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Abstract: Monitoring the operating parameters of power grids is extremely important for their
proper functioning as well as for ensuring the security of the entire infrastructure. As the idea
of the Internet of Things becomes more ubiquitous, there are tools for monitoring the state of the
complex electrical grid and means to control it. There are also developed new measuring devices and
transmission technologies allowing for the transfer of performed measurements from many places to
the network management center. However, there are still no devices that act as data concentrators,
which would integrate many transmission technologies and protocols in one device, supporting the
communication between those different transmission technologies and which would realize edge
computing to assist the management center by prioritizing and combining transmitted data. In
this article, the authors present a device that meets the above-mentioned requirements. There are
presented research results leading to the development of a decision algorithm, called Multilink—ML,
dedicated to the presented device. This algorithm enables the selection between LTE and NB-IoT
interfaces for packet transmission without the need to burden the communication system with
additional transmissions.

Keywords: LTE; NB-IoT; reception quality indicators; data concentrator

1. Introduction

In recent years, many products have been developed for AMI (Advanced Metering
Infrastructure) [1], SCADA (Supervisory Control And Data Acquisition) [2], HAN (Home
Area Network) [3] and IoT (Internet of Things) systems. However, there is a lack of
devices working at the edge of those networks that concentrate data and create datasets for
managing and monitoring electrical grids. At the Department of Radio Communication
Systems and Networks, at the faculty of Electronics, Telecommunications and Informatics
of the Gdańsk University of Technology is being realized the project entitled “Power data
concentrator with innovative decision functionality and gate functionality in AMI, SCADA,
HAN, IoT environments” with the acronym KODEŚ [4]. This project is realized with strong
cooperation with DGT company which is a Polish producer and integrator of modern
ICT systems. The aim of the project is the development of the data concentrator that
enables the work of AMI systems at the interface of SCADA, HAN and IoT for energy
networks. The KODEŚ concentrator will be equipped with elements capable of making
independent decisions at the networks interface (edge computing), gateway functions in
terms of DNP3/DLMS (Distributed Network Protocol version 3/Device Language Message
Specification) and the innovative multilink algorithm enabling automatic choice of the radio
communication link based on the transmission quality and the purpose of the interfaces.
The device presented in this paper is prepared to work in electric networks; however, such
a device can merge different technologies and data from other fields, e.g., in harbors or sea
vessels where many different communication devices and technologies are used.

KODEŚ device is equipped with two commercially available radio modules. The
first one is the NeoWay N27 module to cover NB-IoT (Narrow Band Internet of Things)
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technology. The second one is Quectel RM500Q-GL which enables, among others, radio
communication in LTE (Long Term Evolution) cellular network. The data concentrator
will decide which communication interface should be used for particular data, based on
the importance and the amount of this data. To make such a decision there must be also
knowledge about the present quality of a particular communication link. Obviously, a
communication link is strongly connected with available communication interfaces in the
KODEŚ device. In this paper, the authors are interested in ways of forecasting if a packet of
data can be sent via radio interfaces working in NB-IoT and LTE technologies. As KODEŚ
is planned to be a commercial product, it was decided to integrate with KODEŚ available
commercial radio modules, to make it less expensive. Hence, there is a lack of possibility
to perform signal processing. Nevertheless, utilized radio modules measure standardized
quality parameters of received signal called also Key Performance Indicators (KPI), such as
RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), SINR
(Signal to Interference plus Noise Ratio), RSSI (Received Signal Strength Indicator), MCS
(Modulation and Coding Scheme) and CQI (Channel Quality Indicator) [5,6].

In this paper, the authors proposed a decision algorithm (called Multilink—ML) for
link quality monitoring which allows forecasting if a particular connection is working
(packet sent through this connection will be successfully received). The ML algorithm is
based on quasi-real-time measurements in a real cellular network (LTE and LTE NB-IoT).

The possibility of the transmission quality estimation is important for adjusting trans-
mission parameters to maximize the effectiveness of resource utilization. KPI parameters
are mainly utilized by a network to realize the handover procedure [7–10]. A different
utilization of signal quality parameters is presented in [11] where authors compare a couple
of machine learning algorithms to estimate throughput in the LTE system. Worth mention-
ing is that the resulting probability of correct estimation in [11] is similar to that one we
achieve for the LTE system, while our algorithm needs less computational power. Another
difference in approach in [11] presented in this article, emerges from the measurement
stand. We use a commercial radio module, without specialized measurement applications
and devices, which makes our solution more suitable for developed data concentrator
KODEŚ. KPIs may also be used to estimate network load [12,13]. In [12], measurements
were done by RF scanners. In [13], presented results gathered by a commercial smartphone
and Nemo device. In the paper [14], authors cover the issue of cell reselection based on
RSRP and RSRQ values measured by an RF scanner; however, compared to bars shown
by iPhone 5. In [15], the authors present RSRP, RSRQ and SNR measurements for LTE for
different cellular operators. Those measurements were done with the utilization of the
G-NetTrack Pro app. Unfortunately, these measurements are not compared with real trans-
mission quality. In [16], the authors used the build-in cellular modem signal parameters
measurement mechanisms to research the correlation between achieved download speed,
upload speed, latency, jitter and KPIs available in LTE. Despite interesting analysis, those
results are insufficient to build our multilink algorithm.

NB-IoT is an emerging technology well suited for wireless IoT end devices [17,18].
There is a wide range of possible applications. Most common are those connected with
the smart cities field [19], especially with energy grids [20] also for monitoring marine
energy generation [21]. However, NB-IoT may be utilized in other areas of the economy
for example in agriculture [22]. In literature are analyses of NB-IoT coverage [23,24] and
performance in selected environments. Those research suggest that NB-IoT is very robust
even in deep indoor, so the choice of NB-IoT for our data concentrator became obvious.
Nevertheless, there was a need to conduct own measurements to implement mentioned
before multilink algorithm.

This paper is organized as follows: in part 2 there is a description of the developed
data concentrator KODEŚ. Part 3 covers the measurement stand. Consecutive parts present
results accordingly for NB-IoT and LTE.
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2. Realized Data Concentrator Device—KODEŚ

KODEŚ is an intelligent device, supposed to work as a sophisticated, specialized
NB-IoT router and data concentrator realizing edge computing within the boundaries of
the network. It is going to enable connection, scheduling, selection and optimization of
the quality of data transmission between wireless and wired interfaces for AMI systems,
SCADA, HAN and IoT. The proposed concentrator will be equipped with specialized func-
tions. First of all, there will be a decisive function (DF) as part of edge computing whose
aim would be the detection of malfunction and undesirable states of the energetic network,
to improve the response time of service. This is especially important in a situation when
there is no connection with the management center due to e.g., terrorist act. DF will make
a decision based on information gathered from energy meters, controllers, disconnectors,
sensors, predictions and known profiles of work of energetic network elements. Another
important functionality would be a gateway function (GF) which would allow to convert
data streams between different protocols according to the specification of a given network,
act as a data concentrator, control the network and work as a specialized router for WWAN
(Wireless Wide Area Network) interfaces. To support the last functionality, in KODEŚ must
be implemented a multilink functionality (MF), a decisive algorithm to choose the most
appropriate radio network for transmission based on the state of the network, the priority
of transmission and required quality.

Figure 1 presents the block diagram of the KODEŚ device which was described in
detail in article [4]. As was mentioned before, realized data concentrator needs to support
interfaces that can work in different networks.
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For this reason, in the KODEŚ device, many interfaces are provided. Some of them
can support a connection in different technologies e.g., ISM, Serial and WWAN. The data
concentrator has to periodically analyze the state of all provided interfaces to decide which
of them is the most suitable to send user data. The authors of this paper are mostly
interested in WWAN interfaces, that support all fully functional cellular networks. As for
purpose of machine-to-machine communication in a deep indoor environment, NB-IoT
technology was developed therefore, the WWAN1 interface is intended to work in this
technology. Whereas the WWAN2 may switch utilized technology between GSM, UMTS or
LTE, depending on which one can realize transmission with the best quality for a specific
application. Figure 2 shows the device in cover (b) and without cover (a). In Figure 2a can
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be seen two antenna ports, four Ethernet ports, digital input IO, two SIM card slots and a
power supply connection.
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3. Measurements

To implement the Multilink (ML) algorithm a knowledge of the correlation between
values available in particular cellular technology quality parameters and the quality of
realized transmission is needed. To gain this knowledge a set of measurements was
conducted. In the article [5], the authors presented results and analysis of measurements
performed with the utilization of radiocommunication tester Rohde & Schwarz CMW500.
As the propagation conditions were controlled during measurements, there could be
analyzed the correlation between different quality parameters with BLER (BLock Error
Rate). While in the present article authors would like to present results for measurements
performed in a real cellular network. For this purpose, a laboratory stand was prepared,
and which block diagram is presented in Figure 3. Presented KODEŚ device is a prototype
and needs a PC where a TFTP server is set with data necessary to start the operating
system on KODEŚ. It is realized by Ethernet connection. To get access to KODEŚ an
RS232 connection is used. The data concentrator is connected via LAN with a Server.
This Server has a public IP address and an Internet connection. To change the quality of
the received signal for measurement purposes adjustable attenuators were put between
WWAN antennas and WWAN interfaces in KODEŚ. Measurements are initialized by the
Server in the following steps:

1. The server prepares UDP (User Datagram Protocol) packet and sends it via LAN
to KODEŚ;

2. KODEŚ redirect this packet to WWAN1 and WWAN2;
3. KODEŚ reads and saves quality parameters from both radio interfaces;
4. The packet is sent through both WWAN interfaces to Server on different ports;
5. Server register time of packets reception;
6. Steps 1–5 are repeated until the required quantity of packets is sent.

User Datagram Protocol was used instead of Transmission Control Protocol (TCP) as it
has not built-in mechanisms to guarantee data reception. Nevertheless, the block error rate
could not be measured in described research as there was no access to the physical layer.
Moreover, because of the upper layers of the ISO-OSI model, during all measurements,
none of the corrupted packets was received. For this reason, the quality parameters’ results
of each cellular radio access technology were compared to information if a UDP packet
was received in Server. To collect measurements for different environment conditions i.e.,
quality of the received signal, at the beginning of each measurement adjustable attenuators
were set to 0 dB and then the attenuation was gradually slowly increased until a particular
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radio module lost connection. Then for this module attenuation was turned off (0 dB) and
all procedure was repeated. For each measurement, a 3-second timeout was set.
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4. Results for NB-IoT

NB-IoT connection in KODEŚ is realized with the utilization of the Neoway N27
radio module. It reports the following signal parameters: RSRP, RSRQ, RSSI and SINR.
For NB-IoT technology, 4500 measurements were done—UDP packets were sent from
Server. Each packet had 100 bits in length. Simultaneously to each transmission attempt, all
reported parameters by the radio module were saved. In Figure 4 are presented all realized
measurements. A delay lower than 0 means that a particular packet was not received. It
can be seen that delay values strongly fluctuated; however, the mean value was evidently
increasing while the transmission quality deteriorates (adjustable attenuation increased).
Due to the high values of the delay, Figure 4 is difficult to analyze. The scale on ordinate
axes was changed and presented in Figure 5.

In Figure 5 it can be noticed that due to increased attenuation the RSRP and RSSI
parameters decreased, while from the RSRQ and SINR parameters the radio link availability
could not be predicted.
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The conducted research aimed to develop a multilink algorithm. Multilink must
decide, based on the knowledge of RSRP, RSRQ, RSSI and SINR values, if the NB-IoT is
suitable for transmission. From Figure 5 it can be concluded that if values of particular
parameters will be lower than some threshold, multilink must decide that the link is not
available. To find those thresholds for each possible configuration of quality parameters the
probability of correct decision and a probability of false positive decision were calculated
for different values of thresholds. The correct decision is calculated as:

PCD =
LCD

L
, (1)

where LCD is the number of correct decisions and L is the number of all made decisions. The
false positive decision means that the multilink algorithm considered the link as reliable
when the packet could not be received—LFP is the number of such situations:

PFP =
LFP

L
. (2)

Threshold values for each quality parameter should maximize the probability of a
correct decision. However, as constructed data concentrator has two WWAN interfaces, the
worst case is when the multilink algorithm will decide to send a packet via an inefficient
link. Therefore, thresholds must be chosen such that the probability of a false positive
will be the lowest. As this probability does not cover the mistake when the algorithm
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decides that the link is inefficient while transmission could be realized with success, both
probabilities (PCD and PFP) must be analyzed simultaneously and compromised values
must be chosen. Moreover, as KODEŚ has implemented more interfaces than one, the
authors decided that particular link quality must be evaluated with a probability not less
than 70% and the probability of a false decision should not be greater than 30%. Therefore,
we looked for the highest value of PCD and the lowest value of PFP. It was found that
the multilink algorithm should decide that the NB-IoT connection has enough quality for
transmission when:

• RSRP ≥ −125 dBm and
• RSRQ ≥ −20 dB and
• RSSI ≥ −114 dB and
• SINR ≥ 0 dB.

Then the probability of a correct decision is 77.7% and the probability of a false decision
does not exceed 18.4%. A probability of correct decision for different threshold values for
RSRP and SINR when the threshold for RSRQ was set to −20 dB and the threshold for
RSSI was set to −114 dB is presented in Figure 6 whereas the probability for false positive
decision is in Figure 7. In Figure 8 the probability of correct decision for different threshold
values for RSSI and RSRQ when the threshold for RSRP was set −125 dBm and threshold
for SINR was set to 0 dB is presented, while a false positive probability is shown in Figure 9.
The chosen values for those plots are the selected best threshold values for ML algorithm.
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5. Results for LTE

In KODEŚ the LTE technology is utilized in the WWAN2 interface where the Quectel
RM500Q-GL radio module is used. This module reports the following values of quality
parameters: RSRP, RSRQ, SINR, RSSI, CQI and MCS. Each of those parameters was saved
at the time of each realized transmission. During measurements, 5000 UDP packets of
length 100 bits were sent. The measurement procedure was the same as with NB-IoT
technology. In Figure 10 are presented all realized measurements. On the plot are presented
values of measured delay [ms], RSRP [dBm], RSRQ [dB], RSSI [dBm], MCS, CQI and SINR
[dB] for each transmitted packet. A delay lower than 0 means that a particular packet
was not received. It is clearly seen that the delay increases as the signal deteriorate—the
attenuation increases. Large values of delays at the end of some breaks of transmissions
result from the measurements procedures where packets were sent in a predetermined
period even when they could not reach the receiver. Due to the high values of the delay
in Figure 10, it is difficult to analyze the relations of values of other parameters. To
improve the clarity of plots, the scale on ordinate axes was changed and modified plots
are presented in Figure 11. The other parameters, except for MCS, decreased with the
increasing attenuation. It leads to a conclusion similar to the one in the previous section.
The multilink algorithm must decide that the LTE interface is not available when values
of quality parameters get lower than some thresholds. The MCS values do not follow
any pattern; however, from previous research [5], we know that modulation and coding
scheme has a great impact on transmission robustness. However, during measurements
with the utilization of a commercial cellular network, it was impossible to influence on MCS



Electronics 2022, 11, 2892 9 of 14

parameter. Therefore, the search for the most suitable thresholds was conducted without
and with the consideration of MCS. In Table 1 are given the number of transmission and
number of lost packets for each possible MCS during measurement. It can be seen that
the ratio of realized transmission to lost packets is very good for MCS 0–3 and 8–30 while
the ratio is very poor for MCS 4, 5 and 6 when over 50% of packets were not received
within the settled timeout. The reasons for such results should be seen in the algorithm
of changes in transmission parameters adopted by the cellular operator. Unfortunately,
we have no way of viewing this algorithm. Based on data in Table 1 the MCSs values for
which a sufficient number of transmissions for further analysis can be selected. These are 0,
1, 3, 4, 5, 6. For transmissions realized with given modulation and coding schemes and for
all realized transmissions (without differentiation on MCS), a similar search for threshold
values for each quality parameter was realized as for NB-IoT in the previous section.
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It was found that for all realized transmissions the best threshold values for each
quality parameter are:

• RSRPthr = −133 dBm and
• RSRQthr = −17 dB and
• RSSIthr = −100 dB and
• SINRthr = 0 dB.
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Table 1. The number of realized transmissions and lost packets for each MCS.

MCS Number of
Transmissions

Number of
Lost Packets MCS Number of

Transmissions
Number of

Lost Packets

0 2772 13 16 8 0
1 944 5 17 1 0
2 20 7 18 9 0
3 368 4 19 7 0
4 192 138 20 12 0
5 213 107 21 6 0
6 255 212 22 0 0
7 30 2 23 6 0
8 32 0 24 3 0
9 20 0 25 3 0
10 0 0 26 5 1
11 29 0 27 0 0
12 28 0 28 2 0
13 16 0 29 2 0
14 10 0 30 0 0
15 7 0

Then the probability of a correct decision is 96% and the probability of a false positive
decision is 3%. The CQI was omitted in the multilink algorithm as it is strongly connected
with the modulation scheme and MCS parameter. For each individual of selected MCS
transmissions, both probabilities were calculated for selected threshold values. Results are
presented in rows with white background in Table 2. For MCS 4 and 6 achieved probability
values for such thresholds are very poor. Almost reach assumed limits. As the worst
case appears to be for MCS = 4, so for this modulation and coding scheme has performed
another search for the best threshold values. These are:

• RSRPthr = −133 dBm and
• RSRQthr = −17 dB and
• RSSIthr = −95 dB and
• SINRthr = 0 dB.

Table 2. Probability of correct decision and positive false decision for selected threshold parameters
and different MCS.

MCS RSRPthr
[dBm]

RSRQthr
[dB]

RSSIthr
[dBm]

SINRthr
[dB] Pcd [%] PFP [%]

0–30
−133 −17 −100 0 96 3
−133 −17 −95 0 95.7 0.4

0
−133 −17 −100 0 92.5 6.1
−133 −17 −95 0 95.7 0.1

1
−133 −17 −100 0 98.8 0.5
−133 −17 −95 0 96.5 0.4

3
−133 −17 −100 0 98.6 1.1
−133 −17 −95 0 96.5 0.3

4
−133 −17 −100 0 71.4 22.9
−133 −17 −95 0 91.1 0

5
−133 −17 −100 0 92.5 6.1
−133 −17 −95 0 94.8 0.5

6
−133 −17 −100 0 76.5 21.6
−133 −17 −95 0 96.9 1.2

For this new threshold values were calculated probabilities PCD and PFP for each MCS
and all transmissions. Results are also given in Table 2; however, in rows with a grey
background. For new threshold values PCD is always greater than 94% and PFP lower than
1.3%. Therefore, these thresholds should be implemented in ML for LTE technology.
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A probability of correct decision for different threshold values for RSRP and RSRQ
when the threshold for SINR was set to 0 dB and the threshold for RSSI was set to −100 dB
is presented in Figure 12 whereas the probability for false positive decision is in Figure 13.
In Figure 14, a probability of correct decision for different threshold values for SINR and
RSSI when the threshold for RSRP was set −133 dBm and threshold for RSRQ was set to
−17 dB is presented, while a false positive probability is shown in Figure 15. The chosen
values for those plots are the selected best threshold values for ML algorithm.
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6. Conclusions

In the article, the authors presented a data concentrator device dedicated to an energy
grid that integrates many different communication technologies. Especially, it enables the
work of AMI systems at the interfaces of SCADA, HAN and IoT. As this device ought
to realize edge computing and has gateway functions it must be equipped with decision
algorithms. Among others, those algorithms must decide which of all radio communication
interfaces is best for transmission at a particular time and for particular data. To elaborate
such an algorithm a measurement campaign was performed with the utilization of a real
cellular network. The novelty of these measurements results, among others, from the use
of commercial radio modules instead of specialized measuring equipment. This approach
enables the assessment of the credibility of the signal quality parameters reported by a given
radio module. From the presented research it can be noticed that for NB-IoT technology the
connection was broken very often while the module utilizing LTE technology worked very
steadily. Despite this inconvenience, for both technologies, it was possible to determine the
method of implementation of the ML algorithm. As all of the values of reported quality
parameters were decreasing as the quality of signal deteriorated, ML must decide that
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a particular link is unavailable when all quality parameters get below some thresholds.
Thresholds that maximize the probability of a correct decision and minimize the probability
of a false positive decision are given in Table 3. It is worth seeing that, unexpectedly, the
SINR parameter has the least impact on the decision making as its found threshold is equal
0 dB.

Table 3. Found thresholds for the ML algorithm.

Quality Parameter LTE NB-IoT

RSRP [dBm] −133 −125
RSRQ [dB] −17 −20
RSSI [dBm] −95 −114
SINR [dB] 0 0

The presented results show that it is possible to assess the link state for LTE and NB-IoT
technologies. Therefore, the current work aims to implement the ML algorithm in the target
device and perform field measurements to make final ML validation. It was decided to
use this link which enables greater throughput. Therefore, if both LTE and NB-IoT will be
available the ML will choose LTE to send packet. Future extensions of the data concentrator
will be related to improving its hardware implementation and to expanding the possibilities
of its applications not only in electrical grid but also i.e., in harbors.
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