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Abstract: Visual simultaneous localization and mapping (SLAM) algorithms in dynamic scenes can
incorrectly add moving feature points to the camera pose calculation, which leads to low accuracy
and poor robustness of pose estimation. In this paper, we propose a visual SLAM algorithm based on
object detection and static probability update strategy for dynamic scenes, named YKP-SLAM. Firstly,
we use the YOLOv5 target detection algorithm and the improved K-means clustering algorithm to
segment the image into static regions, suspicious static regions, and dynamic regions. Secondly, the
static probability of feature points in each region is initialized and used as weights to solve for the
initial camera pose. Then, we use the motion constraints and epipolar constraints to update the
static probability of the feature points to solve the final pose of the camera. Finally, it is tested on the
TUM RGB-D dataset. The results show that the YKP-SLAM algorithm proposed in this paper can
effectively improve the pose estimation accuracy. Compared with the ORBSLAM2 algorithm, the
absolute pose estimation accuracy is improved by 56.07% and 96.45% in low dynamic scenes and
high dynamic scenes, respectively, and the best results are almost obtained compared with other
advanced dynamic SLAM algorithms.

Keywords: Visual SLAM; dynamic scene; YOLOv5; K-means clustering; probability update

1. Introduction

Simultaneous localization and mapping (SLAM) is to estimate camera pose and build
a map of the environment simultaneously during motion from sensor data collected by the
robot. After decades of development, some very mature SLAM algorithms have emerged,
such as PTAM [1], LSD-SLAM [2], DSO [3], ORB-SLAM2 [4], and VINS Mono [5], which are
basically based on the assumption of static environments. However, in practical applica-
tions of robotics, motion scenes are more common than static scenes, and most application
scenes encounter dynamic objects, e.g., pedestrians, vehicles, animals, etc. Dynamic objects
can introduce anomalous “outliers” that disrupt the normal correspondence between image
features, resulting in significant drift in camera pose. Some optimization algorithms, such
as random sample consensus [6] (RANSAC) and graph optimization, can filter out a small
number of weak dynamic features in the environment as outliers. These methods can
achieve certain results for low-speed motion with a small number of outliers. Though, they
are not able to process dynamic features very well for high-speed complex motion scenes,
and the visual SLAM system might fail to track and localize. Therefore, it is particularly
important to study SLAM algorithms in dynamic environments.

In order to solve the visual SLAM problem in a dynamic environment, the traditional
method is to eliminate dynamic objects through geometric constraints and set a threshold
according to the size of the reprojection error to distinguish static objects from dynamic
objects. However, this method has two problems. (1) The method cannot distinguish
the residuals caused by moving objects from those caused by mis-matching. (2) The
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segmentation threshold is difficult to set; if the threshold set is too large, the static features
will be mis-rejected, and if the segmentation threshold set is too small, it is difficult to
completely reject the dynamic features in the environment. Therefore, the method is more
suitable for a low dynamic environment. Additionally, in a high dynamic environment, the
accuracy of dynamic feature detection is low, and the accuracy of pose estimation is poor.

In recent years, with the development of computer vision and deep learning, semantic
constraints have been widely applied to visual SLAM problems in dynamic environments.
The semantic constraint approach mainly applies semantic segmentation and target de-
tection to obtain semantic information in the environment. By identifying and removing
potential dynamic objects, the performance of visual SLAM in dynamic scenes can be
greatly improved. The semantic segmentation algorithm can provide fine pixel-level object
masks, but its real-time performance is poor. The improvement of segmentation accuracy
and robustness often comes at the cost of huge computational cost. Even then, the seg-
mentation boundary of an object cannot be very accurate. The target detection algorithm
can quickly obtain the object frame of an object with low computational cost, but it cannot
obtain accurate object boundaries, and if the features in the dynamic object frame are
directly removed, it will lead to the false removal of some static features. Moreover, there
are three problems with semantic constraints. (1) The actual motion is stationary, however,
the algorithm cannot judge a semantic prior is a dynamic object or not, which may lead
to the false removal of some static features. (2) It can only handle known objects labeled
in the training set of the network but may still fail in the face of unknown moving objects,
which leads to the missed detection of some dynamic features. (3) It deletes all dynamic
features of semantic information discrimination and does not calculate the pose. This will
lead to a reduction in constraints in pose calculation, knowing that dynamic features can
still provide weak constraints for pose calculation. If it is deleted directly, it will lead to a
decrease in the accuracy of pose estimation.

To address the above problems, in order to improve the pose estimation accuracy
and robustness of the SLAM system in a dynamic environment, this paper proposes a
YKP-SLAM algorithm in a dynamic environment. On the basis of ORBSLAM2, YKP-SLAM
adds three major processes: YOLOv5 target detection, improved K-means clustering, and
probability updating strategy. Our experiments prove that the YKP-SLAM algorithm
can effectively reduce the tracking error and improve the accuracy and robustness of
the SLAM system, both in a slow-moving dynamic environment and in a fast-moving
dynamic environment.

The main contributions of this paper are as follows:
(1) We incorporate the lightweight YOLOv5 object detection algorithm into the SLAM

system, which can quickly and accurately provide accurate semantic priors for
subsequent operations.

(2) A K-means clustering algorithm specifically for depth images is proposed, which
can select the number of clusters adaptively and can segment dynamic object contours
from dynamic object frames quickly and accurately.

(3) A method for initializing static probability is proposed. The image is divided
into three regions by combining YOLOv5 and improved K-means clustering. Then, the
initial poses are solved by probability initialization of feature points in each region sepa-
rately. More accurate initial poses are provided for the subsequent motion constraints and
polar constraints.

(4) A probability update strategy based on motion constraints and epipolar constraints
is proposed. Probability updates are performed for all feature points in the image. Then,
all feature points are added to the pose calculation to solve the final pose.

2. Related Work
2.1. Dynamic SLAM Based on Traditional Method

Traditional dynamic SLAM algorithms are mainly based on geometric constraints to
filter out dynamic feature points in the environment. For example, Zou [7] et al. project
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feature points from the previous frame onto the current frame and calculate the 2D repro-
jection error of matching points with the current frame and classify feature points into
static and dynamic feature points according to the magnitude of the reprojection error.
Wang [8] et al. detected the matched outlier points in two adjacent frames by epipolar
constraint and then fused the clustering information of the depth map provided by RGB-D
cameras to identify the moving targets in the scene. Dai [9] et al. proposed a static object
geometry prior method in a feature-based SLAM framework. The algorithm utilizes the
connectivity of map points to separate moving objects from the static background, thus
reducing the impact of moving objects on the pose estimation.

In addition to geometric constraints, optical flow methods are also used to distinguish
dynamic and static features. For example, Klappstein [10] et al. defined the likelihood
of “moving objects in the scene” based on the motion metric calculated by optical flow.
Fang [11] et al. improved the optical flow method to detect dynamic targets based on point
matching techniques and uniform sampling strategies and introduced a Kalman filter to
enhance detection and tracking. FlowFusion [12] estimated the optical flow of two adjacent
frames through a PWC-Net [13] network, and at the same time, estimated the camera pose
based on the intensity and depth of the two adjacent frames and then used the estimated
optical flow and camera motion to compute the 2D scene flow and finally used the 2D
scene flow for dynamic feature segmentation.

2.2. Dynamic SLAM Based on Semantic Constraints

In recent years, deep-learning-based image semantic segmentation and target recogni-
tion have been widely used, and the detection methods have evolved greatly in terms of
efficiency and accuracy. Many researchers have tried to solve the dynamic SLAM problem
by removing potential dynamic objects through semantic tagging or target detection prepro-
cessing. For example, Yang [14] et al. used the target detection network Faster R-CNN [15]
to detect dynamic objects and then performed geometric matching with the current frame
and keyframes to determine whether they are dynamic objects. Yu [16] et al. proposed
the DS-SLAM algorithm, combining a semantic segmentation network and optical flow
method to provide a semantic representation of octree maps, thus reducing the dynamic
objects. The DynaSLAM proposed by Bescos [17] et al. uses a combination of multi-view
geometry and Mask RCNN [18] to detect and filter dynamic targets. ZHANG Jinfeng [19]
et al. used the target detection network YOLOv3 [20] to filter dynamic feature points in the
scene, which effectively reduced the trajectory error of the SLAM system. Zhong [21] et al.
proposed Detect-SLAM combined with the target detection network SSD [22] to identify
dynamic targets, such as pedestrians and vehicles, in the environment as a priori dynamic
targets and then filter the feature points on the a priori dynamic target to improve its
localization accuracy. Blitz-SLAM [23] obtains the mask of the object by BlitzNet [24], then
completes the mask by depth information, and finally classifies the static feature points
and dynamic feature points by epipolar constraints.

3. Materials and Methods
3.1. System Architecture

The algorithm framework of YKP-SLAM is shown in Figure 1. Based on ORBSALM2,
we added the YOLOv5 target detection algorithm and the improved K-means clustering
algorithm to the fore-end and added a complete probability update strategy to the back-
end pose calculation. The algorithmic flow of YKP-SLAM can be described as follows.
Firstly, the RGB image is detected by YOLOv5 target detection algorithm to obtain the
dynamic object frame, and at the same time, the ORB [25] feature points are extracted from
the RGB image. Secondly, the depth values of the pixel points are clustered within the
dynamic object frame by the improved K-means clustering algorithm combined with the
depth image. The results of YOLOv5 target detection and K-means clustering are used
to segment the image into static regions, suspicious static regions, and dynamic regions,
initialize the static probability of feature points within each region, and add them as weights
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to the camera pose estimation to calculate the initial camera pose Tcw1. Finally, the static
probability of feature points is updated by the motion constraint and the epipolar constraint,
and the second stage pose Tcw2 and the final pose Tcw of the camera are solved, respectively.
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Figure 1. The algorithmic framework of YKP-SLAM. In the image, green points represent static
points, blue points represent suspicious static points, red points represent dynamic points, and yellow
points represent points where the probability changes.

Of course, we also considered the failure of the YOLOv5 algorithm. When YOLOv5
fails, the dynamic object frame cannot be obtained. Then, at this time, we perform feature
matching between the feature points in the current frame and the dynamic feature points
in the previous frame. Mark the successfully matched feature points of the current frame as
dynamic feature points, and mark the remaining feature points as static feature points. The
only difference from a normal operation is that the characteristic points are divided into
three categories in a normal operation, and the characteristic points in a fault operation
are divided into two categories. The subsequent static probability initialization method
and probability update strategy are the same. The feature point classification process of
YOLOv5 fault runtime is shown in the purple dashed box in Figure 1.

3.2. YOLOv5 Target Detection

You Only Look Once (YOLO) is a regression-based target detection algorithm. It is the
pioneering work of the one-stage method. It was released by Ultralytics on 10 June 2020.
It is one of the most widely used target detection algorithms. It solves target detection
as a regression problem and directly obtains the bounding box position and classification
of the predicted object from an input image. It ensures the accuracy while taking into
account the real-time performance and achieves very good speed and accuracy. YOLOv5
proposes a total of 4 network models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The
network structure of the four models is the same; the difference is that the depth_multiple
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and width_multiple parameters can be used to control the depth of the model and the
number of convolution kernels, respectively. Among them, YOLOv5s is the network with
the smallest network depth and the smallest feature map width. It occupies only 7.5 M
of memory. Its detection speed on TeslaP100 reaches 140FPS, which fully meets real-time
performance. The other three are continuously deepened and widened on this basis, with
improved accuracy and slower speed.

In order to meet the real-time nature of the SLAM system, the fastest YOLOv5s
algorithm is adopted, which is embedded in the fore-end of the SLAM system, to perform
target detection on each RGB image passed by the camera and obtain the bounding box
position of the object and its category. In the bounding box, the people and animals are
located as dynamic object boxes DB. The target detection results of YOLOv5s are shown
Figure 2. The yellow frame in Figure 2 is the dynamic object box. It can be seen from the
figure that whether the person is on the front, side, back, or only half of the body is exposed,
YOLOv5 can be accurately framed.
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3.3. Improved Adaptive K-means Clustering Algorithm

Although the YOLOv5 target detection algorithm can quickly and accurately locate
the bounding boxes of dynamic objects, it cannot obtain an accurate dynamic object mask.
Therefore, this paper proposes an adaptive K-means clustering segmentation algorithm
based on depth images, which can segment dynamic objects from the dynamic object box
DB quickly and accurately.

The K-means algorithm is an unsupervised clustering algorithm, which is easy to
implement and runs fast. However, the traditional K-means clustering algorithm pre-
specifies the number of clusters and randomly initializes the cluster centers according to
experience, which is likely to cause too many iterations of the algorithm or misclassification.
Since the number of clusters is artificially set in advance, the direct application of the
traditional K-means clustering algorithm to depth image clustering will have the following
two problems:

(1) If the number of clusters set is too large, a complete dynamic objects would be di-
vided into multiple categories, which might cause incomplete segmentation of
dynamic objects.

(2) If the number of clusters set is too small, the dynamic objects cannot be separated
from the static background.

In order to solve the above problems, an improved adaptive K-means algorithm is
proposed in this paper. The algorithm can automatically generate the optimal number
of clusters and the initial cluster centers, so that dynamic objects can be segmented from
the static background more quickly and accurately. The steps of the improved K-means
algorithm are as follows:

(1) Take out the depth image IDBi in the dynamic object frame DB and count the total
number of pixels M and the maximum pixel depth Dmax in IDBi.
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(2) Solve the histogram of the depth image IDBi and divide the data of the histogram
into k segments:

k =
Dmax

T
(1)

where T is the segmentation threshold, whose size can determine the number of clusters.
Since the depths of dynamic objects do not change much in the two adjacent frames,
we first use the depth mean Dp of dynamic feature points in the previous frame as the
prior of the depth value of dynamic objects in the current frame. Then, the ratio λ of the
number of pixels in the dynamic object in the previous frame to the number of pixels
in the dynamic object frame is calculated. Finally, find the neighborhood U(Dp, δ) ={

x | Dp − δ < x < Dp + δ
}

of point Dp in the histogram of the depth image IDBi, so that
the number of pixels in the neighborhood is equal to λM; then, the size of the segmentation
threshold T is the range of the neighborhood.

T = 2δ (2)

(3) We take k as the number of clusters for subsequent K-means clustering and take the
maximum depth value of each piece of data as the initial cluster center for each category.

(4) The K-means clustering algorithm obtains a depth image segmentation graph
based on the number of clusters calculated in step (3) and the initial cluster centers.

Since the depth values of dynamic objects do not change too much within the two
adjacent frames, the depth mean value Dp of dynamic features in the previous frame is
used as a criterion, and then, the pixel depth mean value of each cluster in the dynamic
object box is solved, and the cluster with a pixel depth mean value closest to the depth
mean value of dynamic points in the previous frame is marked as a dynamic region; the
other clusters in the dynamic object box are marked as suspicious static regions, and the
regions outside the dynamic object box are marked as static regions. The whole dynamic
region classification process is shown in Figure 3.
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The results of K-means clustering are shown in Figure 4. From the figure, we can
see that the improved K-means clustering algorithm proposed in this paper can segment
people from the background completely and does not lead to mis-segmentation.
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the dynamic region, and the other colored regions are suspicious static regions. (a–d) represents the
clustering results of the improved K-means clustering algorithm in several different scenes.

3.4. Initialize the Static Probability and Calculate the Initial Camera Pose

In this paper, the YOLOv5 target detection algorithm and the improved adaptive
K-means clustering algorithm are used to segment the image into dynamic regions, suspi-
cious static regions, and static regions. In order to obtain a more accurate initial pose, the
feature points in different regions are assigned static probability initial values of

Static probability


ωa = 0 Dynamic region
ωb = 0.5 Suspicious static region
ωc = 1 Static region

(3)

These initial static probabilities are then used as weights for the pose calculation,
and the initial pose Tcw1 for the current frame is calculated according to the weighted
minimization reprojection error.

The structure of the camera pose Tcw1 is

SE(3) =
{

Tcw1 =

[
Rcw1 tcw1
0T 1

]
∈ R4×4 | Rcw1 ∈ SO(3), tcw1 ∈ R3

}
(4)

where Rcw1 is the rotation matrix, and tcw1 is the translation vector.
Tcw1 can be solved by Equation (5).

Tcw1 = argmin(
Na
∑

a=1
‖KTcw1xa−pa‖2

∑1
+

Nb
∑

b=1
‖KTcw1xb−pb‖2

∑2
+

Nc
∑

c=1
‖KTcw1xc−pc‖2

∑3
)

(5)

Among them
∑1 = ωa × n× E
∑2 = ωb × n× E
∑3 = ωc × n× E

(6)

Where, pa, pb, pc are the 2D pixel point coordinates of dynamic feature points, suspi-
cious static points, and static points in the current frame, respectively, while xa, xb, xc are the
coordinates of their corresponding matching 3D map points. ∑1, ∑2, ∑3 is the information
matrix of feature points in each region, n is the number of layers of the image pyramid
where the current feature point is located, and E is the unit matrix of 3× 3. Na, Nb, Nc are
the numbers of dynamic feature points, suspicious static points, and static points in the
current frame, respectively.
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3.5. Probability Update Based on Motion Constraints

The traditional geometric method distinguishes dynamic points and static points by
the size of the reprojection error and sets the threshold value and judges the points with
a reprojection error larger than the threshold value as dynamic points and those smaller
than the threshold value as static points. The threshold size of this method is difficult to set,
which can easily lead to mis-segmentation of dynamic and static points. Therefore, this
paper proposes a new segmentation method that uses the motion distance of the a priori
dynamic point pa judged by the front-end of the SLAM system (YOLOv5 and K-means) as
a scale to update the static probability of the suspicious static point pb and static point pc.
The schematic diagram of the motion constraint is shown in Figure 5.
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Figure 5. Schematic diagram of motion constraints, where the ellipse represents the local map, the
rectangle represents the current frame, the red point inside the ellipse represents the local map point,
the blue point represents the 3D point of the current frame feature point back-projected to the world
coordinate system, and the line between the red point and the blue point represents the motion
distance of the feature point.

We now know the initial pose Tcw1 and the camera internal reference K of the current
frame, and we can also directly obtain the depth information Z of the feature points
through the depth camera. Then, we first back-project the dynamic point pa in the current
frame to the world coordinate system to obtain the 3D point coordinate Pa in the world
coordinate system.

Pa =

Xa
Ya
Za

 = Twc1Kpa (7)

Calculate the square value La of the movement distance between the back-projection
point Pa and the corresponding map point xa:

La = (Xa − Xa
′)

2
+ (Ya −Ya

′)
2
+ (Za − Za

′)
2 (8)

where
[
Xa
′ Ya

′ Za
′]T are the 3D point coordinates of the map point xa.

Similarly, the squares of the motion distances of the suspicious static point pb and the
static point pc can be solved as Lb and Lc, respectively.

Then, solve the mean µL and variance SL of the square of the motion distance of the
dynamic point pa in the current frame:

µL =

Na
∑

a=1
La

Na
(9)
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SL =

√√√√√ Na
∑

a=1
(La − µL)

2

Na
(10)

By comparing the motion distance of the suspicious static point pb, static point pc, and
dynamic point pa to update their static probability, this paper designs a sigmoid function
to calculate the static probability of each suspicious static point pb and static point pc
as follows:

ωb1 =
1

1 + exp(α( Lb−µL
SL

))
(11)

ωc1 =
1

1 + exp(α( Lc−µL
SL

))
(12)

where α is a coefficient greater than 0.
Update the static probability of each feature point in each region in combination with

the initial static probability:
ωa = ωa
ωb = ωb ×ωb1
ωc = ωc ×ωc1

(13)

Based on the updated static probability of the feature points, the static probabilities
are brought into Equation (5) to calculate the camera pose Tcw2 in the second stage.

3.6. Probability Update Based on Epipolar Constraint

As shown in Figure 6, O1, O2 is the camera optical center at the moment of the current
frame and reference frame, respectively, and p1, p2 is a pair of matching points between
the current frame and reference frame. x is the map point corresponding to the p1 point on
the reference frame, and the projection point of this point on the current frame should be
located on the polar line l2 if the point is stationary, or not on the polar line if it is moving.
In this paper, the static probability of the feature points is updated based on the distance
from point p2 to the polar line l2.
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Through the current frame camera pose Tcw2 and the reference frame camera pose
Tcwr solved in the second stage, the rotation matrix and translation matrix t2r between the
two frames can be solved:

R2r = Rcw2 × Rcwr
−1 (14)

t2r = −Rcw2 × Rcwr
−1 × tcwr + tcw2 (15)

Among them, Rcw2 and tcw2 are the rotation matrix and translation matrix of the
current frame, respectively, and Rcwr and tcwr are the rotation matrix and translation matrix
of the reference frame.

Fundamental matrix F
F = K−T(t2r)

∧R2rK−1 (16)
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Solve the polar equation corresponding to the feature point on the reference frame to
the current frame according to the fundamental matrix. The polar equation is expressed as[

A B C
]T

= F
[
u1 v1 1

]
(17)[

u1 v1 1
]

is the homogeneous coordinate of the reference frame feature point p1.
Calculate the square of the polar distance from the feature point of the current frame

to the corresponding polar line:

H =
(Au2 + Bv2 + C)2

A2 + B2 (18)

[
u2 v2 1

]
is the homogeneous coordinate of the current frame feature point p2.

According to the above Equations (16)–(18), the polar distance Ha, Hb, Hc of the dy-
namic point, suspicious static point, and static point of the current frame can be calculated,
respectively.

Calculate the mean µH and variance SH of the polar distance of the dynamic points,
as with the motion constraints:

µH =

Na
∑

a=1
Ha

Na
(19)

SH =

√√√√√ Na
∑

a=1
(Ha − µH)

2

Na
(20)

By comparing the polar distance of the suspicious static point pb, static point pc, and
dynamic point pa to update their static probability

ωb2 =
1

1 + exp(β(Hb−µH
SH

))
(21)

ωc2 =
1

1 + exp(β(Hc−µH
SH

))
(22)

where β is a coefficient greater than 0.
Update the final static probability of the feature points in each region using the static

probability of epipolar constraints:

ωa = ωa
ωb = ωb ×ωb2
ωc = ωc ×ωc2

(23)

The final camera pose Tcw can be calculated from the final static probability of the
feature points and Equation (5).

4. Experiments and Analysis

In order to evaluate the performance of the YKP-SLAM algorithm, this paper uses the
public TUM RGB-D dataset [26] to conduct the experiments. The TUM dataset is produced
by the University of Munich, Germany, and uses a Kinect sensor to capture information
at a rate of 30 HZ with an image resolution of 640 ∗ 480 and uses a high-precision motion
capture system VICON with an inertial measurement system while acquiring image data.
The camera position and pose data are acquired in real time, which can be approximated as
the real positional data of the RGB-D camera. In this paper, we mainly use eight dynamic
scene sequences from the TUM RGB-D dataset for experiments, which are divided into
two categories: walking and sitting. The sitting dataset series are low dynamic scenes, in
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which two people are sitting in front of a table and chatting, with low motion. The walking
dataset series are high dynamic scenes, in which two people are walking in front of or
around a table, with high motion. For each type of dataset series, the camera motion is also
divided into four states, where static means the camera is at rest, xyz means the camera is
moving along the spatial X-Y-Z axis in translation, rpy means the camera is rotating in a
flip angle, pitch angle, and yaw angle, and halfsphere means the camera is moving along
the trajectory of a hemisphere with a diameter of 1 m.

The experiments were run on a server with Ubuntu 18.04, a GeForce RTX 3060 graphics
card with 12 GB of video memory, a 7-core Intel(R) Xeon(R) CPU, and 20 GB of RAM.

4.1. Comparison with ORBSLAM2

Since the YKP-SLAM algorithm proposed in this paper is improved on the basis of
ORBSLAM2, a comparison experiment with ORBSLAM2 is conducted first. In this pa-
per, the absolute trajectory error (ATE) and relative pose error (RPE) [26] are adopted to
evaluate algorithm accuracy. The absolute trajectory error is the direct difference between
the estimated and real poses, which can reflect the algorithm accuracy and global consis-
tency of the trajectory very intuitively. The relative trajectory error contains the relative
translation error and relative rotation error, which are directly measured by the odometer.
The experimental results are shown in Tables 1 and 2, where RMSE denotes the root mean
square error, Mean denotes the mean error, and Std denotes the standard deviation.

Table 1. Comparison of absolute trajectory error (ATE) between ORB-SLAM2 and YKP-SLAM.

Sequences
ORB-SLAM2/m YKP-SLAM/m Improvement/%

RMSE Mean Std RMSE Mean Std RMSE Mean Std

sitting_xyz 0.0111 0.0093 0.0059 0.0072 0.0065 0.0033 35.14 30.11 44.07
sitting_half 0.0437 0.0360 0.0247 0.0153 0.0132 0.0076 64.99 63.33 69.23

sitting_static 0.0128 0.0120 0.0046 0.0052 0.0043 0.0028 59.38 64.17 39.13
sitting_rpy 0.0358 0.0293 0.0205 0.0268 0.0237 0.0126 25.13 19.11 38.53

walking_xyz 0.5185 0.4420 0.2711 0.0147 0.0130 0.0068 97.16 97.06 97.49
walking_half 0.5820 0.4571 0.3603 0.0245 0.0220 0.0107 95.79 95.19 97.03
walking_static 0.2742 0.2286 0.1514 0.0063 0.0056 0.0026 97.70 97.55 98.28
walking_rpy 1.5320 1.4262 0.5594 0.0702 0.0489 0.0514 95.41 96.57 90.81

Table 2. Comparison of relative pose error (RPE) between ORB-SLAM2 and YKP-SLAM.

Sequences
ORB-SLAM2/m YKP-SLAM/m Improvement/%

RMSE Mean Std RMSE Mean Std RMSE Mean Std

sitting_xyz 0.0148 0.0126 0.0077 0.0079 0.0070 0.0038 46.62 44.44 50.65
sitting_half 0.0227 0.0121 0.0192 0.0137 0.0108 0.0084 39.64 10.74 56.25

sitting_static 0.0180 0.0169 0.0063 0.0058 0.0055 0.0031 67.78 67.46 50.79
sitting_rpy 0.0256 0.0208 0.0148 0.0232 0.0171 0.0151 9.38 17.79 −2.27

walking_xyz 0.0382 0.0303 0.0233 0.0139 0.0116 0.0076 63.61 61.72 67.38
walking_half 0.0452 0.0317 0.0322 0.0196 0.0148 0.0128 56.64 53.31 60.25
walking_static 0.0473 0.0291 0.0373 0.0072 0.0062 0.0031 84.78 78.69 91.69
walking_rpy 0.0429 0.0316 0.0291 0.0317 0.0218 0.0239 26.11 31.01 17.97

The improvement rates in the table are calculated as follows:

η =

(
1− β

α

)
× 100% (24)

where η represents the algorithm improvement rate, β represents the experimental results of the
YKP-SLAM algorithm, and α represents the experimental results of the ORBSLAM2 algorithm.
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Tables 1 and 2 show the quantitative evaluation of the errors, from which it can be
seen that in the low dynamic scene sitting dataset series, the average improvement of the
RMSE of absolute and relative trajectory errors of the YKP-SLAM algorithm compared with
the ORBSLAM2 algorithm is 46.16% and 40.86%, respectively. The average improvement
of the RMSE of absolute and relative trajectory errors of this algorithm over ORBSLAM2
is 96.52% and 57.79%, respectively, in the walking data set series of high dynamic scenes,
which shows that the YKP-SLAM algorithm has a great improvement over the traditional
ORBSLAM2 algorithm in both low and high dynamic scenes. The trajectory accuracy is
greatly improved in both low and high dynamic scenes.

Figures 7 and 8 show the absolute trajectory error distributions of the ORBSLAM2
algorithm and the YKP-SLAM algorithm under the low dynamic sequences s_xyz, s_half
and the high dynamic sequences w_xyz, w_half, respectively. Figures 9 and 10 show the
comparison of the estimated trajectory and the real trajectory of the ORBSLAM2 algorithm
and the YKP-SLAM algorithm under the low dynamic sequences s_xyz, s_half and the high
dynamic sequences w_xyz, w_half, respectively. It can be seen that under the low dynamic
sequences s_xyz and s_half, the absolute trajectory error of the YKP-SLAM algorithm is
slightly smaller than that of the ORBSLAM2 algorithm, and the estimated trajectory is closer
to the real trajectory than the ORBSLAM2 algorithm. Under the high dynamic sequences
w_xyz and w_half, the absolute pose error of the YKP-SLAM algorithm is smaller than
that of the ORBSLAM2 algorithm, and the estimated trajectory is still very close to the real
trajectory, while the estimated trajectory of the ORBSLAM2 algorithm is far away from the
real trajectory. This proves that the YKP-SLAM algorithm can effectively improve the pose
estimation accuracy of the SLAM system in low dynamic and high dynamic scenes.
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4.2. Comparison with Advanced Dynamic SLAM Algorithms

In order to verify the superiority of the YKP-SLAM algorithm, DS-SLAM [16], Dy-
naSLAM [17], and Blitz-SLAM [23] are selected for comparison experiments with YKP-
SLAM in this paper. The root mean square error RMSE and variance Std in the absolute
trajectory error are selected as the evaluation metrics for verification. The experimental
results are shown in Table 3, where the bold font indicates the best results. Among them,
the DS-SLAM and DynaSLAM codes were open sourced as well as the experimental data,
while the Blitz-SLAM algorithm code was not open sourced. As can be seen from the
table, the YKP-SLAM algorithm achieves almost the best results compared to the other
dynamic SLAM algorithms, both in high dynamic scenes and in low dynamic scenes. The
performance is slightly worse under the s_rpy and w_rpy data sets, which is caused by the
fact that the camera motion is too large at this time, making the YOLOv5 target detection
results less accurate.

Table 3. Comparison of absolute trajectory error (ATE) between YKP-SLAM algorithm and other
dynamic SLAM algorithms.

Sequences
DS-SLAM/m DynaSLAM/m Blitz-SLAM/m YKP-SLAM/m

RMSE Std RMSE Std RMSE Std RMSE Std

sitting_xyz 0.0187 0.0119 0.0135 0.0063 0.0148 0.0069 0.0072 0.0033
sitting_half 0.0162 0.0061 0.0193 0.0084 0.0160 0.0076 0.0153 0.0076
sitting_static 0.0065 0.0033 0.0085 0.0051 / / 0.0052 0.0028
sitting_rpy 0.0266 0.0153 0.0865 0.0516 / / 0.0268 0.0126
walking_xyz 0.0247 0.0186 0.0176 0.0086 0.0153 0.0078 0.0147 0.0068
walking_half 0.0303 0.0159 0.0273 0.0130 0.0256 0.0126 0.0245 0.0107
walking_static 0.0081 0.0036 0.0067 0.0031 0.0102 0.0052 0.0063 0.0026
walking_rpy 0.4442 0.2350 0.0389 0.0237 0.0356 0.0220 0.0702 0.0514
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4.3. Ablation Experiment

In order to verify the effectiveness of the improved K-means clustering algorithm and
probability update strategy proposed in this paper, we conduct ablation experiments, and
the experimental results are shown in Table 4 The bold font indicates the best results, and
the underlined ones represent the second best results.

Table 4. Comparison of absolute trajectory error of ablation experiment.

Sequences
Y-SLAM/m YK-SLAM/m YKP-SLAM/m

RMSE Std RMSE Std RMSE Std

sitting_xyz 0.0168 0.0079 0.0129 0.0068 0.0072 0.0033
sitting_half 0.0858 0.0178 0.0189 0.0084 0.0153 0.0076
sitting_static 0.0072 0.0035 0.0079 0.0032 0.0052 0.0028
sitting_rpy 0.0481 0.0376 0.0384 0.0221 0.0268 0.0126
walking_xyz 0.0181 0.0105 0.0212 0.0111 0.0147 0.0068
walking_half 0.0292 0.0144 0.0301 0.0135 0.0245 0.0107
walking_static 0.0079 0.0034 0.0080 0.0035 0.0063 0.0026
walking_rpy 0.0962 0.0625 0.1457 0.0701 0.0702 0.0514

In Table 4, Y-SLAM refers to the direct elimination of feature points within the dynamic
object frame by YOLOv5 target detection; YK-SLAM is the combination of YOLOv5 and
improved K-means clustering to eliminate feature points within the dynamic object; YKP-
SLAM is the proposed algorithm.

The comparison between Y-SLAM and YK-SLAM shows that the performance of
YK-SLAM is better than Y-SLAM in the low dynamic environment, which is due to the
fact that the number of dynamic points is smaller in the low dynamic environment. In
contrast, Y-SLAM eliminates all the points in the dynamic object frame and deletes some
static points by mistake, resulting in a reduction in constraints in the pose calculation, thus
causing a decrease in pose accuracy. The performance of Y-SLAM is better than that of
YK-SLAM in the high dynamic environment, which is due to the higher number of dynamic
points and larger dynamic amplitude in the high dynamic environment. The area of the
dynamic object frame is larger than that of the dynamic object, which allows Y-SLAM to
reject more dynamic points and thus make its pose accuracy more accurate. YKP-SLAM
with the addition of the probability update strategy achieves the best results in both low
and high dynamic scenes. This is due to the fact that the probability update strategy assigns
appropriate static probabilities to static and dynamic points and then adds all points to
the pose calculation, which does not lead to either false deletion of static points or missed
detection of dynamic points.

4.4. Real-Time Analysis

Real-time performance is one of the important evaluation indicators of SLAM systems.
As shown in Table 5, in order to measure the real-time performance of the YKP-SLAM
algorithm proposed in this paper, we test each module of the YKP-SLAM algorithm and the
ORBSALM2 algorithm, respectively, under the highly dynamic “walking_xyz” sequence. In
the table, A represents the YOLOv5 target detection module, B represents the ORB feature
extraction module, C represents the improved K-means clustering module, D represents the
probability update module, and E represents the normal tracking calculation pose module.
Among them, the YOLOv5 target detection module and the ORB feature extraction module
in the YKP-SLAM algorithm are run in parallel. The results show that the YOLOv5 target
detection module cost less time than the ORB feature extraction module; that is to say, there
is no need to wait for the detection results of YOLOv5 after the ORB feature extraction
is completed. Therefore, in the case of sufficient computing power, adding the YOLOv5
module will not increase the system time. The average total time per frame of ORBSLAM2
and YKP-SLAM is 48.20ms and 62.05ms, respectively; that is, the running speed reaches 20
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Fps and 16 Fps, respectively. Overall, YKP-SLAM basically meets the real-time performance
of SLAM while ensuring accuracy in dynamic environments.

Table 5. The average running time of each module.

Algorithm A/ms B/ms C/ms D/ms E/ms Total Time/ms

ORBSLAM2 / 19.28 / / 28.92 48.20
YKP-SLAM 15.46 19.28 7.33 6.52 28.92 62.05

5. Conclusions

In this paper, a YKP-SLAM algorithm in dynamic environment is proposed. The algo-
rithm first segments the whole current frame image by YOLOv5 target detection algorithm
and improved K-means clustering algorithm and assigns a priori static probability to each
feature point according to the segmentation result. The a priori static probability is used
as the weight to calculate the initial camera pose, and then, the static probability of the
feature points is updated according to the motion constraint and the epipolar constraint
to solve the final camera pose. The algorithm in this paper is verified under the TUM
dataset. Compared with the ORBSLAM2 algorithm, the accuracy and robustness of this
algorithm are greatly improved in both low and high dynamic scenes. Compared with
the other SLAM algorithms in dynamic scenes, the YKP-SLAM algorithm also achieves
almost the best localization accuracy. In future work, we will propose a dense semantic map
construction method in dynamic scenes based on the existing one and make full use of the
advantages of localization accuracy in high dynamic scenes and the semantic information
provided by YOLOv5 to realize path planning and obstacle avoidance in dynamic scenes.
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