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Abstract: The static nature of many of currently used network systems has multiple practical benefits,
including cost optimization and ease of deployment, but it makes them vulnerable to attackers
who can observe from the shadows to gain insight before launching a devastating attack against
the infrastructure. Moving target defense (MTD) is one of the emerging areas that promises to
protect against this kind of attack by continuously shifting system parameters and changing the
attack surface of protected systems. The emergence of network functions virtualization (NFV) and
software-defined networking (SDN) technology allows for the implementation of very sophisticated
MTD techniques. Furthermore, the introduction of such solutions as field-programmable gate array
(FPGA) programmable acceleration cards makes it possible to take the MTD concept to the next level.
Applying hardware acceleration to existing concepts or developing new, dedicated methods will
offer more robust, efficient, and secure solutions. However, to the best of the authors’ knowledge,
there are still no major implementations of MTD schemes inside large-scale networks. This survey
aims to understand why, by analyzing research made in the field of MTD to show current pitfalls and
possible improvements that need to be addressed in future proposals to make MTD a viable solution
to address current cybersecurity threats in real-life scenarios.

Keywords: cybersecurity; cyberdefense; network security; moving target defense

1. Introduction
1.1. Motivations behind Moving Target Defense

Many currently used network systems are static. They are designed, built, and con-
figured once to remain unchanged for a long time [1]. This approach is reasonable from
a functional requirements perspective: if use cases are well defined, then network archi-
tecture and topology are designed to meet that requirements and optimize cost. On the
other hand, the static nature of modern networks gives an unfair advantage to the potential
attackers, who can observe the network for a long time to collect data on end-points or
traffic patterns that remain unnoticed. Their first goal is to find security vulnerabilities
to finally use them to perform the attack at a convenient moment. Because of the static
nature of existing networks, data collected this way might remain valid for long periods
of time. A blog post [2] presents data from various cybersecurity reports. Reports from
98 data breach statistics were compiled into one post in [3], covering types of breaches,
industry-specific stats, risks, costs, defense, and prevention resources. Sources report this
situation as a significant threat to the security of modern networks [4].

The static nature of many network systems is only made worse by the fact that many
of the prevailing cybersecurity defense mechanisms are reactive by design. Some examples
of such an approach can be applying a security software patch that fixes a zero-day in
an operating system or an antivirus system updating the threat database after a new
malware has been detected. Shortcomings of this reactive attitude are relatively easy to
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spot. Before a patch for a zero-day vulnerability can be applied, the issue first has to
be recognized and fixed by the company responsible for the software. The process of
finding such a security flaw is not necessarily trivial. Companies can rely on their internal
security teams or externals security researchers who often expect monetary compensation
for their discoveries. However, there are other companies that specialize in buying zero-day
vulnerabilities, like the Zerodium bug bounty platform [5], which later resells them to
interested parties such as governments. In-depth talk about this kind of market can be
found in [6]. Similarly, a system can only be protected against a malware that is known
and has been fingerprinted previously. Before that happens, the malicious software can
achieve truly devastating results. NotPetya, described as the most devastating cyberattack
in history [7], is an example of such a powerful attack. All of this shows how much of an
asymmetric game the defenders play with the attackers. After getting a foothold inside
compromised systems via a zero-day vulnerability, the attackers can then spend weeks
or months slowly accumulating information about the network, its topology, main data
servers etc. Such data can then be used to identify the most valuable targets and potentially
exfiltrate data.

In 2011, Lockheed Martin Corporation proposed the Intrusion Kill Chain Model
(Figure 1), which distinguishes particular phases of the attack [8]. The model assumes that
every malicious campaign begins at the reconnaissance stage. Later stages are payload
delivery and installation, which leads to privilege escalation via found vulnerabilities and
lateral movement inside target network. Finally, when ready, the attacker performs action
on a target and exfiltrates. This is an example of the so-called linear kill chain. More talk
about intrusion kill chains and their types can be found in [4]. Effective defense at early
points would not allow the attacker to cause any damage (no material, financial, data,
or reputation loss) even if potential zero-day exploits for the target system are available [9].

These arguments pay particular attention to security researchers to work on solutions
that make systems resistant to reconnaissance. One solution to this problem has been
introduced in [10], a result of the USA Federal Networking and Information Technology
Research and Development program working to find novel ways to avoid some of the most
pressing cybersecurity problems. It proposed a radical shift in thinking about computer
networks, called moving target defense (MTD). Its main idea is that an attack can work
at most a single time, if at all. To achieve this goal, the authors proposed to constantly
reconfigure the system, such that the same attack vector cannot be reused in the future.
MTD is a technique that dynamically shifts the attack surface to increase complexity
and cost for attackers, limits the exposure of vulnerabilities and opportunities for attack,
and increases system resiliency [11–17]. High hopes are associated with this technology,
which is expressed by funding numerous research and development grants by government
institutions and the private sector [18]. This goal can be achieved in many ways, but MTD
still has no clear direction that would soon become the industrial standard.

The core idea behind MTD has been around for many years prior to [10]. Perhaps the
best known example is address space layout randomization (ASLR) [19]. This technique is
based on thwarting attackers by randomizing the process memory space layout. In doing so,
it effectively renders some of the attack ineffective by making them unreliable. Conceptually,
it represents the same idea as the MTD works published later—prevent the attack, instead of
dealing with it when it happens, by introducing unpredictability into the system. Although
this example proves that the idea behind MTD is correct in general and although the huge
number of published works on the topic in recent years, as to the best of authors’ knowledge
there has not been any significant commercial implementations of MTD techniques in
existing networks. The main reason for this is the lack of generally accepted, industry-wide
standards, the lack of metrics to assess the effectiveness of individual MTD solutions, and
the lack of systematic research that would show the cost of MTD implementation in real
systems, like efficiency per dollar spent.
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Figure 1. Intrusion Kill Chain Model proposed by Lockheed Martin Corporation [8].

1.2. Our Contribution

This paper presents a review of the current state of knowledge of MTD for network
defense. We have surveyed state-of-the-art MTD techniques, focusing on how they work,
what kind of attacks they protect against, whether they include threat models, if and
how they were tested, as well as metrics used to evaluate the proposals. In contrast to
already existing surveys in the field [18,20–24], we have used surveyed papers as a basis
on which to discuss the current status of research in the MTD field in the context of real-life
scenarios, such as applications to existing networks. This state-of-art review has been
enriched with a discussion on the opportunities and benefits of adding potential MTD
support in hardware, the need for a better understanding of security levels offered by MTD
schemes, and improved metrics and testing scenarios.

1.3. Paper Structure

We first provide a background and introduce MTD-related terminology as well as
types of attacks that MTD might protect against. Then we go deep into current trends in
MTD literature, analyzing them by what, how, and when to move as well as used testbeds,
proposed threat models, and metrics. Finally, we look into the application of MTD to
existing network and identify some research directions that need to be addressed in future
works in the MTD area.
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2. Materials and Methods
2.1. Methods

This review is focused on MTD for networks. For the research work, we have searched
the following databases: IEEE, Springer, Association for Computing Machinery (ACM),
and Science Direct. To identify relevant articles, the following query was used:

• “moving target defense” and “network”.

We have decided that papers relating to the Internet of things (IoT), wireless and mobile
networks, as well as vehicular use cases were outside the scope of this review, and as such
they were ignored. We have further excluded papers, in which the proposed method was
not explained extensively enough or not validated in any meaningful way. The remaining
articles were then sorted by publication date, as we prioritized recent proposals.

2.2. Background

This section presents definitions and background for common key terms associated
with MTD and a different existing taxonomies for the field. Furthermore, we introduce ma-
jor types of attacks that MTD can protect against. Finally, we present two main technologies
that allow for much easier MTD implementation.

2.2.1. Attack Surface

A system, from the security point of view, can be viewed as a set of vulnerable
components. Some of them can be potentially accessed by an attacker, who may then
try to exploit them. It is in the best interest of the defender to minimize that number of
vulnerable components in the system, which creates a so-called attack surface. This can
be achieved by installing security patches, closing unused ports, or complying with best
security practices. Early work on MTD theory [13] describes the attack surface simply as a
resource available to an attacker, like a system port or software. The authors of [25], based
on earlier works [26,27], describe the attack surface as a subset of resources in the system
that can be used to potentially launch an attack. They further propose an attack surface
metric as a method by which to determine which system is more secure, by measuring
the likelihood of a system being attacked. A number of works have been presented about
possible approaches to minimizing the attack surface of a system. Papers [28,29] propose
a graph-based, algorithmic approach to manipulating the attacker’s perspective of the
system. Authors achieve this by manipulating the attacker’s probes in such a way that
the external system view, a notion formally introduced in the paper, is maximum distance
away from the internal view given some upper cost for the defender. The authors of [30]
modeled interactions between attacker and defender as a stochastic game that allows one
to determine the optimal way to shift the system’s attack surface.

Passive reconnaissance is the stealthy observation of the system for a specified period
to detect a vulnerability (which is equivalent to attack surface detection). A static system
attacker’s knowledge of the system, and its security vulnerabilities, increases over time.
Figure 2 compares this case with three different MTD strategies. When the system is
reconfigured periodically in a finite space, the observer’s level of knowledge grows slower.
After each reconfiguration, the attacker’s knowledge of the current status of the system
drops, but eventually overall knowledge rises. Increasing the space for reconfiguration,
combined with pseudo-random timing, hardens the system even more. From the security
point of view, ideal configuration uses asynchronous reconfiguration in an unlimited
reconfiguration space. Unfortunately, due to technical limitations, this case is not feasible
in practice.
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Figure 2. Knowledge of system vulnerabilities vs. time of observation for static system and system
with reconfiguration.

2.2.2. MTD Techniques Taxonomy

There has been a significant amount of novel MTD techniques presented in recent
years. As such, it was necessary to create a taxonomy to categorize this work. The paper [31]
proposed to classify each technique by coverage, unpredictability, and timeliness. Similarly,
ref. [13] proposed that an MTD method should consider three main issues: which piece
of the system to move, space of movement of said piece, and the time for the movement
to occur. This was further expanded upon in [22]. The authors proposed three easy-to-
memorise elements for each MTD technique based on the moving parameters—what, how,
and when to move.

• What to move refers to the choice of moving parameters in the system. Each of them
can be dynamically changed within a domain of allowed values. Such changes lead
to a change in the system’s attack surface, resulting in increased attack complexity.
For this reason, each of the moving parameters must have a large enough parameter
space to reduce the chance of being guessed by the attacker. Some examples of this
category can be:

– Network level

* Internet Protocol (IP) address
* Port
* Network topology
* Servers

– Address space
– Virtual machine (VM)
– Operating system (OS)
– Software version.

• How to move specifies the means by which to choose a new value and use it to replace
a previous parameter. It is meant to increase the unpredictability of the system and
confuse the attacker. Such techniques can include the use of:
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– Randomness
– Game-theoretic approach
– Approach based on real-life observations.

• When to move defines the optimal time to change the moving parameters. It is crucial
to choose the right schedule for that operation, such that performing it too rarely
results in not enough security, whereas doing it too often might result in the loss of
system performance.

– Timer-based—a moving parameter is changed in fixed or varying time intervals
– Event-based (reactive approach)—a change is done after a certain occurrence,

such as after an intrusion-detection system (IDS) detects an intruder.

We have decided to use this taxonomy in this survey due to its simplicity and com-
pleteness.

A different approach was proposed in [32], in which the authors categorized methods
to provide security to moving parameters in the MTD system into three types:

• Shuffling rearranges system components in various layers, like IPs, address spaces, or
network topology.

• Diversity is about providing the same functionality by using different means. For ex-
ample, different OS, compilers, or even programming languages.

• Redundancy ensures the existence of multiple replicas of the same component, for ex-
ample, redundant nodes or paths.

These three methods can be used in combination with each other to provide higher
levels of security.

Yet another taxonomy was introduced in a technical report on MTD [33]. Along with
its second edition, released five years later [18], it remains among the most comprehensive
surveys on MTD up to the present date.

• Dynamic Data are techniques that change the format or representation of data dynam-
ically.

• Dynamic Software are techniques that change the application’s code on the fly.
• Dynamic Runtime Environment are techniques that change the application environ-

ment. This group can be further subdivided into address space and instruction set
randomization.

• Dynamic Platform are techniques that change the platform properties, like hardware
components or OS version.

• Dynamic Networks are techniques that change network characteristics of the system,
like topology or protocols used.

2.2.3. Attacks

In this section, we present network threats that might be prevented by using MTD solutions.

• Reconnaissance. Also called a scanning attack, reconnaisance is used by an attacker to
obtain information about the target. These might include IP addresses, open ports,
running services, OS version, and network topologies. Gathered data might then be
used by the attacker to prepare before a real attack is launched, for example after
discovering that target runs an unpatched application with a known vulnerability.
Reconnaissance attacks can be divided into two types—passive and active. During a
passive attack, an attacker does not interact with the target, which might include
using public resources. This type of information gathering is also called open source
intelligence (OSINT); for a more detailed description, refer to [34]. As for the active
reconnaissance, the attacker is allowed to interact with the target, for example by
directly scanning it. This might lead to gathering more data faster, but carries a
significant risk of detection. There exists a huge number of dedicated tools to perform
a target scan, some of the most popular examples of which are Nmap [35] for the
network scan, Aircrack-ng [36] focused on WiFi network security, and Nessus [37] for
vulnerability assessment. It is important to note here that these tools might be used
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not only with malicious intent, but can also be run by the defender in order to provide
important information in order to harden the network.

• Denial of Service (DoS). DoS is a type of attack that disrupts the normal functions
of a device. A variant of DoS attacks called distributed denial of service (DDoS) is
often used to bring down networks or servers. It involves using a large number
of hosts, often a part of botnet, all working together to bring the target network
down. In networks, this might involve sending a large amount of requests to a server,
that overwhelms it and makes it unable to process them in real time. This so called
‘flooding’ might involve ICMP or ACK packets. A type of DDoS attack is crossfire
attack that targets only few, selected links in the network masking itself very well, thus
making it particularly hard to detect. More on that attack can be found in [38], and [39]
talks about how various network topologies impact the detectability of crossfire attacks.
Currently DDoS protection can be offered by vendors like Cloudflare [40] that provide
solutions to detect the attack, then drop malicious traffic or reroute it, detect and block
offending IPs etc.

• Zero-day. Sometimes also called 0-day, zero-day is a name for vulnerabilities before
they are patched. In worst case scenarios, it can take months or even years before
they are even detected, allowing the attacker to exploit a system, which is otherwise
considered secure, in an unbothered manner. Report [41] indicates a huge rise in the
number of exploited zero-days in 2012 compared to previous years. They were mostly
used by state actors, targeted to spy on huge companies, but financially motivated
attacks are also on a rise. The article [42] attempts to assess the security impact of
unknown vulnerabilities on computer systems.

• Advanced persistent threat (APT) as described in [43] refers to an attack strategy by a
bad actor with access to significant resources, both technical and financial, and high
levels of expertise, allowing him to use multiple attack vectors to achieve his goal,
which might be to extract information or to impede critical infrastructure or processes.
Proposals for a multistage approach that such attacker must use to fulfill its objec-
tives were introduced in [44,45]. The first stage of an APT is always reconnaissance;
the attacker wants to understand as much about the target as possible. This could
consist of technical information-gathering techniques, like port or service scanning,
as well as the use of social engineering on the company employees to obtain necessary
information. When this is finished, the attacker then attempts to gain a foothold
in the attacked system, which can be done by means of using malware or zero-day
vulnerabilities, as well as spear-phishing and a watering-hole attack. More data on
APT campaigns is presented in [46], along with the entry methods used. After gaining
access to the system, the attacker begins to slowly spread throughout it, which can
take a long time, if one is to avoid detection. Finally, the attacker attempts to exfiltrate
the data or impede the system. MTD might be perfect to protect against this type of
attack, as shown in [4]. Multiple MTD techniques can be applied at each step of APT.
However, from the defender’s point of view, the best scenario would be to prevent the
malicious actions early to stop it from ever gaining entry into the system, for example
by significantly increasing the complexity of the reconnaissance stage. In [47], the
authors talk in detail about the targeted nature of APTs, their characteristics and the
motives behind them.

2.2.4. Potential MTD Implementation Techniques

This section describes the existing technologies that can be utilized to greatly reduce
the complexity for implementing some of the MTD techniques.

Network function virtualization (NFV) is a network architecture that uses virtualiza-
tion to perform traditionally hardware-based network functions, such as switches, load
balancers, or firewalls. The idea was first proposed in [48], co-authored by representatives
of many network operators. NFV, runs on VMs or containers on top of existing hardware,
which can be instantiated on demand. Among the many benefits of this architecture,
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ref. [49] lists cost reduction of capital investments, reduced energy consumption by net-
working hardware, and decreased time to market new services, as well as swift deployment
of targeted solutions based on customer needs. The ETSI report [50] presents detailed user
stories for NFV usage. More on NFVs can be found in surveys like [51], and [52] talks about
the security aspects of that architecture. The NFV approach can be used as an effective
technology for technique implementation providing an abstract layer for the host. This
kind of solution results in the isolation of host software from network mechanisms, which
makes migrations to the new architecture easier and cheaper to maintain.

Software-defined networking (SDN) [53] is a network paradigm that allows for dy-
namic and flexible network management. It decouples the control plane from the data
plane, allowing for more efficient management. On the control plane resides one or more
SDN controllers with direct control over the state of data plane elements. Consequently,
all of the logical control power has been removed from those devices, which now only
serve as simple forwarding devices, working according to rules programmed by controllers.
The communication between control and data planes is done only by using interfaces,
such as OpenFlow protocol [54]. Such separation allows one to achieve more flexibil-
ity and makes it easier to transform the network in the future. Some examples of SDN
controllers are ONOS [55], OpenDaylight [56], NOX-MT [57], Beacon [58], and Ryu [59].
Due to their importance, SDN controllers are the potential point of failure that can bring
down the entire network, and refs. [60–62] talk specifically about the problem of controller
placement in SDN, whereas [63] provides a more general survey on fault management
in SDN. Overall, there is a great amount of literature regarding SDN. Some examples of
surveys discussing their architecture, applications and security are [64–67]. The isolated
SDN control plane seems to be a natural candidate to consider in the context of dynamic
network reconfiguration management mechanisms for MTD.

Overall, NFV and SDN seem like a good match for MTD architectures, providing
dynamic network control and dynamic resource allocation, greatly reducing deployment
cost and time by removing the need for deploying new network devices, and allowing for
easier implementation of an MTD mechanism such as route or host mutation. One of the
technologies that allows for the merging of NFV and SDN is OpenVSwitch [68], a high-
performance software switch used in virtualized environments. Articles [69,70] describe
integrating NFV and SDN in more depth. An example of MTD architecture utilizing both
SDN and NFV is found in [71]. The authors proposed a framework, using route mutation
to defend ISP networks against DDoS attacks and reconnaissance that was capable of
network forensics. The proposed architecture utilizes a virtualized shadow network, each
composed of multiple VMs, and deployed across the real network. With regard to incoming
traffic, the SDN controller can flag them as potentially malicious and choose one of three
scenarios. The first one is forwarding it on a random route across networks to a real host
destination. The second one sends it to a shadow network, or to a virtualized shadow host.
The last strategy sends the packet through both real and virtual networks, but it ends in a
real destination host. Each of those strategies has a mutation probability, used to determine
which of them will be applied, but that probability can be modified depending on past
actions taken against a given traffic. For the legitimate traffic, the first strategy is applied
every time.

3. Trends in MTD

We studied research papers introducing novel MTD architectures, especially focused
on what, how, and when they move. We also noted the assumed threat model, what
they protect against, and how were they tested and validated. Results of our study were
combined and presented in Table 1. We found out that a relatively high number of articles
were utilizing SDN, suggesting that it is a popular research direction. Out of the articles
surveyed, most apply SDN to either perform route or address mutations inside networks.



Electronics 2022, 11, 2886 9 of 32

3.1. What to Move

This section focuses on the most common MTD techniques found in the surveyed
literature. We noticed that among the most popular techniques are IP, port, route, and host
mutations, using decoys and proxy servers. There are also a number of studies utilizing
MTD architecture to dynamically place conventional defense systems, like IDS. This part
also introduces all of the surveyed papers, providing short and concise, one-paragraph
descriptions for them.

Table 1. A taxonomy of surveyed MTD architectures, covering the what, how, and when aspects of
the MTD strategy used, attack types they prevent, and whether they are SDN-based.

Article MTD Type Defense Against SDN
What How When

[72], 2021 IP Randomness Event Recon X

[73], 2021 Route Randomness Event Crossfire X

[74], 2021 All Randomness Timer, Event Recon X

[75], 2021 Proxy Randomness Timer DDoS

[76], 2021 Strategy Game-theory Event Recon X

[77], 2020 VM State Event DDoS X

[78], 2020 Proxies Deep Q-learning Event DDoS

[79], 2020 IP Randomness Timer, Event Recon X

[80], 2019 IDS Markov game Event APT

[81], 2019 Various Genetic algorithm Event Various threats

[82], 2019 Topology Randomness Timer, Event Recon X

[83], 2019 Route State Timer Recon, APT

[84], 2019 IP Randomness Event Recon X

[85], 2018 IP Randomness Timer Recon X

[86], 2018 Path, Host, IP Not defined Event DoS X

[87], 2018 Countermeasure Markov game Event APT

[88], 2018 Port Randomness Event DoS X

[89], 2018 IDS Game theory Event Recon, DoS

[90], 2018 IP Randomness Timer Recon X

[91], 2017 Topology Finding optimal
shuffle Timer, Event Recon, DDoS X

[92], 2017 Hosts, ports Randomness Event Recon X

[93], 2017 Path Pre-shared key Event Recon

[94], 2017 Fingerprint Signaling game Event Recon X

[95], 2017 Domain name, IP Randomness Event Recon X

[96], 2017 Network bandwidth Game theory Event DoS X

[97], 2016 Topology Randomness Event Recon X

[98], 2016 IP, decoy Randomness Timer Recon
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Table 1. Cont.

Article MTD Type Defense Against SDNWhat How When

[99], 2016 Path Randomness Event Recon X

[100], 2016 IP, Path Randomness Event Recon X

[101], 2016 IP, path, hosts Randomness Event Recon X

[102], 2016 VM State Event DoS X

[103], 2016 Proxies Randomness Event Recon, DoS

[104], 2016 Path State Event Crossfire X

[105], 2016 IP Markov game Event Recon

[106], 2016 VM, IP Randomness Timer, Event Recon

[107], 2016 IDS Defined strategies Event Recon

[108], 2015 IP, MAC Randomness Timer Recon X

[109], 2015 IP Randomness Timer Recon

[110], 2015 Port, Address Pre-shared key Timer Recon

[111], 2015 IP Game theory Event Recon

[112], 2014 IP Randomness Event Recon

[113], 2014 VM Randomness Event DDoS

[114], 2014 VM State Timer Recon

[115], 2013 Proxies Randomness Event DDoS

[116], 2013 IP, Decoy Randomness Event Recon

[17], 2012 IP Randomness Timer Recon X

[117], 2011 VM Randomness Event Recon, DDoS

[118], 2011 IP Randomness Timer Recon

[119], 2011 Software Randomness Timer, Event Recon

3.1.1. Address and Port Mutation

Among the surveyed literature, address mutation was the most common one. On the
other hand, port mutation by itself was present in only one article, but was commonly
applied together with IP mutation. We identified the two most popular approaches to
implementing this MTD technique. One of them is to use short-lived addresses, which
requires frequent domain name system (DNS) queries to obtain the current host IP. The
second approach requires each host to have two IPs associated with it. One of them is
permanent and the second one is virtual and frequently changed, unknown to the host. The
first and last switch on the packet’s way are the most important, as they are responsible for
substituting real with virtual IPs or vice versa, making it transparent from the host point of
view. This approach is used mostly in SDN networks, as the controller has an easy way to
program the flow rules into switches.

In [17], the authors propose using SDNs to perform the host’s IP address translation.
Each of the hosts in the network is provided with a permanent (real) IP address and a
short-lived (virtual) IP address. The entire process was designed to be transparent for
end-hosts, which are only aware of their assigned real IPs. This technique requires two
components to work: a switch capable of translating real IPs to virtual ones and a controller
coordinating this process, keeping track of current real-to-virtual address mapping across
the entire network.

Another SDN-based MTD technique is found in [108], utilizing DNS and network
address translation (NAT) to achieve IP and medium access control (MAC) address transla-
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tion. Each of the hosts is assigned a virtual IP with a very short time to live (TTL), which
forces frequent resolution requests from a defender’s DNS records that are constantly
updated with new addresses. Each time such a request is detected, an SDN controller
will update NAT with mapping rules that translate the virtual IPs and MACs to real ones.
To achieve protection from insiders’ threats, the systems’ hardware and OS is within trusted
computing base (TCB).

The authors of [118] utilize a vast address space on IPv6 to constantly rotate IPs of both
clients and servers. The proposed technique performs address translation regardless of the
current connection state, which increases the number of packet loss in the network, but does
not drop or renegotiate sessions. This method allows two hosts to communicate over the
Ethernet by encapsulating every frame as a user datagram protocol (UDP) datagram and
adding new headers and such a packet could potentially be further encrypted. Both address
obfuscation and optional tunnel encryption is done by using a symmetric key, which needs
to be known to both parties beforehand; however the key establishment is not part of the
scheme and has to be out-of-band.

In [109], an address mutation MTD technique is introduced that is fast and unpre-
dictable, while also being adaptive to adversarial behaviour. When trying to connect to a
host, the client must send a DNS query and will receive a short-lived destination IP address.
A controller (or several controllers to improve scalability) manages the flow rules based on
temporary IPs and assigns the address ranges to routers. To decrease the size of routing
tables, the address ranges are usually within the same physical subnet, which comes at the
cost of unpredictability.

The paper [85] proposes an SDN-based MTD solution that utilizes an IP mutation to
thwart reconnaissance attacks. Each of the servers in the network has a set of short-lived,
randomly assigned, virtual IPs associated with its real network address. The virtual IPs are
dynamically updated every time period. An SDN controller is responsible for assigning
those virtual IPs to hosts inside the network, installing appropriate flows into switches,
and updating DNS queries for server host names.

The only article utilizing the only port mutation is [88], which proposed an SDN-
based MTD technique by using port hopping as a countermeasure. The SDN controller is
responsible for utilizing common vulnerability scoring system (CVSS) information coming
from the vulnerability scanner and active protection from the IDS to identify the VMs with
the highest security risk. If the threat level is above a certain threshold, the port hopping is
applied to that host.

The paper [105] introduced a general Markov game framework for MTD analysis.
This method can be applied to a broad range of different techniques and can measure the
strength or effectiveness of each of them based on their specific parameters and general
system configuration. The framework was then successfully applied for an IP-hopping
MTD technique for both single and multi-target hiding.

The authors of [106] proposed a bio-inspired MTD technique by using SDN to protect
distributed systems utilizing short-lived nodes that are used during computation, then
discarded, but which can reappear later with changed properties. The algorithm is capable
of moving nodes between hardware and hypervisors and performing IP hopping, as well
as changing the characteristics of the node itself, like different OS. The proposed system
also performs proactive node monitoring on deployed machines to detect anomalies in
memory to discover potential ongoing attacks.

In [111], an MTD technique is proposed that utilizes IP hopping for real and decoy
nodes, based on a game between defender and attacker. The assumed attacker can dis-
tinguish the real from the fake node by exploiting the timing differences in responses or
protocol fingerprinting. Those two attack methods were modeled by using game theory
and were further used to formulate a game wherein the attacker attempts to find the real
node. This model is subsequently used to identify the optimal IP randomization scheme.

In [90], an SDN-based MTD method is introduced that utilizes frequent and fast IP
hopping performed on every node in the path of the packet. The SDN controller task
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is to provide each of the switches in a network with two random seeds, one of which is
used for seeding the pseudo-random generator and the other for synchronization. There
is also a third seed, called the IP seed, generated locally on each of the nodes and known
to every other node in the network and is required to calculate the routing. Together
with the pseudo-random generator seed, it is also used for generating new IP packets;
after every hop both destination and source addresses are randomized. The last seed, the
synchronization seed, is used to generate hash chains, which are precomputed and stored
on every node in the network. The hashes are then used in reversed order to generate a
specific IP address, which is used in an update packet that synchronizes all the nodes in
the forwarding path.

The authors of [84] propose an SDN-based MTD method performing transparent IP
mutation. When the packet reaches the first switch along its route, the SDN controller is
responsible for assigning new, random network IPs for destination and source addresses.
Every other switch along the packets’ way sends a message to the controller, which then
checks whether it is the last switch before the destination node. If not, then the packet is
forwarded; otherwise the controller restores the original IPs in the packet.

The paper [120] improved upon [85] by utilizing multiple SDN controllers to be
responsible for IP shuffling. This approach allows one to create a decentralized architecture,
in which each of the controllers exchange information with the others and the workload
can be split between the others in case of failure. As such, two communication channels
are used—one between the controllers and the other between controllers and switches to
program MTD mutations.

The MTD technique presented in [72] is based on IP hopping triggered by a timer or
a detector, utilizing a lightweight convolutional neural network to detect threats. The ar-
chitecture takes a multistep process to decide its strategy. It starts with packet sampling,
collecting every probe packet, and optionally subsequent packets as well. These collected
samples are then processed by removing all the information that is not related to scanning
attacks and finally, the data is then passed to neural network, which can trigger address
mutation if the packets are deemed malicious.

The paper [79] proposed an MTD architecture utilizing SDNs to create an IP random-
ization scheme where the mutation interval is different for every host in the network and
can be adapted based on current needs. The interval time can be modified by the presence
of an active session between two hosts, during which their virtual IPs will not be changed
as long as it is open. This allows one to preserve stability and performance in the network.
The system is also capable of monitoring traffic to discover the most active of the hosts,
which are selected for more frequent address mutation.

The authors of [112] introduce an address-mutation scheme that allows one to dynam-
ically change hosts’ IPs depending on the location and time. Each of the hosts has a set
of short-lived IPs that can be used to connect to other hosts in the network, such that one
particular IP can be used only by the assigned host to connect to one particular host for
a given period of time, which can be accessed via DNS request; after this time frame all
the IPs are mutated. The switches are responsible for substituting real IPs of the sender
with a short-lived one appropriate for the particular connection. The IP assignment and
programming flow rules on switches is handled by a controller.

In [110], an address- and port mutation-based MTD technique is proposed by using
source and service identity as well as time to achieve high unpredictability rates. At the
beginning of each time interval, new virtual addresses and ports are assigned to hosts from
the available pool by using the secret key shared between authenticated clients and server.
The real-to-virtual address translation, as well as the interception and replacement IPs in
DNS queries, is performed by a port- and address-hopping gateway.

In [93], an MTD technique using port hopping, capable of achieving per packet
synchronization without needing additional communication channels is introduced. This is
achieved by calculating a keyed-hash message authentication code (HMAC) of the message,
which is used not only to verify data integrity on the receiver side, but also as an input to
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encode/decode algorithms. It is then able to calculate virtual addresses and ports to be
assigned to the message and to reverse this process to recover the real network data. Such
an approach, however, requires the use of a shared session key known by both parties.

3.1.2. Route Mutation

Another popular MTD method present in multiple articles is route mutation, which
is capable of assigning a random path between hosts per traffic or even per packet. This
is significantly easier to implement in SDNs, as the defender is not limited to existing,
physical links between network devices. This technique seems especially effective against
DDoS, including crossfire attacks, as it disperses network traffic among all possible routes
in the network by design, thus greatly increasing the amount of traffic required to bring
down the network.

In [91], a technique that protects the system against DoS and reconnaissance attacks
by dynamically reconfiguring the network topology by changing the connections between
nodes in network using SDNs is proposed. This mechanism can work in an active mode that
periodically reconfigures the topology, or a reactive one, that selects the best configuration
against the detected attack. Due to the used heuristic algorithm, a near-optimal solution for
large networks can be achieved.

The article [99] proposed an MTD SDN-based technique relying on path hopping to
mask traffic in the network. This method is capable of not only dispersing traffic over
multiple paths, but also scrambles IP addresses and ports in the process. An SDN controller
is responsible for guiding the packet to its destination by installing proper flow rules on
every OpenFlow switch along its path and providing them with new virtual source and
destination addresses. When a switch gets a new packet and positively matches it against
its flow rules, it first changes the address and port of both source and destination and then
sends it to the next hop. Such an approach makes it impossible for the intercepted packets
to be matched against either the sender or the receiver.

The authors of [104] proposed an SDN-based MTD technique for mitigating the impact
of crossfire attacks by using path mutations. The proposed approach consists of a two-stage
defense managed by SDN controllers—stage one is obfuscating the link map construction
for the attacker during the reconnaissance phase and the second one is detecting and
mitigating the attack itself. The architecture is capable of reorganizing the routes in such a
way that the congested connections are avoided while avoiding any significant disruptions
to network services.

The paper [83] proposed an MTD framework for spatiotemporal route mutation
by using a stochastic optimization model to provide network security. The system is
supervised by a controller that disperses the traffic among nodes taking into account
parameters like link capacity, predetermined network and user requirements, and node
stability, but also overall user quality of experience (QoE). After every time period, new
routes are programmed into nodes by the controller.

A number of MTD architectures utilize route mutation as a means to reroute the traffic
into a shadow network, which is a preferably virtualized, honeypot-like environment,
often mimicking real infrastructure used to lure attackers in order to provide them with
forged signatures and obtain their fingerprints. This is often paired with more conventional
defense methods, capable of separating malicious traffic from benign traffic, and rerouting
it into the shadow network. One example of such a method is found in [71].

In [97] an SDN-based method to thwart reconnaissance attacks by using a shadow
network to forge scan responses is presented. The system is composed of three main
elements: a scan sensor, reflector, and shadow network. A scan detector is responsible
for detecting scan traffic and notifying the reflector, which is a network device capable
of redirecting the traffic flow. There could be a multiple of those elements in a system,
with parts of a protected network located behind each of them. When scan traffic is
detected, it is redirected to a shadow network, which then generated forged scan responses
for the attacker.
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The paper [73] proposed MTD architectures by utilizing SDN and intent-based net-
working, a methodology providing dynamic network management to prevent crossfire
attacks. Every packet from SDN switches is forwarded to an SDN controller which decides
whether it is malicious and can act in one of two ways to route the traffic into a shadow
network, effectively preventing the attacker from successfully executing the attack. The
first approach is to change the destination address of the malicious packet and the second
one modifies the destination port in the packet.

The author of [82] proposed an SDN-based MTD topology mutation technique that
consists of four main components: virtualized network (VN), network topology man-
agement (NTM), network monitoring (NM) and topology mutation control (TMC). VN
represents the physical network components as well as the software-defined ones. NTM is
comprised of specialized submanagers that control and orchestrate the life cycle of virtual
resources in the network function virtualization infrastructure domain and virtual network
function instances. NM is responsible for gathering network information from various se-
curity elements throughout the network. Finally, TMC decides on a new network topology.
This change can occur periodically or after a trigger from NM and a new network state
can be chosen from a set of predetermined configurations or be generated as a response
to a threat.

In [86], a technique is proposed that utilizes SDN and MTD to defend against DDoS
threats in high-speed networks, such as Internet service provider (ISP) networks. This
method requires multiple ISPs to create a collaborative environment in which each of them
monitors the data flow and exchange security events. The border routers, using border
gateway protocol (BGP), with multiple backup routers are responsible for changing the
shape of the network. Additionally, IP hopping and host-level MTD is responsible for
creating honeypots to trap the attacker.

3.1.3. Host Mutation

Host mutation allows for a rapid, often spatiotemporal VM swap. Affected VMs can
be identical and instantly replicated in different locations, possibly with different addresses.
Otherwise, each can be unique, which can be achieved by differentiating a software stack on
every VM or through other means while preserving the same functionality. The swapped
VM can then reappear at at later time. Similarly to route mutation, this method proves very
effective against DDoS attacks.

The authors of [117] introduce a technique that uses a set of VM-based servers, each
with unique software, to diversify the attack surface and increase unpredictability. The VMs
can be rotated on a fixed or event-driven schedule, and only a subset of them is online at a
given time. All the client requests of the server go through a load balancer that distributes
them between VMs that are currently available. The VMs are connected with a control
station and periodically send status data, which can be used to trigger a state change.

The paper [114] presents an MTD technique based on VM migration by using a
probabilistic model. By using the assumption that the attacker can target any of the active
VMs, the longer they stay active, the more likely it is they will be attacked. This is taken
into account when calculating the risk factor to decide whether to migrate a VM, and after
each time period any of the active VMs can decide to replicate onto one of its replacements
based on that information. The appropriate threat level is also calculated for each of the
replacement locations that the VM might move to and the one with the lowest risk factor
is chosen.

In [102], an SDN-based MTD technique is proposed that utilizes VM mutation based
on attack probability to minimize cloud management overheads. A new VM location
is chosen by SDN controller based on the computation and storage capacity, network
bandwidth, and a VM reputation, derived from its history of cyberattacks. The migration
process is triggered by a DoS detection by an IDS and when completed, all the clients
except the attacker are rerouted to the new VM.
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Similarly, ref. [77] introduced an MTD technique that uses SDN-enabled cloud infras-
tructure to perform VM migration against DDoS attacks. The architecture allows for a
proactive approach and a reactive one, after an attack has been discovered. The authors
aim to minimize the migration frequency and to pick the ideal new location with the lowest
attack probability to drive the defender cost down. As part of the reactive defense approach,
a honeypot node is used to trick the attacker into continuing the attack in an attempt to
gain more data about it.

A subset of articles utilizing the host mutation apply this technique to proxy servers,
placed between clients and the actual application server. This provides means of discov-
ering an attacker, by shuffling the client to a proxy assignment after each detected attack.
Clients from the affected server would be then relocated among other available ones,
with a central server keeping track of past assignments. This technique allows one to flag
potentially malicious users, and given they repeat their attacks, eventually discern them.

In [113], an MTD technique is introduced to thwart DDoS attacks by using server
relocation and shuffling client assignments. When a server detects it is under attack, it
is quickly replicated at different network environments, with a subset of original clients
assigned to each of the new instances. Because a determined attacker might be able to pose
as one of the clients and launch a new attack on the newly replicated server, a coordination
server was introduced to keep track of the defense system. The process of replicating servers
and shuffling clients might be performed multiple times, until the attacker is detected and
isolated. A greedy algorithm was proposed to speed up this process.

The paper [103] proposed an MTD technique to reduce the impact of DDoS attacks by
using proxies and client shuffling, while also replacing the proxies to reduce the attacker’s
ability to collect information about them. A lookup server is responsible for authenticating
and assigning the clients to proxies. To reduce the number of IPs harvestable by insider
threats, the client-to-proxy assignment remains consistent between sessions. When a server
is attacked, there are two new ones activated in its place, and its clients are split between
them. This process can be repeated many times, until the insider attacker is revealed
and isolated.

In [115] a novel MTD technique is introduced to protect against DDoS attacks by
introducing a layer of proxies between the client and application server that work only for
authenticated users. The defender has a large pool of such proxies out of which only some
are active at a given time to reduce operation costs, and each of them has a concealed IP
address. Connecting user-first authenticates by using proof-of-work on an authentication
server, it then assigns a single proxy. When a proxy detects it is under attack, it informs the
authentication server and subsequently shuts down; each user is then assigned to a newly
activated node at a different network location.

The authors of [78] proposed an MTD technique by utilizing deep reinforcement
learning to protect against DDoS attacks. Each user has a score and is randomly assigned
to one of many reverse proxies, which are passing requests to application server and are
the only way to communicate with it. When one of them gets attacked, each of the users
currently assigned to it has its score lowered and is reassigned to a different reverse proxy.
To increase the efficiency of isolating malicious users, the deep Q-learning algorithm has
been applied to suggest the most optimal user shuffle.

In [75], an MTD architecture is introduced that adds a layer of proxy servers between
the user and application server to reduce the impact of DDoS attacks. Each of the proxies act
as a NAT, storing the address mappings between internal and external network. The system
is managed by a controller, which uses a DNS to make sure that only a subset of those
proxies are active and accepting connections at any given time by modifying the address
returned by DNS query. Users are assigned to a proxy through the use of short-lived DNS
entries. The controller keeps track of past and current users to proxy assignment and is
capable of isolating users that are deemed malicious in a few shuffles.
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3.1.4. Dynamic Resource Allocation via MTD

This MTD method is based on a very grounded assumption that the defender operates
only a limited amount of countermeasure systems, like IDS and that their placement has a
negative impact on network, by slowing it down or other means. The proposed techniques
thus focus on providing the most optimal (yet still changing over time) placement of those
defense systems in the protected network.

The authors of [80] used the attack graph to formulate a general-sum Markov game to
provide the optimal security resource allocation for cloud network security. Authors utilize
both CVSS and the architect’s quantification of how the placement of the security systems
impacts performance to help come up with long-term strategies against multistage attacks,
such as APTs.

The paper [87] modeled the interactions between attacker and defender as a dynamic
game of perfect information by using a zero-sum Markov game on attack graphs assuming
a multistage attack scenario. This method identifies the best tactic for the defender, forcing
the attacker to use strategies that are not optimal, thus increasing the cost. The optimal
tactic selection utilizes CVSS scores as a reward metric to identify the critical nodes and
apply countermeasures when necessary.

The authors of [89] describe a problem of placing a limited number of IDS in a large
network by using a Stackelberg game between the network administrator and the attacker
to find the optimal configuration. The architecture uses a security scanner to provide CVSS
scores for detected vulnerabilities together with the assumed value of the node to compute
the optimal solution to the problem which the network or host-based IDS should activate
or disable.

In [96], an SDN-based MTD approach is introduced based on a dynamic game model-
ing using a reward-and-punishment system. In this game, the network administrator is
playing against other players, which are clients and some of whom have malicious intent.
If an undesirable behaviour is detected, for example through IDS, the administrator is
capable of reducing the network resources allocated to that player for the next time period.

The paper [107] presents an MTD technique that aims to thwart botnet operations
by increasing the difficulty and likeness of detection by using dynamic placement of
detection systems. The paper proposes two metrics: minimum detection probability and
the attacker’s uncertainty to dynamically change the detection points inside to a resource-
constrained network. The first of the metrics provides the lower bound that a botnet will
be detected by using the defender’s strategy and the other describes the effort needed by
the attacker to discover the detector placement.

3.1.5. Architectures Utilizing Multiple MTD Methods

For this section, we want to focus on architectures combining multiple MTD methods.
This approach should provide the most versatile defense against the attacker.

The paper [95] proposed an SDN-based technique that randomizes domain names
and mutates network addresses to prevent attackers from using DNS query lists and the
time window attack to find application servers. This system requires an authentication
server, as well as DHCP and DNS servers deployed by the defender. A legitimate client
first needs to verify itself by sending proof-of-work schemes to the authentication server to
obtain the current domain name of a requested server, which can then be used to query the
DNS system for the current IP address associated with it.

In [92] an SDN-based MTD technique is introduced that changes the attack surface
by host mutation and port obfuscation, as well as by introducing decoy servers. A new
connection getting into the system first goes through an IDS, which can obfuscate the
response if it is deemed malicious. Otherwise, it is checked against a hierarchy of hosts
in the network, called a tower. Based on predetermined rules, the connection can then be
obfuscated if necessary. Such an approach allows one to save network performance by
obfuscating everything.
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In [101], an SDN-based system is proposed, capable of deceiving reconnaissance at-
tacks by providing every host within the network with different views. The proposed
system is capable of performing address translation, path mutation, moving vulnerable
hosts, and placing honeypots, as well as detecting malicious traffic flows. The system archi-
tecture consists of an SDN controller managing the generation of flow rules, a deception
server manipulating the traffic, and a virtual network view generator, which outputs a
description of the virtual network.

The paper [100] proposed an MTD technique by using SDNs to mutate both data
paths and information about communicating sides. An SDN controller is responsible for
randomizing the IPs in packets and selecting its path by using a weighted random path
selection algorithm. By using this newly generated information, the controller sets the flow
tabled in switches along the packets’ way.

In [98], a network address randomization mechanism is introduced that ensures con-
tinuous service availability. To increase uncertainty for the attacker, a large number of decoy
servers is launched alongside the real ones. The address translation is performed on both
types of servers. The system consists of two main components: an authentication server,
which verifies users and provides them with current, real application server IP, and a ran-
domization controller, responsible for deploying decoys and translating network addresses.

The paper [116] proposed an MTD technique by utilizing decoy nodes and IP hopping.
The interaction between attacker and defender has been modeled as an optimal stopping
problem to minimize the tradeoff between security and performance when performing IP
randomization. The time between IP randomization is decided based on the time that has
passed since the last address shuffle and the expected attacker’s speed of detecting false
nodes and compared against cost for the clients to reconnect to the node, denoted by the
number of connections.

The authors of [81] presented an MTD solution for defending the network against
multiple different types of attack. The system is capable of recognizing the threat type
and choosing the most appropriate response, among many possible mutations. The best
approach is calculated from several parameters. Each of the attacks is represented by
a set of indicators, which are used after quantization to calculate the total attack cost.
Similarly, each of the defenses has a set of indicators used to calculate the total defense cost.
The third parameter is defense efficiency describing the effectiveness of a given defense
against a given threat. The last two parameters are defender/attacker payoff, reflecting
the losses/gains during the attack. Given the described parameters, a genetic algorithm
has been trained to find the optimal solution. Such an approach allows for maximizing
the defense chance while minimizing the defense cost. Ref. [74] is an SDN-based MTD
engine, providing nine varied MTD strategies that can be combined together to achieve a
desirable defense effect against diverse threats, like crossfire attacks. Available strategies are
network configuration, route, topology, and DNS service mutation, address shuffling, traffic
reflection and manipulation, network diversification, and network elements migration.
The engine is managed by a controller, which holds all the strategies for the network
and can work both proactively and reactively, choosing the most suitable approach to the
current threat. The decision is then passed on to multiple agents responsible for enforcing
them at the node level.

3.1.6. Other

In [76], an SDN-based MTD technique is presented that uses a multiagentreinforce
ment-learning framework to model the attacker–defender interactions to maximize the
rewards for the attacker. The authors used a Deep-Q learning algorithm to select the most
appropriate action for a given state. Using a neural network-based solution provides more
generality and provides decisions even during states, that were never seen before.

The paper [94] is an SDN-based MTD technique focused on thwarting fingerprinting
attacks. Incoming traffic is monitored by a detection engine for patterns suggesting network
scan attempts, when detected outgoing traffic is then modified to obscure real network
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fingerprints. To help discern malicious from benign communications, the interactions
between attacker and defender were modeled as a signaling game.

A biologically inspired MTD technique based on splitting architecture into smaller
components to increase diversity was presented in [119]. The system is capable of dividing
the software into smaller tasks, each of them generating a set of functionally identical,
but behaviorally different variants that can be interchanged with each other. Depending
on the current requirements, the system can shuffle the entire software stack to confuse
the attacker.

3.2. How to Move

In the surveyed literature, the most common strategy on how to apply the MTD
method was randomness. However, different approaches are also present in research
papers, such as [93,110], which proposed an architecture, deriving new values from the
pre-shared key between host and server. Articles [77,83,102,104,114] proposed calculating
new values based on the current state of the system, possibly also taking past events into
consideration. This could include network parameters, such as current link congestion,
storage space, or even how many times a node had been under attack in the past. Another
trend in the literature regarding strategies to choose new system state is the use of game
theory to model the interactions between attacker and defender [76,80,87,89,94,96,105,111].

3.3. When to Move

We found three main approaches as to when to apply MTD strategies. The most
basic of them is timer-based, when new values are calculated after a certain period of
time, such as [17,109,110] or [75]. It is mostly used for short-lived virtual addresses or
temporal client-proxy assignments. Many MTD architectures were found to rely instead
on event-based triggers for state change, most often after detecting malicious traffic. This
technique seems to be especially well-suited for various MTD architectures against DDoS
attacks, as they are relatively easy to detect [78,103,104]. Other architectures were applying
MTD strategies against reconnaissance attacks, after IDS has detected fingerprinting or
scanning attempts [88,92,96]. We believe this could threaten the defender’s system, when
an attacker exploits new, unknown methods, or is very stealthy. The third approach is a
combination of both previous ones, merging timer- and event-based methods, frequently
applying MTD strategies on its own, but also depending on the current state of the network
or host. MTD strategies can be applied when an active attack has been detected or modified
to occur more often for hosts that are more active in the network. This approach can be
found in [79,82,91,116] or [106]. Lastly, architectures utilizing per packet address or route
mutation apply this MTD strategy to every single packet reaching the switch [73,93,99].

3.4. Testbeds

We categorized the surveyed literature based on the maturity level of the architecture and
how was it implemented. We found a that some of the papers never went past the simulation
stage. These were most often performed by using Matlab [121] or Python [122] or other means.
Some examples from the surveyed literature are [76,80,81,83,85,103,111,114–116,119]. The proposal
in [107] was validated on the Rocketfuel [123] dataset containing network topologies, both from
real ISPs and generated based on those real ones. However, even more of the articles surveyed
have reached the emulation stage. The paper [93] was tested on a real network and [95] used
a laboratory network to verify its architecture. OpenStack was used for [87] to make a small
test environment out of three VMs. The authors of [106] used 10 physical machines with a
gigabit Ethernet switch between them. Similarly, ref. [113] tested its proposal on a few servers
deployed in the cloud. Out of the architectures utilizing SDN, by far the most popular choice to
implement them was by using Mininet [124], although the choice of SDN controllers varied greatly.
Among the most popular controllers used throughout the surveyed literature were POX [125],
used by [94,101,109,112] and Ryu [59] used in [72,74,79,84]. Other choices of controllers include
ONOS [55], which appeared in [73,86,120]. NOX [126] was used in [17,99], Opendaylight [56]
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in [96], and Floodlight [127] in [104]. In [108], the authors wrote one SDN controller in Python.
The remaining part of surveyed MTD architectures were implemented by using various different
available testbeds and cloud services. Jikecloud [128] was used by [78], PlanetLab [129] by [110],
GENI [130] by [77,102], Science DMZ [131] by [88], CloudLab [132] by [90], and finally NS3 [133]
has been used by [75].

3.5. Threat Model

In this section, we look at the assumed threat model in surveyed papers. Most of the
articles had a section dedicated to that topic. For almost all of them, the attacker was located
outside of the network and was launching some expected type of attack. The only one out
of the surveyed papers to explicitly state that it does not deal with insider attacks was [98].
Threat models for this paper also assume that attackers cannot be in the same subnet as the
server and there must exist a way to exchange secret keys between legitimate users and the
server. The paper [108] stated that insider threats are not a problem if a defender launches
the MTD architecture out of TCB, which would prevent administrator-level attacks and that
user-level attacks are not a threat to the system. The article [101] protects against internal
attacks located in an unknown node in the network, as long as SDN controllers are not
compromised. In [115], internal threats are defined as attackers, which were able to uncover
some of the secret proxies by compromising legitimate clients. Both external and insider
attackers that have placed themselves in the network are considered in [82]. Similarly,
external attackers and ones that have managed to infiltrate the network are acknowledged
in [90], but the paper goes one step further and assumes they are dynamic and adaptable,
and capable of learning and improving depending on the defensive actions taken.

3.6. Metrics

This section describes various metrics utilized by the authors of surveyed papers to
evaluate their proposed MTD techniques. There are currently no defined standard metrics
with which those proposals can be tested. This forces the authors to come up with their
own measures as they see fit. This in turn makes it much harder to compare MTD papers
to one another. We’ve looked at the MTD metrics used to evaluate proposed techniques
and attempted to group them together under common categories.

Attack success probability [17,72,73,77,83,85,92,93,100,102,103,109,111,116,117,120]:
This metric describes a chance for the attack to be successfully performed. We’ve de-
cided to make this an umbrella term for both the attacker and defender perspective, as they
can be viewed as the two sides of the same coin. In [83], the authors measure the number
of potential victims and success rate of eavesdropping and DDoS attacks independently.
The paper [100] considers the possibility of an attacker obtaining complete communication
data. The scan success rate is measured in [93]. In [72], nodes are measured for their
minimal survival rate and the average lifetime of targets. The paper [109] calculates ratios
of infected/uninfected hosts out of a total host pool. The articles [111,116] measure the
probability of identifying real nodes from decoys by the attacker. The technique proposed
in [17] is evaluated by using the number of infected hosts in a network. In [92], the per-
centage of information disclosed to the attacker is used as a measure. The paper [103]
measures the decrease in the number of innocent victims. Ref. [75] uses the percentage
of saved benign clients, and the number of shuffles to save benign clients is used in [113].
The ratio of missed hosts during a reconnaissance attack or the infected hosts in a worm
attack is used in [95]. This is also true of [101], in which the authors named these metrics
host detection/infection rate depending on the attack type. In [114], the authors use asset
survival rate as a measure, which describes a percentage of defenders’ assets that have not
yet been captured by the attacker.

Performance overhead [17,73,74,77,83,90,91,93,95,98–104,109,110,115,118]: This metric
describes additional overhead introduced into the system after applying the proposed
MTD technique.

• Network based performance metrics:
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– Packet overhead [118]: Measures the increase of packet size after applying
MTD techniques.

– Packet Loss [77,91,118]: This metric shows how many packets have been lost in
the network when using proposed techniques.

– Latency (delay) [73,74,90,91,95,98–101,104,109,110,115,118]: Measures the change
in time it takes for a packet to reach its destination.

– Routing overhead [17,95,99,101,109]: This metric describes the overhead intro-
duced by changes to network routing rules introduced by the applied MTD
technique. In [109], the authors measure routing table size and convergence time.
The number of flow rules in switches generated by the MTD technique is used as
a metric in [17,95,101]. The solving time for route selection is measured in [99].

– Throughput [74,93,98,102,104,110,115]: Shows change in amount of data flowing
in the network.

– Address space overhead [17,109]: Refers to the required number of network
addresses needed for mutation space.

– DNS [109]: Measures the change in number of queries to DNS.
– Traffic dispersion [83]: Measures per-flow and per-node traffic dispersion.
– Hop count [73]: This metric shows the change in hop count between two hosts

due to changed paths.

• Computational overhead [73,77,90,100,109]: Measures the amount of additional calcu-
lations required by the MTD technique. In [73,77,100], it is tracked as a CPU utilization.
The authors of [90] calculate the number of signatures that have to be precomputed
in their proposal. The paper [109] measures the time required to find a solution by a
satisfiability module theories solver required to plan the MTD mutations.

• Proxy count [103]: This metric calculates the number of proxies required to isolate 90%
of innocent users from attackers.

Address Entropy [118]: This metric shows how much harder the hosts using MTD
address shuffling are to find in the network, compared to static hosts.

Quality of experience [102]: This measures the subjective human satisfaction with service
before attack, during which and when it is repelled it uses the proposed MTD technique.

Number of dropped connections [111,116]: This shows the number of connections that
are dropped during each network randomization and that need to be later restored.

Defense payoff [81]: This metric reflects losses avoided by the attacker and is split into
two submetrics called attacker and defender cost. The defense payoff is then a total cost of
all attacks and reduces the total cost to the defender.

Three metrics have been introduced in [112] to measure the effectiveness of MTD
techniques called deterrence, deception, and detectability. Each of them quantify one of the
mitigation vectors used.

• Deterrence—Quantifies the cost incurred by the attacker expressed as a time required
to complete an attack compared with legacy network.

• Deception—Quantifies the ratio of missed targets, or the percentage of resources saved,
due to applied deception techniques.

• Detectability—Measures the ratio of illegitimate actions committed during an attack,
like probing nonexisting destinations in an MTD network compared with a legacy
network.

The authors of [108] use a set of MTD metrics first proposed in [134]:

• Unpredictability—Requires that defended assets must be moved in a manner that
seems random to clients without proper authorization.

• Vastness—Guarantees that the destination space must be large enough so that it is
infeasible by an attacker to find its target by means of an exhaustive search.

• Periodicity—Ensures that the defended assets are moved frequently enough so that
any data gathered by an attacker is quickly expired.
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• Uniqueness—Guarantees that the system can authorize each client, in a way that
cannot be shared with any other client, after it meets preconditions set by that system.

• Revocability—Provides a way for the system to revoke or expire once granted autho-
rization without causing disruption to other clients.

• Availability—Guarantees that once a client is authorized, it can successfully reach
its target. This also requires the MTD technique to not introduce any new denial-of-
service vulnerabilities.

• Distinguishability—Allows the system to separate trustworthy clients from untrust-
worthy ones.

Another set of metrics has been proposed in [86]:

• Diversification—Requires the system to support multiple configuration choices.
• Adaptations—Ensures that the system supports both the the movement within the sys-

tem that does not change the network graph’s shape and size as well as the movement
that does change it.

• Randomization—This metric covers the unpredictability of both movement and net-
work configuration transformations.

• MTD Entropy—Measures the effectiveness of MTD defense solution.
• Ease of Deployment—Measures whether the system supports platform independence

as well as protects against a large set of cyberattacks.
• Timelines—Ensures the system is capable of performing MTD movement within a

given time period.
• Scalability—Measures the capability of the system to handle huge amounts of clients,

IP prefixes, and matching rules.
• Wide-area load balancing—This metric describes the system’s ability to disperse attack

traffic over available resources.
• Cost consciousness—Measures the cost to deploy and run proposed MTD defense.

4. Discussion
4.1. Application to Existing Networks

In this section, we want to discuss how current state-of-the art MTD techniques
integrate with existing network models. In Section 3.4 it can be observed that almost all of
the surveyed MTD articles were in either simulation or emulation phase, whereas almost
none was tested on a real scale network. Two exceptions are [93], which tested on two
subnets inside a university campus network, and [95], which used a laboratory network
comprised of 36 hosts split between three subnetworks to verify the architecture. Moreover,
live network implementation of [118] has been presented in [135] on a network of 30,000
IPv6 hosts. This shows a potential gap in most of the state-of-the art MTD concepts which
were never properly validated inside a realistic environment. Together with the huge
variety in used test setups, this makes it exceptionally hard to compare different techniques
against one another. This might factor in a slower widespread adoption of MTD techniques
in large-scale enterprise networks.

Surveyed SDN-based MTD techniques were mainly based on full SDN networks.
Although we were unable to find any source to show how popular this solution is inside
huge enterprise networks, we believe most of them still rely on more traditional solutions.
This adds an another layer of complexity, uncertainty, and cost to the implementation of
surveyed MTD techniques because the networks would have to be reworked severely in
order to accommodate them. This might potentially outweigh the benefits the additional
security MTD would provide. One solution to this would be to implement a hybrid SDN
network, in which both traditional and SDN paradigms coexist. Hybrid SDN architectures
were classified in [136]. One example of such a network is to allow an SDN controller
to interact with legacy hardware and might even take full management over them. This
might serve as a first step in organization before introducing SDN data plane in place of
existing hardware. Another possible solution is to place the SDN nodes only on the edges
of the network, passing the responsibility for all outside traffic onto the SDN controller.
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Another notable architecture introduces SDNs by region, creating islands based on the
same paradigm and connected via a gateway. Although this solution might allow one to
introduce SDN-based MTD techniques into legacy networks, much work is required to
assess how much of the claimed benefits those techniques would retain, as well as what
would be the performance impact on those networks. More on existing approaches to
hybrid SDNs can be found in [137].

4.2. Hardware-Accelerated MTD

This section discusses the potential applications of hardware acceleration to MTD
techniques. We see this as a promising future direction for implementing MTD in realistic
scenarios. We have identified two main ways hardware acceleration could fit in MTD.

• Improved introduction to established networks. With the help of specialized devices,
MTD could be introduced simply and without major disruption to existing networks.
Such hardware should require little configuration to work properly to reduce the
chance of human error during installation and provide expected security levels out of
the box.

• Enhancing MTD in networks already defended by MTD. In this scenario, the ad-
dition of hardware accelerators to offload MTD-related computations can improve
both network performance and MTD defense. Such devices could take away addi-
tional operations needed to operate MTD from existing infrastructure, thus increasing
throughput, latency, or other parameters of the network. Additionally, they might
be added to improve defensive parameters of MTD, like more frequent parameter
change, with no negative impact to network user experience.

Over the last several years, a significant development in the programmable device
market has been observed [138]. This stems from the specific needs created by architects
of telecommunications network infrastructure and data centers. Optimizing infrastruc-
ture for the performance of a given solution often requires the use of properly tuned
algorithms, which is not possible when using components of a classical network infras-
tructure [139]. The development of programmable, high-performance system-on-a-chip
(SoC) solutions provides technical possibilities to build highly programmable, and thus
more flexible, devices. From the host OS perspective, programmable devices improve
separation of infrastructure from tenant and offload infrastructure [140]. The numerous
advantages of this approach have resulted in the creation of a new term in the field of
technology—infrastructure processing unit (IPU)—which is a programmable network
device that intelligently manages system-level infrastructure resources by securely acceler-
ating those functions. Among the fastest growing segments of the IPU market are smart
network interface cards (SmartNIC) [140] and programmable switches [141]. The authors
believe that optimizing performance is not the only use case for programmable network
devices. IPU hardware can also become a powerful platform for dedicated, tailor-made
security solution implementation [142].

By analyzing papers surveyed in Section 3, we were able to identity few areas that
show particular promise to be accelerated by using hardware solutions.

• Address and port mutation
• SDN-based MTD
• Route mutation
• Host migration
• Algorithms

Address and port mutation appear to be ideal candidates for hardware acceleration.
The most promising examples in this category are [17,84,85,90], which implement real to
virtual address and/or port translation in switches for every packet. This operation can be
greatly accelerated by using programmable switches. After the controller writes mutation
rules into them, this device allows one to perform lookup and modify the packet in near
real time, without much impact to overall latency in the network. Similarly, as most of
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the surveyed papers are utilizing SDN, the use of SDN-enabled hardware switches would
provide much better performance than any software solutions. Such solutions merge
the best of both worlds, providing high-speed, low-latency data throughput, while also
separating the data plane from the control plane.

A very promising improvement idea for higher speed MTD schemes might be to
implement algorithms that are part of control logic in hardware circuits. One solution
might be to use application-specific integration circuits (ASIC), which provide much faster
computation times than software implementation, but it comes at longer design times
and higher implementation costs. ASICs are also much less flexible, as each change in
logic requires a redesign of the circuit. A superior solution for this case might be field-
programmable gate array (FPGA), which allows for quick reprogramming in the field by
using hardware design languages (HDL) to implement logic. Although FPGAs don’t offer
as high performance as ASICs, they provide much greater flexibility when it comes to
development. To get the most of an implemented MTD solution, one should use both
types of devices. FPGA might be ideal for offloading proprietary MTD control logic, while
off-the-shelf ASIC-based hardware accelerators can greatly enhance the performance of a
more generic type of utilized algorithm. As many of the surveyed articles use randomness
to obtain a new system state, specialized hardware could benefit them by providing a
hardware random number generator (HRNG), increasing unpredictability of the data while
working at a faster rate than software solutions. Adequate hardware accelerators can also
be applied for increased computational rates of cryptographic algorithms.

4.3. Security of MTD Techniques

For the next topic of the discussion, we want to take a look at the security benefits
of MTD. Although many articles present impressive results in simulated scenarios, it is
unclear how these solutions would behave in real-life applications. We’ve identified several
areas in the field that might help researchers understand how MTD affects network security,
but are currently not explored enough.

• Lack of clearly defined and realistic threat model: In Section 3.5, we have presented
our findings on threat models defined in surveyed papers. We found that in many
cases, it might be too simplistic, and thus not realistic enough. These models often
boil down to assuming that an attacker is located outside the network and launches
some specific kind of attack. A common pitfall we’ve noticed across the literature was
assuming the attacker actively engages with the network, most commonly by probing
IP addresses. In real networks, this kind of behaviour would likely be quickly picked
up by existing sensors and such an incident would alert defender’s security team.

• Protection against insider threats: Although closely tied to the previous point, insider
threats deserve a mention on their own. Cybersecurity and infrastructure security
agency defines insider threats as potential for people with elevated access and knowl-
edge in the organization to harm it [143]. According to a report by IBM, malicious
insiders were responsible for 5 to 29% of the attacks, depending on the industry [144].
Although this is a serious threat to computer systems, most MTD papers never con-
sider their impact on the security of the scheme. It is unclear how damage can be
caused by a malicious employee who leaks the real IP of a machine protected by
constant address mutation or MTD algorithm details.

• Lack of realistic testing scenarios: In Section 3.4, we have presented test methods that
were used throughout surveyed papers. As further stated in Section 4.1, not many of
those proposals were actually tested on real hardware. Because of that, it is almost
impossible to assess the impact that proposed MTD techniques might have on the
availability of network resources to users. Particularly vulnerable might be protocols
that require establishing a session, as they might be negatively affected if mutations
occur mid-session. Another issue might be the potentially detrimental impact of MTD
on overall performance of the network, which might not be noticeable in a simplified,
simulation-based environment.
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• Lack of understanding how security levels behave after MTD have been enabled for a
long periods of time: Figure 2 shows how attackers’ knowledge of a system, which
periodically mutates in a limited reconfiguration space, slowly increases over time.
Analyzing the surveyed articles, it is not clear enough to conclude for how long these
systems would actually work against a determined attacker. State actors might have
the funding necessary to observe the system for months or years, slowly gathering
intelligence about the network. More research is required to help understand if
proposed techniques have a large enough mutation space to effectively protect against
this kind of threat over prolonged periods of time.

• Lack of consideration of alternative attack vectors: The next security gap we have
identified is the lack of flexibility of surveyed MTD techniques. This proposal often
protects against one particular type of attack, but because the aim of MTD is to
overcome the attackers’ asymmetric advantage over the defender, these proposals
are just not enough. In the case of address mutation MTD schemes, if the attackers
purely operate on IP addresses, these techniques might indeed protect the network.
However, if the attacker tries to implement more sophisticated attack vectors, like
packet analysis, it might overcome this defense completely. We propose that more
research time needs to be spent on flexible MTD schemes, which are able to protect
against a wide range of threats.

4.4. Metrics

In Section 3.6, different metrics proposed by authors throughout surveyed literature
were presented. Most commonly, these could be grouped into one of two main categories:
the performance-based category and the attack parameter category, which includes the
chance of success, or cost, for both attackers and defenders. In general, performance-
based metrics might be a great benchmark, showing how a scheme might impact network
parameters. The same, however, does not apply to the second category, as they seem
particularly difficult to calculate in real-life scenarios. Moreover, every proposed scheme
is evaluated by using different metrics. It is therefore crucial that better benchmarks for
assessing the security of MTD schemes are developed. Ideally, they should then be adopted
by future authors in the field. The benefit of this can be twofold—different schemes could
be easily compared against one another, and engineers could use them to pick one that best
suits their needs.

4.5. Research Directions

After reviewing a large number of papers related to MTD, it is apparent that extra
work is required in different areas in this field. Based on findings from surveyed literature,
presented below is the list of topics that authors of this paper believe are important to be
researched further.

• Better metrics need to be developed—As shown in Section 3.6, many of the reviewed
papers use some performance-based metrics which provide a solid ground on which
the proposed technique can be evaluated. However, there is an apparent lack of
metrics that provide good understanding of the security level those proposals provide
to the network. Although many of the articles use the attack success probability
metric, there is a huge variance in both the attacker and how this metric is calculated.
Moreover, the proposed attacker may often not be a good representation of a threat
to the network in real-world applications. As such, more work needs to be done to
provide a set of common and universal metrics that can be applied to any proposed
MTD techniques so that they can be easily compared against each other.

• Application of MTD to existing networks—As discussed in Section 4.1, currently
there is little work done to assess the applicability of MTD to existing networks.
Of the surveyed papers, the majority were tested on a simulator or on small-scale
implementations in local networks. There needs to be more research of applications of
these MTD techniques in large-scale corporate networks, especially in aspects like the
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initial costs required in terms of both money and time spent reconfiguring the network,
the decrease of general network performance, or the impact to network stability.

• Hardware-accelerated MTD—Closely tied to the previous point, we see great potential
in the use of hardware-accelerated MTD to protect the network. Although such
solutions don’t necessarily increase security on their own, they provide significant
performance improvement over typical computational devices, while being often
more powerfully effective and requiring less management. One example of such an
accelerator is SmartNIC, which is a type of a programmable device, based on an ASIC
or FPGA [145]. These are already utilized in data centers for accelerating SDNs [146]
or security-related tasks like DDoS protection [147,148].

• Realistic testbeds—During our research, we identified the need for better testbeds that
allow one to simulate MTD in conditions that are as close to real as is feasible. This is
especially important when it comes to simulating realistic attackers to measure the
effectiveness of a given MTD technique. Although there is a significant amount of
testbeds that allow one to simulate even large networks (especially for SDNs) and that
offer a great deal of configuration possibilities, replicating realistic traffic on them is
much harder. A trivial solution for this problem is to replay the saved packet traffic
from files, but this comes with issues of its own. Perhaps the best source of them might
be the save the packets from the network that we are going to implement the MTD in,
but this might not always be possible. Otherwise one could use many of the traffic
files shared for free on the Internet. No matter the source of the file, they often require
a lot of storage space that further needs to be multiplied by the number of hosts on
the network if one wants different traffic from each of the machines. On top of that,
extra work is required to replay packets from protocols that establish a session, like
transmission control protocol (TCP). This shows the need to create an easy way to
configure a testbed for MTD validation with capabilities of a packet generator that is
able to produce different types of traffic.

• Economics of MTD—Another poorly researched aspect of MTD is the overall eco-
nomics of this technique. More work needs to be done to understand the cost of
running the MTD technique across its lifetime, in terms of initial implementation costs,
the work and hardware required, and the running costs of this solution. On top of
that, closely tied to the previous two research directions, more work is necessary to
help define the long-term financial benefits offered by enhanced protection by MTD
compared with unprotected network.

• Application of MTD to kill-chain phases other than reconnaissance—Almost all of
the surveyed papers were focused on disrupting an attacker’s reconnaissance actions.
An interesting research direction might be to assess viability of applying MTD to
later phases of the Intrusion Kill Chain Model presented in Figure 1. The potential
application of MTD might be an “Action on Objective” step, which would aim to
prevent attackers from exfiltrating the stolen data.

• Hybrid MTD—The last research direction that we identified is MTD utilizing multiple
strategies to protect against a wide range of attackers. During our survey, we identified
only individual papers utilizing this technique, but we believe it has great potential
against real-life threats. However, more work needs to be done to identify when and
how certain strategies need to be applied to optimize the protection and minimize the
impact to the network.

5. Conclusions

Moving target defense shows the potential to completely change the approach to net-
work security. This security paradigm has inspired a large number of research publications
in various stages of maturity—from theoretical proposals to implemented techniques. The
first part of this paper was aimed at explaining the concepts behind the MTD paradigm.
We discussed attack surface, examples of MTD taxonomy, and attack types that MTD
might help defend against. We also introduced SDN and NFV as two promising network
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architectures that can be utilized for implementing various MTD techniques. In the second
part of the article, we have surveyed existing literature to identify current trends, as well as
their advantages and disadvantages in order to provide guidance for further research work
in the area. We focused on what, when, and how to move, as well as the used testbeds,
threat models, and proposed metrics. During our research, we have discussed several
shortcomings of currently available MTD schemes and identified future research directions
in the field in the last part of this survey.

In general, we believe MTD as an area lacks maturity. There are no standards and no
universal metrics that can be used to compare different techniques. We believe this might
discourage both engineers and company decision-makers from adopting this paradigm.
If MTD is to ever become widespread, more research is required to show how to implement
it in existing large-scale networks, with a special focus on performance and costs. Realistic
proof of concepts are required to show that MTD schemes are viable and working as
expected, if they are to work alongside or even replace current defenses in network systems.
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Abbreviations
The following abbreviations are used in this manuscript:

MTD Moving Target Defense
NFV Network Functions Virtualization
SDN Software-Defined Networking
DOS Denial of Service
DDoS Distributed Denial of Service
OSINT Open Source Intelligence
ACM Association for Computing Machinery
IoT Internet of Things
NAT Network Address Translation
DNS Domain Name System
MAC Medium Access Control
IP Internet Protocol
TTL Time to Live
TCB Trusted Computing Base
UDP User Datagram Protocol
BGP Border Gateway Protocol
CVSS Common Vulnerability Scoring System
IDS Intrusion Detection System
VM Virtual Machine
OS Operating System
ISP Internet Service Provider
HMAC Keyed-Hash Message Authentication Code
QoE Quality of experience
NTM Network Topology Management
VN Virtualized Network
NM Network Monitoring
TMC Topology Mutation Control
APT Advanced Persistent Threat
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TCP Transmission Control Protocol
HRNG Hardware Random Number Generator
ASIC Application Specific Integration Circuits
FPGA Field-Programmable Gate Arrays
HDL Hardware Design Languages
SoC System-on-a-Chip
NIC Network Interface Card
IPU Infrastructure Processing Unit
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