with the i-th contract account yi ∈ {0, 1}
are the class label, such that yi = 1 if and only if the contract account is a labeled abnor-
mal contract. The GBM introduces additive modeling, which means that first builds a
model, find its residual, and build another model Gk(x) on the residual. Thus, the gener-
alized equation for a boosting algorithm at iteration k can be calculated by following the
mathematically model [45]:

fk(x) = fk−1(x) + αGk(x) (5)

The term gradient boost comes from incorporating gradient descent into boosting.
A method based on gradient descent is used to determine the alpha α or step size that
minimizes the average value of the loss function on the training set. For alpha computation,
at step k, first pseudo-residual (rik) or negative gradient is calculated, and the new model
Gk(x) (or base learner, e.g., tree) is generated on the training set {xi, rik}. The pseudo-
residual is calculated by [45]:

rik = −
[

∂Loss(yi, fk−1(xi))

∂ fk−1(xi)

]
, i = 1, . . . , N (6)

Now, compute α so that the Loss function is minimized [45].

http://scikit-learn.org

Electronics 2022, 11, 2937 15 of 24

α = argminα ∑N
i=1 Loss(yi, fk−1(xi) + αGk(xi)) (7)

The rate calculation in the GBM classifier requires two steps: (i) calculate pseudo-
residual and (ii) calculate step size α. So, we can plug in those values of α and Gk(x) to
update the model and get fk(x). Finally, we are ready to get new predictions by adding
our base GBM model with the new tree we made on residuals rik. The contract accounts
are classified into two possible categories: abnormal and normal using a binary classifier.
When the contract account is uploaded to the Ethereum Blockchain, the trained classifier
determines the prediction of a particular account contract from the created feature vector.

Ensemble methods can be used to increase overall accuracy by learning and integrating
several base classification models. The ensemble method can be generated from different
classification algorithms, for example, Extra-Trees, GBM, etc. Alternatively, the same base
classification algorithm can also be used, imposing different subsets of the training data set.
Given a new data set to classify, each classifier votes to name that set’s class. The ensemble
method collects votes to return the final class prediction P. Figure 8 illustrates the concept
of our ensemble method using the weighted soft voting strategy.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 25

= , ()() , = 1,… , (6)

Now, compute so that the Loss function is minimized [45]. = ∑ , () + () (7)

The rate calculation in the GBM classifier requires two steps: (i) calculate pseu-
do-residual and (ii) calculate step size . So, we can plug in those values of and ()
to update the model and get (). Finally, we are ready to get new predictions by add-
ing our base GBM model with the new tree we made on residuals . The contract ac-
counts are classified into two possible categories: abnormal and normal using a binary
classifier. When the contract account is uploaded to the Ethereum Blockchain, the trained
classifier determines the prediction of a particular account contract from the created
feature vector.

Ensemble methods can be used to increase overall accuracy by learning and inte-
grating several base classification models. The ensemble method can be generated from
different classification algorithms, for example, Extra-Trees, GBM, etc. Alternatively, the
same base classification algorithm can also be used, imposing different subsets of the
training data set. Given a new data set to classify, each classifier votes to name that set’s
class. The ensemble method collects votes to return the final class prediction . Figure 8
illustrates the concept of our ensemble method using the weighted soft voting strategy.

Figure 8. Ensemble classification model based on weighted soft voting for abnormal contracts de-
tection.

The ensemble method includes a sequential four-step process: (i) split the dataset
into a training and test set; in the training process, the training data is passed after bal-
anced to the ensemble model,; the dataset was randomly divided into 80:20 ratios for
training and testing, respectively; (ii) training base classifiers (Extra-Trees, GBM) on the
training set; (iii) use the test set and its predictions to create an ensemble-classifier; and
(iv) make final predictions using this classifier. During the testing process, the ensemble
model determines whether or not the unknown contract account is abnormal. The hybrid
model, after training, outputs predictive values between zero and one for each record in
the examination data.

The ensemble vote classifier is a set of classifiers whose individual decisions are in-
tegrated in some way (usually by hard or soft voting) to identify new examples. In hard
voting, data is classified based on class labels and the weights associated with each clas-

Figure 8. Ensemble classification model based on weighted soft voting for abnormal contracts detection.

The ensemble method includes a sequential four-step process: (i) split the dataset into
a training and test set; in the training process, the training data is passed after balanced
to the ensemble model; the dataset was randomly divided into 80:20 ratios for training
and testing, respectively; (ii) training base classifiers (Extra-Trees, GBM) on the training set;
(iii) use the test set and its predictions to create an ensemble-classifier; and (iv) make final
predictions using this classifier. During the testing process, the ensemble model determines
whether or not the unknown contract account is abnormal. The hybrid model, after training,
outputs predictive values between zero and one for each record in the examination data.

The ensemble vote classifier is a set of classifiers whose individual decisions are
integrated in some way (usually by hard or soft voting) to identify new examples. In hard
voting, data is classified based on class labels and the weights associated with each classifier.
On the other hand, a soft voting classifier classifies the data based on the probabilities and
weights associated with each classifier. We employ Extra-Trees and GBM algorithms to
design an ensemble meta-classifier with a soft voting strategy. Meanwhile, weights are the
learnable parameters of some machine learning models, including ensemble models, and
are commonly referred to as w. Since we have a binary classification problem with class
labels i ∈ {0, 1} and an ensemble of two base classifiers (ETC and GBM), let us assume
that the two classifiers return the following class membership predications for a particular

Electronics 2022, 11, 2937 16 of 24

sample x: p01 and p11 for normal and abnormal contracts of ETC classifier, p02 and p12
predictions for normal and abnormal contracts of GBM classifier. We can then calculate the
individual probability of first-class label P1 using a weighted soft vote as follows:

P1 = w1 p01 + w2 p02 (8)

where p01 and p02 refer to the predicted probabilities of the ETC and GBM classifiers,
respectively, for class label 0. It has been trained on our dataset and applied to test data
when forecasting the likelihood of a particular contract, such as whether the contract is
normal or not. Similarly, we can write the weighted soft vote of the predicted second-class
label P2 as follows:

P2 = w1 p11 + w2 p12 (9)

where p11 and p12 refer to the predicted probabilities of the ETC and GBM classifiers
for class label 1. While w1 and w2 are the weights associated with the two classifiers of
Equations (8) and (9), weights are usually randomly generated as default values between 0
and 1 to speed up the training process of machine learning algorithms [43]. When P1 ≥ P2,
the contract account to be identified is normal; otherwise, it is abnormal contract.

P =

{
0, i f P1 ≥ P2
1, Otherwise

(10)

where P1 and P2 are the weighted soft vote of the predicted first- and second-class labels
according to Equations (8) and (9).

3.4. Abnormal Contracts Detection

The prediction stage includes building a robust model using the ensemble classifier,
bagging, and boosted models. The ensemble method includes using many base learners
to enhance the efficiency of any single one of them individually. This method can be
represented as techniques that use a group of weak learners together to generate a robust,
aggregated one. Here, an ensemble model is employed on a combined feature set to build a
robust classifier for abnormal contract account detection. Using a binary classifier, contract
accounts are categorized into two possible values: abnormal contracts and normal contracts.
The ensemble classifier is trained using the feature vectors collected from each contract
account in the training set. Once trained, the classifier establishes whether the contract
account is abnormal. The transaction features component generates 32-dimensional feature
vector as:

FB = 〈b1, b2, b3, . . . , b32〉 (11)

and the opcode n-grams features component generates a D-dimensional feature vector as:

FN = 〈n1, n2, n3, . . . , nD〉 (12)

whereas source code characters component generates K-dimensional feature vector as:

FT = 〈t1, t2, t3, . . . , tK〉 (13)

where D and K are the sizes of dictionaries calculated from the textual content corpus;
the source code vector contains K features, the opcodes n-gram contains D features, and
a transaction feature contains 32 features. From our experiments, we note that D and K
each contain 17,047 and 10,303 elements, respectively. The above three feature vectors are
integrated to create the final feature vector, fed as an input parameter to the ensemble
learning model to identify the probability of anomaly P of contract account S as shown in
Algorithm 1.

FV = FB + FN + FT = 〈b1, b2, b3, . . . , b32, n1, n2, n3, . . . nD, t1, t2, t3, . . . , tK〉 (14)

Electronics 2022, 11, 2937 17 of 24

Algorithm 1: Abnormal Contract Detection Algorithm

Input: The contract account addresses S, S = {s1, s2, . . . , sn}
Output: The probability of anomaly P ∈ {0, 1}, 0—normal, 1—abnormal
1. Initialize the contract addresses set N = |S|
2. H = ∅ //represents the validation feature set
3. For each contract (sn ∈ N) do
4. Initialize feature vectors FB = ∅, FN = ∅, FT = ∅, FV = ∅
5. Compute transaction features component FB using Equation (11)
6. Generate opcodes n-grams vector FN using Equation (12)
7. Create source code chars features FT using Equation (13)
8. Concatenate FB + FN + FT to form final feature vector FV using Equation (14)
9. Append the final feature vector FV to the validation feature set H = H + FV
10. End for
11. Fetch the predictions of first-class label P1 for validation feature set H using Equation (8)
12. Compute the predictions of second class P2 for validation set according to Equation (9)
13. Predict the probabilities of anomaly P of validation set based on predictions P1 and P2

using Equation (10)
14. Return: P

4. Implementation and Evaluation

A desktop machine with a Core™ i7 processor with a clock speed of 3.4 GHz and
16 GB of RAM is used to implement the proposed detection method. The proposed method
is implemented using Python, since it provides substantial support for its libraries and
is relatively simple to compile. The JSON library is used to parse the transaction data
and source code of the selected contract account. The proposed method takes suspicious
contract account as input and outputs the type of the contract account scheme as normal or
abnormal. The prior extracted three features (Opcode n-gram features, Transaction features,
and Source code characters features) are integrated into hybrid features.

We used a variety of performance statistics to measure the efficiency of our proposed
method, including true positives, true negatives, false positives, false negatives, accuracy,
precision, and F1 scores. Each is defined below.

TPR =
o f abnormal contracts classi f ied as abnormal

Total # o f abnormal contracts
(15)

TNR =
o f normal contracts classi f ied as normal

Total # o f normal contracts
(16)

FPR =
o f normal contracts classi f ied as abnormal

Total # o f normal contracts
(17)

FNR =
o f abnormal contracts classi f ied as normal

Total # o f abnormal contracts
(18)

Accuracy =
o f correctly classi f ied abnormal, normal contracts

Total # o f contract accounts
(19)

Precision =
o f abnormal contracts classi f ied as abnormal

Total # o f contract accounts classi f ied as abnormal
(20)

F1− score = 2 ∗ Precision ∗ TPR
Precision + TPR

(21)

4.1. Evaluation of Features

We have evaluated the performance of our proposed features (opcode n-grams, source
code characters, and transaction features). The results shown in Table 6 demonstrate that
the proposed individual feature sets are useful in abnormal contract detection. However,
one type of feature is not appropriate to detect all types of abnormal contract accounts and

Electronics 2022, 11, 2937 18 of 24

does not result in high accuracy. Therefore, we have combined all features (hybrid features)
to get more comprehensive features and better accuracy of the proposed method.

Table 6. Evaluation of the proposed feature set using the ensemble classifier.

Features Precision Sensitivity F1-Score Accuracy

Opcode n-grams 95.61 66.66 78.55 81.80
Transaction features 80.64 66.03 72.61 75.09

Source code characters 92.91 72.22 81.27 83.35
Hybrid features 97.44 81.48 88.74 89.67

In Figure 9, we compare the four feature sets in terms of accuracy, i.e., TNR, FPR, FNR,
and TPR. From Table 7, we construct a confusion matrix for the proposed feature sets by
using the ensemble model to detect 381 contracts in our test data. The hybrid feature set
accurately identifies 320 normal contracts and 44 abnormal contracts and includes 10 FNs
and 7 FPs, which is much better than other features. Opcodes n-grams and transaction
features have 10 and 51 FPs, but FNs reach 18 and 19, respectively. The number of FNs and
FPs for the source code features is 15 and 18, respectively, which is more impressive than
n-gram opcodes and transaction features. A receiver operating characteristic (ROC) curve
represents TPR on the Y axis and FPR on the X axis (Figure 10). The large area under the
curve (AUC) indicates that the classifier is performing perfectly when applied to the data.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 25

= #	 	 	 	 	 	 		#	 	 	 	 	 	 (20)F1 score = 2 ∗ ∗ 		 (21)

4.1. Evaluation of Features
We have evaluated the performance of our proposed features (opcode n-grams,

source code characters, and transaction features). The results shown in Table 6 demon-
strate that the proposed individual feature sets are useful in abnormal contract detection.
However, one type of feature is not appropriate to detect all types of abnormal contract
accounts and does not result in high accuracy. Therefore, we have combined all features
(hybrid features) to get more comprehensive features and better accuracy of the pro-
posed method.

Table 6. Evaluation of the proposed feature set using the ensemble classifier.

Features Precision Sensitivity F1-Score Accuracy
Opcode n-grams 95.61 66.66 78.55 81.80

Transaction features 80.64 66.03 72.61 75.09
Source code characters 92.91 72.22 81.27 83.35

Hybrid features 97.44 81.48 88.74 89.67

In Figure 9, we compare the four feature sets in terms of accuracy, i.e., TNR, FPR,
FNR, and TPR. From Table 7, we construct a confusion matrix for the proposed feature
sets by using the ensemble model to detect 381 contracts in our test data. The hybrid
feature set accurately identifies 320 normal contracts and 44 abnormal contracts and in-
cludes 10 FNs and 7 FPs, which is much better than other features. Opcodes n-grams and
transaction features have 10 and 51 FPs, but FNs reach 18 and 19, respectively. The
number of FNs and FPs for the source code features is 15 and 18, respectively, which is
more impressive than n-gram opcodes and transaction features. A receiver operating
characteristic (ROC) curve represents TPR on the Y axis and FPR on the X axis (Figure
10). The large area under the curve (AUC) indicates that the classifier is performing per-
fectly when applied to the data.

Figure 9. Performance of the proposed feature sets.

Figure 9. Performance of the proposed feature sets.

Table 7. Confusion matrix of the proposed method on our dataset.

Confusion Matrix
Predicted

P N

Opcode n-gram features Actual P 36 18
N 10 317

Transaction features
Actual P 35 19

N 51 276

Source code features
Actual P 39 15

N 18 309

Hybrid features Actual P 44 10
N 7 320

Electronics 2022, 11, 2937 19 of 24

Electronics 2022, 11, x FOR PEER REVIEW 20 of 25

Table 7. Confusion matrix of the proposed method on our dataset.

Confusion Matrix
Predicted

P N

Opcode n-gram features
Actual P 36 18

 N 10 317

Transaction features
Actual P 35 19

 N 51 276

Source code features
Actual P 39 15

 N 18 309

Hybrid features
Actual P 44 10

 N 7 320

(a) (b)

(c) (d)

Figure 10. Receiver operating characteristic of the proposed feature sets in (a) opcodes n-gram, (b)
source code, (c) transactions, and (d) hybrid features.

4.2. Evaluation of Ensemble Model
In this section, we have applied various bagging algorithms (i.e., random forest, ex-

tra trees, bagging tree, etc.) and boosting models (i.e., AdaBoost, gradient boosting ma-
chine, XGBoost, light gradient boosting, etc.) to train our proposed hybrid features. This
experiment aims to create a robust ensemble classifier by combining bagging and
boosted techniques. The experimental results are shown in Table 8. Random forest, ex-
tra-trees, and bagging-tree are bagging algorithms and outperformed the other classifiers
with adequate accuracy. On the other hand, AdaBoost, XGBoost, gradient boosting, and
light gradient boost are a type of boosting tree algorithms that convert weak learners into

Figure 10. Receiver operating characteristic of the proposed feature sets in (a) opcodes n-gram,
(b) source code, (c) transactions, and (d) hybrid features.

4.2. Evaluation of Ensemble Model

In this section, we have applied various bagging algorithms (i.e., random forest,
extra trees, bagging tree, etc.) and boosting models (i.e., AdaBoost, gradient boosting
machine, XGBoost, light gradient boosting, etc.) to train our proposed hybrid features. This
experiment aims to create a robust ensemble classifier by combining bagging and boosted
techniques. The experimental results are shown in Table 8. Random forest, extra-trees, and
bagging-tree are bagging algorithms and outperformed the other classifiers with adequate
accuracy. On the other hand, AdaBoost, XGBoost, gradient boosting, and light gradient
boost are a type of boosting tree algorithms that convert weak learners into strong learners;
thus, they have high precision, accuracy, sensitivity, and F1-score. We noticed that Extra-
Trees and gradient boosting machine performed well from bagging and boosting models,
respectively, so we chose these two algorithms to generate an ensemble classifier with a
soft voting approach. This classifier outperformed other methods in terms of accuracy,
precision, F1-score, and sensitivity, and achieved a high-performance rate. The results of
various classifiers of the hybrid features set are also shown in Figure 11.

To illustrate the learning capability of the proposed method, as shown in Figure 12, we
include both classification errors and log losses in our training and test data set with respect
to how many iterations the ensemble model executes for each epoch. Log loss, short for
logarithmic loss, refers to the price paid for incorrect predictions in classification. According
to the figure, the learning model reaches convergence after approximately 30 iterations.

Electronics 2022, 11, 2937 20 of 24

Table 8. Test results of the classification algorithms with respect to hybrid features.

Algorithm Precision Sensitivity F1-Score Accuracy

DT 93.28 72.22 81.41 83.51
RF 98.37 74.07 84.51 86.42
BT 97.58 74.07 84.21 86.11
XGB 97.87 70.37 81.87 84.42
AB 96.25 62.96 76.12 80.25
LGBM 96.80 74.07 83.92 85.82
ETC 97.32 77.77 86.45 87.81
GBM 95.38 75.92 84.55 86.12
Ensemble model 97.44 81.48 88.74 89.67

Electronics 2022, 11, x FOR PEER REVIEW 21 of 25

strong learners; thus, they have high precision, accuracy, sensitivity, and F1-score. We
noticed that Extra-Trees and gradient boosting machine performed well from bagging
and boosting models, respectively, so we chose these two algorithms to generate an en-
semble classifier with a soft voting approach. This classifier outperformed other methods
in terms of accuracy, precision, F1-score, and sensitivity, and achieved a
high-performance rate. The results of various classifiers of the hybrid features set are also
shown in Figure 11.

Table 8. Test results of the classification algorithms with respect to hybrid features.

Algorithm Precision Sensitivity F1-Score Accuracy
DT 93.28 72.22 81.41 83.51
RF 98.37 74.07 84.51 86.42
BT 97.58 74.07 84.21 86.11
XGB 97.87 70.37 81.87 84.42
AB 96.25 62.96 76.12 80.25
LGBM 96.80 74.07 83.92 85.82
ETC 97.32 77.77 86.45 87.81
GBM 95.38 75.92 84.55 86.12
Ensemble model 97.44 81.48 88.74 89.67

Figure 11. Test results of various classifiers with respect to hybrid features.

To illustrate the learning capability of the proposed method, as shown in Figure 12,
we include both classification errors and log losses in our training and test data set with
respect to how many iterations the ensemble model executes for each epoch. Log loss,
short for logarithmic loss, refers to the price paid for incorrect predictions in classifica-
tion. According to the figure, the learning model reaches convergence after approxi-
mately 30 iterations.

Figure 11. Test results of various classifiers with respect to hybrid features.

Electronics 2022, 11, x FOR PEER REVIEW 22 of 25

(a) (b)

Figure 12. Learning curve for logarithmic loss and classification error on our data with respect to
the ensemble classifier in (a) log loss and (b) classification error.

4.3. Comparison with Existing Works
A comparison between the proposed method and other competing methods was

conducted. We applied Chen et al. [14] and Chen et al. [15] methods on our dataset D1 to
evaluate the performance of our proposed method. The main purpose of choosing these
methods is due to the likewise in the features extracted from both transaction history and
opcodes of contract accounts. Furthermore, we evaluated our method against the data
(D2) presented by Chen et al. [15] in regard to the three evaluation metrics used in the
paper. The results of this comparison are presented in Table 9. As a result of our meth-
od’s superior performance over other methods, our method is more effective at detecting
abnormal contracts.

Table 9. Comparison of our method with existing methods.

Metrics (%) Chen et al.
[15] (D2)

Our Method
(D2)

Chen et al.
[14] (D1)

Chen et al.
[15] (D1)

Our Method
(D1)

Precision 0.94 0.99 0.97 0.95 0.97
Sensitivity 0.73 0.82 0.64 0.68 0.81
F1-score 0.82 0.90 0.77 0.79 0.88

As part of the analysis, we also attempted to determine the entire training time and
testing time for the proposed method in light of a hybrid feature set for detecting ab-
normal contracts based on datasets D1 and D2. The results are shown in Table 10.

Table 10. Results of the proposed method on datasets D1 and D2.

Evaluation Metrics Dataset D1 Dataset D2
TPR (%) 81.48 82.14
TNR (%) 97.85 99.81
FNR (%) 18.51 17. 85
FPR (%) 2.14 0.18

Precision (%) 97.44 99.77
F1-score (%) 88.74 90.10
Accuracy (%) 89.67 90.97

Training Time (s) 455 1056
Test Time (s) 0.06 0.11

Figure 12. Learning curve for logarithmic loss and classification error on our data with respect to the
ensemble classifier in (a) log loss and (b) classification error.

4.3. Comparison with Existing Works

A comparison between the proposed method and other competing methods was
conducted. We applied Chen et al. [14] and Chen et al. [15] methods on our dataset D1 to
evaluate the performance of our proposed method. The main purpose of choosing these
methods is due to the likewise in the features extracted from both transaction history and
opcodes of contract accounts. Furthermore, we evaluated our method against the data (D2)

Electronics 2022, 11, 2937 21 of 24

presented by Chen et al. [15] in regard to the three evaluation metrics used in the paper.
The results of this comparison are presented in Table 9. As a result of our method’s superior
performance over other methods, our method is more effective at detecting abnormal
contracts.

Table 9. Comparison of our method with existing methods.

Metrics (%) Chen et al.
[15] (D2)

Our Method
(D2)

Chen et al.
[14] (D1)

Chen et al.
[15] (D1)

Our Method
(D1)

Precision 0.94 0.99 0.97 0.95 0.97
Sensitivity 0.73 0.82 0.64 0.68 0.81
F1-score 0.82 0.90 0.77 0.79 0.88

As part of the analysis, we also attempted to determine the entire training time and
testing time for the proposed method in light of a hybrid feature set for detecting abnormal
contracts based on datasets D1 and D2. The results are shown in Table 10.

Table 10. Results of the proposed method on datasets D1 and D2.

Evaluation Metrics Dataset D1 Dataset D2

TPR (%) 81.48 82.14
TNR (%) 97.85 99.81
FNR (%) 18.51 17. 85
FPR (%) 2.14 0.18

Precision (%) 97.44 99.77
F1-score (%) 88.74 90.10

Accuracy (%) 89.67 90.97
Training Time (s) 455 1056

Test Time (s) 0.06 0.11

4.4. Complexity of the Proposed Method

In the proposed method, the computational complexity depends on how the proposed
features are extracted and computed. The opcode n-grams features and source code
features are extracted using TF-IDF algorithm. The TF-IDF is based on the frequency of
each term and indexing a document of b tokens, which required linear time O(b) and space
complexity. The transaction-based features are extracted using python and SQL queries.
SQL queries are executed based on the square of the database size and the manner in
which the query will be processed by the SQL engine. Therefore, many of the transaction
features in our method (i.e., Total_Txn, Avg_Eth_Sent, Total_Txn_Fee, Failed_Txn_Sent,
Gas_Sent, Success_Txn_Received, etc.) require logarithmic time complexity O(log(n)),
while others (i.e., Unique_Txn_Received, Unique_Address_Received, Avg_Time_Diff, etc.)
require linearithmic time complexity O(n log(n)). The learning model of our method is
an ensemble of extra-trees and gradient boost machine based on weighted soft voting.
In case the training data contains n points with d dimensions, the extra-trees algorithm
has the following train time complexity O(n ∗ log(n) ∗ d ∗m), where m is the number of
decision trees in the tree. The space complexity consists of O(p ∗m), where p represents
the number of nodes within the tree, and the run time complexity consists of O(k ∗m),
where k represents the depth of the tree. Accordingly, gradient boost algorithms have a
train time complexity of O(n ∗ log(n) ∗ d ∗m), a space complexity of O(p ∗m + gamma) as
it is multiplied with m models, and a runtime complexity of O(k ∗m).

5. Conclusions

With the rapid growth of online finance, abnormal and fraudulent contract accounts are
also growing. This results in substantial economic losses for users of blockchain technology,
i.e., Ethereum. Therefore, an effective solution is demanded to detect fraud-based abnormal
contracts on Ethereum to avoid such malware and maintain the data-driven security of

Electronics 2022, 11, 2937 22 of 24

the blockchain system. The abnormal contract accounts look similar to normal contracts,
and the challenge is how to distinguish them. One of the biggest obstacles to detecting
abnormal contract accounts on Ethereum is the severe data imbalance. This issue will
lead to overfitting and poor generalization of the detection method in the absence of
over-sampling of training data.

This paper uses data mining techniques to provide a robust method for abnormal
contract detection on the Ethereum network. First, we collected abnormal and normal
contracts data from Ethereum and solved the problem of imbalanced data by performing
adaptive synthetic sampling. Next, we defined three types of features set based on the
operation code n-grams, transaction data, and TF-IDF source code characters of contract
accounts and combined them to get more comprehensive features. Finally, we designed an
ensemble classification model combining Extra-Trees and gradient boosting classifiers to
improve the classification accuracy of abnormal contracts compared to other methods.

There are abnormal scheme contract accounts that do not follow the patterns of existing
abnormal contracts. This may also lead to misclassifying such abnormal contract accounts
as normal contracts. For future work, we plan to build a neural network model against the
latest abnormal contract accounts based on contract account bytecodes. Furthermore, we
would like to investigate the applicability of our method to permissioned blockchains.

Author Contributions: Data curation, A.A. and Q.J.; funding acquisition, Q.J. and Q.Q.; investiga-
tion, Q.J. and Q.Q.; methodology, A.A., Q.J. and A.R.; project administration, Q.J.; software, A.A.;
supervision, Q.J.; validation, Q.Q. and A.R.; writing—original draft, A.A.; writing—review & editing,
A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research work is supported by the National Key Research and Development Program
of China Grant No. 2021YFF1200100 and 2021YFF1200104.

Data Availability Statement: The dataset generated during the current study are available inthe
Google Drive and GitHub repositories: https://drive.google.com/u/1/uc?export=download&
confirm=hPyP&id=1izK9Sm5yfwq3Ck9f71SUXAL41GVKQFBS and https://github.com/abdul-rasool/
Abnormal-Contracts-Detection, (accessed on 14 September 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaspars, Z.; Renate, S.A. Blockchain Use Cases and Their Feasibility. Appl. Comput. Syst. 2018, 23, 12–20.
2. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed

on 1 July 2022).
3. Hasan, A.S.M.T.; Sabah, S.; Haque, R.U.; Daria, A.; Rasool, A.; Jiang, Q. Towards Convergence of IoT and Blockchain for Secure

Supply Chain Transaction. Symmetry 2022, 14, 64. [CrossRef]
4. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352.

[CrossRef]
5. Solidity. Solidity Documentation. 2019. Available online: https://solidity.readthedocs.io/en/v0.5.11/index.html (accessed on 1

July 2022).
6. Muzammal, M.; Qu, Q.; Nasrulin, B. Renovating blockchain with distributed databases. An open source system. Future Gener.

Comput. Syst. 2019, 90, 105–117. [CrossRef]
7. Hu, T.; Liu, X.; Chen, T.; Zhang, X.; Huang, X.; Niu, W.; Lu, J.; Zhou, K.; Liu, Y. Transaction-based classification and detection

approach for Ethereum smart contract. Inf. Process. Manag. 2021, 58, 102462. [CrossRef]
8. Ethereum (ETH) Market Cap. 2016. Available online: https://coinmarketcap.com/currencies/ethereum/ (accessed on 20

September 2021).
9. Higgins, S. SEC Seizes Assets from Alleged Altcoin Pyramid Scheme. 2015. Available online: https://www.coindesk.com/

markets/2015/10/01/sec-seizes-assets-from-alleged-altcoin-pyramid-scheme/ (accessed on 1 July 2022).
10. Bartoletti, M.; Carta, S.; Cimoli, T.; Saia, R. Dissecting Ponzi schemes on ethereum: Identification, analysis, and impact. Future

Gener. Comput. Syst. 2020, 102, 259–277. [CrossRef]
11. Morris, D. The Rise of Cryptocurrency Ponzi Schemes. 2017. Available online: https://www.theatlantic.com/technology/

archive/2017/05/cryptocurrency-ponzi-schemes/5286 (accessed on 1 July 2022).

https://drive.google.com/u/1/uc?export=download&confirm=hPyP&id=1izK9Sm5yfwq3Ck9f71SUXAL41GVKQFBS
https://drive.google.com/u/1/uc?export=download&confirm=hPyP&id=1izK9Sm5yfwq3Ck9f71SUXAL41GVKQFBS
https://github.com/abdul-rasool/Abnormal-Contracts-Detection
https://github.com/abdul-rasool/Abnormal-Contracts-Detection
https://bitcoin.org/bitcoin.pdf
http://doi.org/10.3390/sym14010064
http://doi.org/10.1504/IJWGS.2018.095647
https://solidity.readthedocs.io/en/v0.5.11/index.html
http://doi.org/10.1016/j.future.2018.07.042
http://doi.org/10.1016/j.ipm.2020.102462
https://coinmarketcap.com/currencies/ethereum/
https://www.coindesk.com/markets/2015/10/01/sec-seizes-assets-from-alleged-altcoin-pyramid-scheme/
https://www.coindesk.com/markets/2015/10/01/sec-seizes-assets-from-alleged-altcoin-pyramid-scheme/
http://doi.org/10.1016/j.future.2019.08.014
https://www.theatlantic.com/technology/archive/2017/05/cryptocurrency-ponzi-schemes/5286
https://www.theatlantic.com/technology/archive/2017/05/cryptocurrency-ponzi-schemes/5286

Electronics 2022, 11, 2937 23 of 24

12. Zhou, Y.; Kumar, D.; Bakshi, S.; Mason, J.; Miller, A.; Bailey, M. Erays: Reverse engineering ethereum’s opaque smart contracts.
In Proceedings of the 27th USENIX Security Symposium (USENIX Security’18), USENIX Association, Baltimore, MD, USA,
15–18 August 2018; pp. 1371–1385. Available online: https://www.usenix.org/conference/usenixsecurity18/presentation/zhou
(accessed on 1 July 2022).

13. Vasek, M.; Moore, T. Analyzing the Bitcoin Ponzi Scheme Ecosystem. In International Conference on Financial Cryptography and Data
Security; Springer: Berlin/Heidelberg, Germany; pp. 101–112.

14. Chen, W.; Zheng, Z.; Cui, J.; Ngai, E.; Zheng, P.; Zhou, Y. Detecting Ponzi Schemes on Ethereum: Towards Healthier Blockchain
Technology. In World Wide Web Conference; International World Wide Web Conferences Steering Committee: Geneva, Switzerland,
2018; pp. 1409–1418.

15. Chen, W.; Zheng, Z.; Ngai, E.C.; Zheng, P.; Zhou, Y. Exploiting blockchain data to detect smart Ponzi schemes on Ethereum. IEEE
Access 2019, 7, 37575–37586. [CrossRef]

16. Bartoletti, M.; Pes, B.; Serusi, S. Data Mining for Detecting Bitcoin Ponzi Schemes. 2018. Available online: http://arxiv.org/abs/
1803.00646 (accessed on 1 July 2022).

17. Aljofey, A.; Jiang, Q.; Qu, Q. A Supervised Learning Model for Detecting Ponzi Contracts in Ethereum Blockchain. In Proceedings of
the 3rd International Conference on Big Data and Security, ICBDS 2021, Shenzhen, China, 26–28 November 2021; pp. 1–16, in press.
[CrossRef]

18. He, N.; Wu, L.; Wang, H.; Guo, Y.; Jiang, X. Characterizing code clones in the ethereum smart contract ecosystem. arXiv 2019,
arXiv:1905.00272. [CrossRef]

19. Wu, J.; Yuan, Q.; Lin, D.; You, W.; Chen, W.; Chen, C.; Zheng, Z. Who are the phishers? Phishing scam detection on ethereum via
network embedding. arXiv 2019, arXiv:1911.09259. [CrossRef]

20. Lin, L.; Wei-Tek, T.; Zakirul, A.B.M.; Hao, P.; Mingsheng, L. Blockchain-enabled fraud discovery through abnormal smart contract
detection on Ethereum. Future Gener. Comput. Syst. 2022, 128, 158–1669. [CrossRef]

21. Aljofey, A.; Jiang, Q.; Rasool, A.; Chen, H.; Liu, W.; Qu, Q.; Wang, Y. An effective detection approach for phishing websites using
URL and HTML features. Sci. Rep. 2022, 12, 8842. [CrossRef]

22. Bian, S.; Deng, Z.; Li, F.; Monroe, W.; Shi, P.; Sun, Z.; Wu, W.; Wang, S.; Wang, W.Y.; Yuan, A.; et al. Icorating: A deep-learning
system for scam ICO identification. arXiv 2018, arXiv:1803.03670. [CrossRef]

23. Nerurkar, P.; Bhirud, S.; Patel, D.; Ludinard, R.; Busnel, Y.; Kumari, S. Supervised learning model for identifying illegal activities
in Bitcoin. Appl. Intell. 2020, 5, 3824–3843. [CrossRef]

24. Farrugia, S.; Ellul, J.; Azzopardi, G. Detection of illicit accounts over the Ethereum blockchain. Expert Syst. Appl. 2020, 150, 113318.
[CrossRef]

25. Kumar, N.; Singh, A.; Handa, A.; Shukla, S.K. Detecting Malicious Accounts on the Ethereum Blockchain with Supervised
Learning. Cyber Secur. Cryptogr. Mach. Learn. 2020, 12161, 94–109. [CrossRef]

26. Chen, Y.; Dai, H.; Yu, X.; Hu, W.; Xie, Z.; Tan, C. Improving Ponzi Scheme Contract Detection Using Multi-Channel Text CNN and
Transformer. Sensors 2021, 21, 6417. [CrossRef]

27. Wang, L.; Cheng, H.; Zheng, Z.; Yang, A.; Zhu, X. Ponzi scheme detection via oversampling-based Long Short-Term Memory for
smart contracts. Knowl.-Based Syst. 2021, 228, 107312. [CrossRef]

28. Chen, W.; Li, X.; Sui, Y.; He, N.; Wang, H.; Wu, L.; Luo, X. SADPonzi: Detecting and Characterizing Ponzi Schemes in Ethereum
Smart Contracts. Proc. ACM Meas. Anal. Comput. Syst. 2021, 5, 2. [CrossRef]

29. Liang, Y.; Wu, W.; Lei, K.; Wang, F. Data-driven Smart Ponzi Scheme Detection. 2021. Available online: https://arxiv.org/abs/21
08.09305v1 (accessed on 1 July 2022). [CrossRef]

30. Fan, S.; Fu, S.; Xu, H.; Cheng, X. Al-SPSD. Anti-leakage smart Ponzi schemes detection in blockchain. Inf. Process. Manag. 2021,
58, 102587. [CrossRef]

31. Rahouti, M.; Xiong, K.; Ghani, N. Bitcoin concepts, threats, and machine-learning security solutions. IEEE Access 2018, 6,
67189–67205. [CrossRef]

32. Jung, E.; Le Tilly, M.; Gehani, A.; Ge, Y. Data mining-based ethereum fraud detection. In Proceedings of the 2019 IEEE International
Conference on Blockchain, Seoul, Korea, 14–17 July 2019; pp. 266–273.

33. Available online: https://etherscan.io/accounts/label/phish-hack (accessed on 4 September 2021).
34. Available online: https://etherscan.io/accounts (accessed on 4 September 2021).
35. Available online: https://api.etherscan.io/api?module=contract&action=getsourcecode&address=0xBB9bc244D798123fDe783

fCc1C72d3Bb8C189413&apikey=YourApiKeyToken (accessed on 1 July 2022).
36. Available online: https://api.etherscan.io/api?module=account&action=txlist&address=0xc5102fE9359FD9a28f877a67E36B0F050

d81a3CC&startblock=0&endblock=99999999&page=1&offset=10&sort=asc&apikey=YourApiKeyToken (accessed on 1 July 2022).
37. Haibo, H.; Yang Bai, E.; Garcia, A.; Shutao, L. ADASYN: Adaptive synthetic sampling approach for imbalanced learning.

(2008). In Proceedings of the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), Padua, Italy, 18–23 July 2008; pp. 1322–1328. [CrossRef]

38. Maaten, L.V.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
39. Bistarelli, S.; Mazzante, G.; Micheletti, M.; Mostarda, L.; Tiezzi, F. Analysis of Ethereum Smart Contracts and Opcodes. In Primate

Life Histories, Sex Roles, and Adaptability; Springer: Berlin/Heidelberg, Germany, 2020.
40. Alruily, M. Classification of Arabic Tweets: A Review. Electronics 2021, 10, 1143. [CrossRef]

https://www.usenix.org/conference/usenixsecurity18/presentation/zhou
http://doi.org/10.1109/ACCESS.2019.2905769
http://arxiv.org/abs/1803.00646
http://arxiv.org/abs/1803.00646
http://doi.org/10.1007/978-981-19-0852-1_52
http://doi.org/10.48550/arXiv.1905.00272
http://doi.org/10.1109/TSMC.2020.3016821
http://doi.org/10.1016/j.future.2021.08.023
http://doi.org/10.1038/s41598-022-10841-5
http://doi.org/10.48550/arXiv.1803.03670
http://doi.org/10.1007/s10489-020-02048-w
http://doi.org/10.1016/j.eswa.2020.113318
http://doi.org/10.1007/978-3-030-49785-9_7
http://doi.org/10.3390/s21196417
http://doi.org/10.1016/j.knosys.2021.107312
http://doi.org/10.1145/3460093
https://arxiv.org/abs/2108.09305v1
https://arxiv.org/abs/2108.09305v1
http://doi.org/10.48550/arXiv.2108.09305
http://doi.org/10.1016/j.ipm.2021.102587
http://doi.org/10.1109/ACCESS.2018.2874539
https://etherscan.io/accounts/label/phish-hack
https://etherscan.io/accounts
https://api.etherscan.io/api?module=contract&action=getsourcecode&address=0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413&apikey=YourApiKeyToken
https://api.etherscan.io/api?module=contract&action=getsourcecode&address=0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413&apikey=YourApiKeyToken
https://api.etherscan.io/api?module=account&action=txlist&address=0xc5102fE9359FD9a28f877a67E36B0F050d81a3CC&startblock=0&endblock=99999999&page=1&offset=10&sort=asc&apikey=YourApiKeyToken
https://api.etherscan.io/api?module=account&action=txlist&address=0xc5102fE9359FD9a28f877a67E36B0F050d81a3CC&startblock=0&endblock=99999999&page=1&offset=10&sort=asc&apikey=YourApiKeyToken
http://doi.org/10.1109/IJCNN.2008.4633969
http://doi.org/10.3390/electronics10101143

Electronics 2022, 11, 2937 24 of 24

41. Wood, G. Ethereum: A Secure Decentralized Generalized Transaction Ledger. Available online: http://gavwood.com/paper.pdf
(accessed on 1 July 2022).

42. Hirshman, J.; Huang, Y.; Macke, S. Unsupervised Approaches to Detecting Anomalous Behavior in the Bitcoin Transaction Network;
Technical Report; Stanford University: Stanford, CA, USA, 2013.

43. Raschka, S. Python Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2015.
44. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
45. Hastie, T.; Tibshirani, R.; Friedman, J.H. Boosting and Additive Trees. The Elements of Statistical Learning, 2nd ed.; Springer: New

York, NY, USA, 2009; pp. 337–384, ISBN 978-0-387-84857-0.

http://gavwood.com/paper.pdf
http://doi.org/10.1007/BF00058655

	Introduction
	Literature Review
	Proposed Methodology
	Data Preparation
	Feature Extraction and Transformation
	Opcode N-Gram Features
	Transaction Features
	Source Code Features

	Ensemble Learning Model
	Abnormal Contracts Detection

	Implementation and Evaluation
	Evaluation of Features
	Evaluation of Ensemble Model
	Comparison with Existing Works
	Complexity of the Proposed Method

	Conclusions
	References

