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Abstract: Extraordinary transmission structures show promising capabilities for highly selective
filters in both frequency and angle of incidence. However, their realistic response once manufac-
turing limitations are taken into account remains unexplored. In this manuscript, we explore a
novel degree of freedom: disorder. We expand on previously developed highly efficient method
of moment (MoM) implementations to study the effects on the transmission properties of large
but finite chains of slots due to different families of disorder: lateral and vertical displacements as
well as scatterer manipulation (modifying sizes and rotation angles), showing their effects on the
transmission spectrum.
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1. Introduction

Periodic structures are a fundamental tool for the design of wave emitting and control
devices such as antennas and filters for a wide range of frequency regimes from microwaves
to optics. In the microwave research community, frequency-selective surfaces [1] appeared
in the last century as a distributed version of passband or bandstop electronic devices and
are still an active field of research in the form of much more advanced metasurfaces [2,3].
These structures rely on the interaction between resonating elements (such as patches
and/or apertures) to tailor the propagation and radiation of waves leading to integrated
lensing/radiating devices and metasurface antennas [4].

With the discovery of extraordinary optical transmission (EOT) in the 1990s [5], which
allows for a very narrow transmission band when a periodic arrangement of small aper-
tures was properly tailored, a new wave of optical applications for periodic surfaces was
unveiled [6]. It was shown that, additionally to the wide-used natural resonance of aper-
tures when their electrical length corresponds to half of the operating wavelength, a special
type of resonance, so-called extraordinary, could be achieved at frequencies well-below
such natural resonance when the periodicity of the array was larger than twice the electrical
length of the aperture. In other words, for a constant periodicity of the array, as the electrical
length of the aperture decreases, the resonance frequency increases (as predicted for λ/2
resonances) until it reaches the onset of the first set of grating lobes. As the electrical length
of the aperture is decreased below half of the periodicity, the transmission peak is squeezed
against the transmission zero known as the Wood’s anomaly, giving place to the narrow
peak called extraordinary transmission.

Such experimental evidence (corroborated by full-wave simulations) was surprising
at first and had no direct equivalence in the literature of the microwave FSS community.
Due to the experiments being performed at optical frequencies, the first measurements
and knowledge of the ability of periodic structures to couple bound plasma waves known
as surface plasmons [7,8], the first explanations were based on the interactions between
plasmons propagating on both sides of the aperture array, which were coupled through
the fields inside the apertures [9–12]. Such explanations led to good predictions, but the
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subsequent finding of EOT in microwave structures in which such plasmons cannot exist (as
the metal can be treated as a perfect conductor) [13], also demonstrated inside a waveguide
with no equivalent grating coupling to any possible type of surface wave), meant the
theory was not complete [14]. It was later shown that a generalized explanation based
on an equivalent circuit model explained the narrowband phenomenon for any type of
waveguide, whether Bloch/Floquet-type or reallistic metallic waveguides [15]. Another
more general theory extended the concept of surface plasmons to effective plasmonic
materials, which can support surface waves known as spoof surface plasmons. In this
framework, hole- and dielectric-backed slit arrays can themselves support bound waves
which take the role of true plasmons at microwave and terahertz frequencies [16–19].

Despite the great interest attracted by periodic extraordinary transmitting structures,
only limited attention has been paid to aperiodic arrays, i.e., those with arbitrary or even
random separations between scatterers (either apertures or metallizations) [20,21] given the
difficulty of their modeling [22,23]. For practical applications, local periodicity is assumed,
and only smooth variations of geometrical parameters are used to limit aperiodicity ef-
fects [24,25]. Among the aperiodic structures studied in the literature, we find metamaterial
absorbers [26], resonant slot arrays [27,28], photonic crystals [29–31] and antennas [32–34].
It is worth mentioning that aperiodic structures have recently received a lot of interest from
the topological photonics and acoustics communities thanks to their potential for novel
edge and bandgap modes [35–37].

In this paper, we focus on the presence of extraordinary transmission in disordered
slot arrays in perfectly conducting screens. To do so, we will study the original one-
dimensionally periodic slot array studied in [38] composed of a single row of slots, to
which we apply different types of disorder: some related to the arrangement of the slots
and others related to the slot scatterers. Although all of them break the strict periodicity
of the structure, we will show that they have large differences in their effect. With these
results, we expect that these results will help develop custom finite structures with known
edge effects [39,40] not considered by traditional unit cell-based analysis.

2. Numerical Methods

Let us briefly present the Galerkin’s version of the Method of Moments (MoM) ex-
ploited in previous works [41] and then emphasize the advancements introduced for the
efficient analysis of the scattering by a disordered array of slots in a perfectly conducting
screen as shown in Figure 1. The electric field on the plane of a perfectly conducting screen
of negligible thickness with a number M of apertures can be shown to obey the following
integral equation:

Jas(x, y)+
M

∑
j=1

∫∫
ηj

GM(x− x′, y− y′)

· Esc
t (x′, y′, z = 0) dx′dy′ = 0 (x, y) ∈ ηi (1)

(i = 1, . . . , M),

where Jas(x, y) is the surface current in the absence of the slots and GM(x, y) is the dyadic
Green’s function that relates the tangential electric field vector at the origin with the electric
current density vector at a given point and where ηi is the surface of the i-th slot.



Electronics 2022, 11, 2830 3 of 12

 

ls
ws

x

y

z
inc

ϕincki

dx

Figure 1. Perspective view of a chain of slot apertures cut into an infinite perfectly conducting screen
of negligible thickness.

The Method of Moments can be then applied by proposing a set of Nb basis functions
for each of the apertures.

Esc
t (x, y, z = 0) ≈

Nb

∑
l=1

ejldjl(x, y) (x, y) ∈ ηj, (2)

which in the Galerkin’s version of the MoM are also used as testing functions to convert (1)
into a system of linear equations for the set of unknown weights ejl

M

∑
j=1

Nb

∑
l=1

∆kl
ij ejl = pik (i=1, . . . , M; k=1, . . . , Nb), (3)

where

∆kl
ij =

∫∫
ηi

d∗ik(x, y) ·
[ ∫∫

ηj

GM(x− x′, y− y′)

· djl(x′, y′) dx′dy′
]

dxdy, (4)

(i, j = 1, . . . , M; k, l = 1, . . . , Nb),

and where

pik =−
( ∫∫

ηi

d∗ik(x, y)Jas(x, y) dxdy

)
· (5)

(i = 1, . . . , M; k = 1, . . . , Nb)

For the sake of efficiency of the method, it is convenient to reformulate (4) so that the
interactions between the different basis functions can be precomputed numerically, which
can be shown to be equivalent to

∆kl
ij = −

4j
k0Z0

[
k2

0 ∆kl,a
ij − ∆kl,b

ij

]
, (6)

∆kl,a
ij =

∫∫
ηi

d∗ik(x, y) ·
[∫∫

ηj

Gsca(x− u, y− v)djl(u, v) dudv

]
dxdy (7)
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∆kl
ij =

∫∫
ηi

[∇ · dik(x, y)]∗ ·
{ ∫∫

ηj

Gsca(x− u, y− v)·

[
∇ · djl(u, v)

]
dudv

}
dxdy. (8)

where Gsca corresponds to a scalar free space Green’s function given by

Gsca(x, y)=
e−jk0
√

x2+y2

4π
√

x2 + y2
. (9)

Thanks to a physically-insightful choice of basis functions, these expressions can be
calculated efficiently using tailored quadrature formulas. In particular, we use a set of
basis functions with the proper choice of zero or singular behavior at the edge of the
aperture based on Chebyshev polynomials which are shown to be a basis for the kernel of
the integral equation which present logarithmic singularities near the edges of the slots.
Mathematically, they are expressed in the frame of each slot as

dik(x, y) =
T0

(
2

ws
(x− xci)

)
√

1−
[

2
ws
(x− xci)

]2
U2(k−1)

(
2
ls
(y− yci)

)√
1−

[
2
ls
(y− yci)

]2
x̂ (10)

(k = 1, . . . , Nee
bx)

di,Nee
bx+k(x, y) = U1

(
2

ws
(x− xci)

)√
1−

[
2

ws
(x− xci)

]2 T2k−1

(
2
ls
(y− yci)

)
√

1−
[

2
ls
(y− yci)

]2
ŷ (11)

(k = 1, . . . , Noo
by )

where Nee
bx + Noo

by = Nb, and where T0(·) (T2k−1(·)) and U2(k−1)(·) (U1(·)) are Chebyshev
polynomials of the first and second kind, respectively.

When these basis functions are introduced into (7) and (8) it can be shown that they
can be rewritten in the form of

∆kl,a
ij =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
f a(u1, u2, v1, v2)du1du2dv1dv2 (12)

∆kl,b
ij =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
f b(u1, u2, v1, v2)du1du2dv1dv2. (13)

where for the case of ∆kl,b
ij , the integrand has the form

f b(u1, u2, v1, v2) =
1√

1− u2
1

1√
1− v2

1

1√
1− u2

2

1√
1− v2

2

gb(u1, u2, v1, v2). (14)

These singularities arise from the derivatives of the zeros imposed by the edges parallel
to the electric field, where gb(u1, u2, v1, v2) is a nonsingular function in the integration
domain. These four integrals can be iteratively calculated using the Gauss–Chebyshev
quadrature rule of first order [42]) whose weights and sampling points are given by

wi =
π

n
; xi = cos

(
(2i− 1)π

2n

)
. (15)
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which can be applied in a nested loop.
In the case of ∆kl,a

ij , (12) consists of two summands, f a(u1, u2, v1, v2) = f a,1(u1, u2, v1, v2)+

f a,2(u1, u2, v1, v2). The first summand will contain a factor of the form of

f a,1(u1, u2, v1, v2) =

√
1− v2

1√
1− u2

1

√
1− v2

2√
1− u2

2

ga,1(u1, u2, v1, v2), (16)

while the second will be of the form of

f a,2(u1, u2, v1, v2) =

√
1− u2

1√
1− v2

1

√
1− u2

2√
1− v2

2

ga,2(u1, u2, v1, v2), (17)

for which ga,1(u1, u2, v1, v2) and ga,2(u1, u2, v1, v2) are nonsingular functions. In this case, it
is convenient to combine the first- and second-order Gauss–Chebyshev quadrature rules
aforementioned. The weights and sampling points of the second order quadrature are
given by [42]

wi =
π

n + 1
sin2

(
πi

n + 1

)
; xi = cos

(
iπ

n + 1

)
. (18)

Once these integrals are computed, the system of equations can be solved to retrieve
the electric field on the surface of the array, from which the far-field distribution can
be calculated via its Fourier transform, provided analytically by the analytical Fourier
transforms of the chosen basis functions. Then, the scattering cross section of the array is
calculated as [43,44]

σ = lim
r→∞

4πr2|Esc(r, θ = 0, φ)|2
|Ei|2

(19)

from which the effective receiving area of the screen (i.e., the effective surface that is
transparent to the incoming wave) is calculated as

Ae f =

√
σλ2

0
4π

(20)

3. Numerical Validation

Let us validate the numerical method employed for the construction of the entries of
the matrix of the Method of Moments using commercially available software. In our case,
we employ the well-known Ansys HFSS software for the simulation of two slots of different
sizes and orientation which constitute a square unit cell as depicted in Figure 2. To analyze
such problem, the Green’s function has to be modified to account for the periodicity as
shown elsewhere [41], but this has no impact in the validation of the numerical integration
scheme presented here. In Figure 2, we analyze the transmission spectrum of two distinct
slot apertures using the numerical approach presented in this manuscript. We have found
that five basis functions (Nee

bx = 4 and Noo
by = 1 are sufficient to accurately reproduce the

results from the commercial software.
We have found a rapid convergence in the calculation of the inter-slot coupling ele-

ments of the MoM matrix (i.e., the off-diagonal terms) with errors below five percent with
just 7 quadrature points per integral, leading to a total of 2401 evaluations. In terms of
CPU time, due to the nested nature of these evaluations, the CPU time will increase as the
number of evaluations to the fourth power, so it is important to optimise the number of
evaluations required. It has been found that the MoM implementation shown here outper-
forms the commercial software in CPU time consumption by a factor of 200, supporting the
efforts devoted to the development of this method.
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Figure 2. Copolar transmission coefficient comparison between the method presented here and that
obtained from the commercial software HFSS. The unit cell is depicted in the inset, containing two
slots with ls1 = 6 mm, ls2 = 5 mm, ws1 = ws2 = 0.5 mm, xc1 = yc1 = 2.5 mm, xc2 = yc2 = 7.5 mm,
α1 = π/4, α2 = −π/4.

4. Results and Discussion

Once the numerical method has been presented, we can embark on the study of the
effects introduced by disorder in extraordinary transmission through finite slots chains.
However, extraordinary transmission is a consequence of periodicity, which is broken
merely by considering a finite chain. Therefore, we first need to establish whether EOT can
be associated with the transmission spectra through these chains. In all cases, we study the
transmission when the array is illuminated by an infinite plane wave at normal incidence
whose electric field is polarized along the x direction, i.e., perpendicular to the axis of the
slots in the absence of rotations. For practical applications, it may be desirable to consider
Gaussian-type beam illumination, which can be introduced in the numerical method in a
straight-forward way [45,46].

In Figure 3, we study the appearance of the EOT peak with the number of slots M
when these are all equal ls = 0.4 dx, ws = 0.05 dx, and distanced by a constant value
dx. When comparing all curves with those for a single aperture (blue line, M = 1), the
extraordinary transmission peak is found at a normalized frequency dx/λ ≈ 0.98 compared
to the resonance of the isolated slot, with a maximum effective area around dx/λ ≈ 1.07.
From these results, one can approximate, for practical reasons, the transmission from an
array with more than 25 elements so as to behave similarly to an infinite array. In the
following, we will keep M = 50.

Let us now consider the first type of disorder, in which the resonant elements (i.e., the
slots) are kept the same as well as their relative distances (dx), but a random set of rotations
is applied to the set of slots. In this manner, each slot ηi is rotated by an angle αi, given
by a normal distribution with a given standard deviation σangle and a null mean (i.e., slots
should be rotated with respect to their original vertical position). This type of disorder
does not affect the natural resonance of the scatterer itself. We then study the effective
frequency-dependent receiving area for different values of standard deviation, which are
shown in Figure 4.
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Figure 3. Normalized effective transmitting area of a finite chain of M slots with dimensions
ls = 0.4 dx, ws = 0.05 dx for different values of M under plane wave illumination at normal incidence.
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Figure 4. Normalized effective transmitting area of a finite chain of M slots with dimensions
ls = 0.4 dx, ws = 0.05 dx with different rotation angles given by a random normal distribution
of different standard deviations under normal incidence.

We see that, given (5), one expects the electric field amplitude excited in the slots to be
reduced by a factor cos αi, which should be lower and lower on average with increasing
standard deviation as even if the mean value of αi is zero, the cosine is an even function,
therefore having a mean lower than one. This reasoning is consistent with the findings in
Figure 4. Of course, such reasoning neglects the change in coupling between neighboring
elements, but as has been found in many works [47,48], small rotations do not introduce
big changes in the overall coupling among elements in large arrays, a condition used as a
local periodicity which has yielded good results in the literature.

Let us now consider a different type of disorder, in which we modify the scatterer
itself, and with that we modify the natural resonance of each slot. In the literature, it
has been shown that the natural resonance of the slot itself plays a secondary role in the
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existence of extraordinary transmission, as long as it is located above the first transmission
zero (i.e., the Wood’s anomaly). However, the precise location of the EOT peak is dictated
by such resonance. As we did for the angle of rotation, let us consider now that each slot
has a length given by ls,i with i = 1, . . . , M given by a constant ls = 0.4 dx plus a random
value given by a normal distribution centered at zero with a standard deviation given by
σl , which is given as a percentage of the value of ls. The frequency-dependent effective
receiving area normalized to the surface of the strip is shown in Figure 5.

0.5 0.75 1 1.25 1.5
dx/6

-25

-20

-15

-10

-5

0

A
ef

/M
 d

x2

<l= 0 %

<l= 5 %
<l= 10 %

<l= 25 %

Figure 5. Normalized effective transmitting area of a finite chain of M slots with ws = 0.05 dx and
with ls given by a set of random numbers following a normal distribution with mean 0.4 dx for
different values of the standard deviation.

As can be seen in Figure 5, as the standard deviation of the distribution increases, the
peak maintains its center frequency, but the height of the transmission is reduced. This can
be understood from the fact that each slot will present a slightly displaced EOT resonance,
leading to a wider peak, but with a lower transmission coefficient. It is interesting to note
that only a 5% standard deviation already reduces the height of the peak by almost 40%
in power, and a 10% deviation leads to a reduction of 75% of power compared to the
non-disordered structure. Finally, for a standard deviation of 25%, the peak becomes much
wider, but the strong reduction of transmitted power at the onset of the first diffraction
mode is still clearly visible in the transmission spectrum.

Next, we study a different type of disorder independent of the scatterer: the spacing
along the x or y directions. Let us focus first on the former: instead of maintaining an
arithmetic sequence for xci = idx, that is, keeping a constant separation of dx between
each pair of neighboring elements, let us add a random value given again by a normal
distribution with different values of the standard deviation. In Figure 6, we see that
as the standard deviation increases, the peak becomes less and less defined until the
transmission spectrum is very similar to that found for a single slot (M = 1) in Figure 3.
This means that a collection of slots with random distances along a chain actually follows
the original hypothesis broken by the discovery of extraordinary transmission, i.e., the
coupling between the apertures plays no role. It is worth noting that recently it has been
shown that special modes can be created by using deterministic randomness as created by
an iterative sequence such as Fibonacci’s [49].
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Figure 6. Normalized effective transmitting area of a finite chain of M slots with ls = 0.4 dx,
ws = 0.05 dx and with xci given by a set of random numbers following a normal distribution with
mean idx for different values of standard deviation.

In Figure 7 instead of modifying the position x of each slot, let us now add a random
value to their position y, so that their centers are not placed on the x axis. Interestingly, as
shown in Figure 7, this type of disorder has the least effect on the definition and height of
the EOT peak from all of those studied previously. Additionally, we find that a secondary
peak starts to follow near the expected natural resonance of the slots when very extreme
values are chosen for the standard deviation for yci. This means that a chain of slots
positioned randomly will present a well-defined EOT resonance as long as their horizontal
separation is kept constant.
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A
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<y= 0.75 dx

Figure 7. Normalized effective transmitting area of a finite chain of M slots with ls = 0.4 dx,
ws = 0.05 dx and with yci given by a set of random numbers following a normal distribution with
mean 0 for different values of standard deviation.
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5. Conclusions

In this paper, we study the consequences of introducing disorder to extraordinary
transmission through a finite chain of slots cut into a perfectly conducting screen. We
have found that a finite chain converges to a maximum transmission for as few as 50 slots,
but 25 already allow for an almost full transmission. When introducing disorder, random
individual rotation of the slots allows for a controllable reduction of the peak transmission
level while also reducing the transmission level of the Wood’s anomaly and the low-
frequency tail. By modifying the length of the slots in a random fashion, one can maintain
the low frequency and Wood’s anomaly levels while reducing the transmission value at the
peak, therefore increasing the relative bandwidth. If one is to replicate the transmission
properties of a single isolated slot, introducing random displacements along the x direction
is the most effective manner. Additionally, introducing random displacements along the
direction perpendicular to the array allows for the introduction of a secondary higher-
frequency peak whose level increases with the standard deviation of the displacement
distribution, while the level of the EOT peak is reduced and the low frequency and Wood’s
anomaly levels are maintained. We believe this results could pave the way for EOT filtering
devices for optical communications.

Author Contributions: M.C. and F.M. conceived the idea. M.C. and R.R.B. developed the numerical
method. M.C. and A.F.-P. obtained the results. M.C. wrote the first draft and all authors revised
and finalized the manuscript. All authors have read and agreed to the published version of the
manuscript.

Funding: This work has been supported by the grant PID2020-116739GB-I00 funded by
MCIN/AEI/10.13039/501100011033.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available from the authors upon reasonable request.

Acknowledgments: M.C. wishes to acknowledge fruitful discussions with Prof. J. Roy Sambles while
at the University of Exeter.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Munk, B.A. Frequency Selective Surfaces: Theory and Design; John Wiley: Hoboken, NJ, USA, 2000; p. 410.
2. Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M. Metasurfing: Addressing waves on impenetrable metasurfaces. IEEE Antennas

Wirel. Propag. Lett. 2011, 10, 1499–1502. [CrossRef]
3. Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898. [CrossRef]
4. Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of

metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [CrossRef]
5. Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole

arrays. Nature 1998, 391, 667–669. [CrossRef]
6. Garcia-Vidal, F.J.; Martin-Moreno, L.; Ebbesen, T.W.; Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys.

2010, 82, 729–787. [CrossRef]
7. Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [CrossRef]
8. Maier, S.A. Plasmonics: Fundamentals and Applications; Springer US: Boston, MA, USA, 2007; pp. 1–223. [CrossRef]
9. Sambles, R. More than transparent. Nature 1998, 391, 641. [CrossRef]
10. Ghaemi, H.F.; Thio, T.; Grupp, D.E.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through

subwavelength holes. Phys. Rev. B 1998, 58, 6779–6782. [CrossRef]
11. Martín-Moreno, L.; García-Vidal, F.J.; Lezec, H.J.; Pellerin, K.M.; Thio, T.; Pendry, J.B.; Ebbesen, T.W. Theory of extraordinary optical

transmission through subwavelength hole arrays. Phys. Rev. Lett. 2001, 86, 1114–1117. [CrossRef] [PubMed]
12. García De Abajo, F.J.; Gómez-Medina, R.; Sáenz, J.J. Full transmission through perfect-conductor subwavelength hole arrays.

Phys. Rev. -Stat. Nonlinear Soft Matter Phys. 2005, 72, 016608. [CrossRef]

http://doi.org/10.1109/LAWP.2012.2183631
http://dx.doi.org/10.1038/nphoton.2014.247
http://dx.doi.org/10.1109/MAP.2012.6230714
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1103/RevModPhys.82.729
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1007/0-387-37825-1
http://dx.doi.org/10.1038/35509
http://dx.doi.org/10.1103/PhysRevB.58.6779
http://dx.doi.org/10.1103/PhysRevLett.86.1114
http://www.ncbi.nlm.nih.gov/pubmed/11178023
http://dx.doi.org/10.1103/PhysRevE.72.016608


Electronics 2022, 11, 2830 11 of 12

13. Beruete, M.; Sorolla, M.; Campillo, I.; Dolado, J.S.; Martín-Moreno, L.; Bravo-Abad, J.; García-Vidal, F.J. Enhanced millimeter-wave
transmission through subwavelength hole arrays. Opt. Lett. 2004, 29, 2500. [CrossRef]

14. Medina, F.; Ruiz-Cruz, J.A.; Mesa, F.; Rebollar, J.M.; Montejo-Garai, J.R.; Marqués, R. Experimental verification of extraordinary
transmission without surface plasmons. Appl. Phys. Lett. 2009, 95, 071102. [CrossRef]

15. Medina, F.; Mesa, F.; Marqués, R. Extraordinary transmission through arrays of electrically small holes from a circuit theory
perspective. IEEE Trans. Microw. Theory Tech. 2008, 56, 3108–3120. [CrossRef]

16. Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305,
847–848. [CrossRef]

17. Hibbins, A.; Evans, B.; Sambles, J. Experimental verification of designer surface plasmons. Science 2005, 308, 670–672. [CrossRef]
[PubMed]

18. García De Abajo, F.J.; Sáenz, J.J. Electromagnetic surface modes in structured perfect-conductor surfaces. Phys. Rev. Lett. 2005, 95,
233901. [CrossRef]

19. Freer, S.; Camacho, M.; Kuznetsov, S.A.; Boix, R.R.; Beruete, M.; Navarro-Cía, M. Revealing the underlying mechanisms behind
TE extraordinary THz transmission. Photonics Res. 2020, 8, 430–439. [CrossRef]

20. Matsui, T.; Agrawal, A.; Nahata, A.; Vardeny, Z.V. Transmission resonances through aperiodic arrays of subwavelength apertures.
Nature 2007, 446, 517–521. [CrossRef] [PubMed]

21. Hamilton, J.K.; Hooper, I.R.; Lawrence, C.R. Exploring microwave absorption by non-periodic metasurfaces. Adv. Electromagn.
2021, 10, 1–6. [CrossRef]

22. Bravo-Abad, J.; Fernández-Domínguez, A.I.; García-Vidal, F.J.; Martín-Moreno, L. Theory of extraordinary transmission of light
through quasiperiodic arrays of subwavelength holes. Phys. Rev. Lett. 2007, 99, 203905. [CrossRef]

23. Agrawal, A.; Matsui, T.; Vardeny, Z.V.; Nahata, A. Extraordinary optical transmission through metallic films perforated with
aperture arrays having short-range order. Opt. Express 2008, 16, 6267. [CrossRef] [PubMed]

24. Minatti, G.; Caminita, F.; Martini, E.; Sabbadini, M.; Maci, S. Synthesis of modulated-metasurface antennas with amplitude,
phase, and polarization control. IEEE Trans. Antennas Propag. 2016, 64, 3907–3919. [CrossRef]

25. Huang, J.; Encinar, J.A. Reflectarray Antennas; John Wiley & Sons: Hoboken, NJ, USA, 2007.
26. Yang, Q.; Chen, X.; Li, Y.; Zhang, X.; Xu, Y.; Tian, Z.; Ouyang, C.; Gu, J.; Han, J.; Zhang, W. Aperiodic-metamaterial-based

absorber. APL Mater. 2017, 5, 096107. [CrossRef]
27. Fernández-Domínguez, A.; Hernández-Carrasco, I.; Martín-Moreno, L.; García-Vidal, F. Transmission resonances through a

Fibonacci array of subwavelength slits. Electromagnetics 2008, 28, 186–197. [CrossRef]
28. Li, J.; Liu, S.; Huang, C.; Li, T.; Wang, Q.; Zhu, Y. Light transmission through Fibonacci and periodic sub-wavelength slit arrays. J.

Opt. Pure Appl. Opt. 2008, 10, 075202. [CrossRef]
29. Capaz, R.B.; Koiller, B.; de Queiroz, S.L.A. Gap states and localization properties of one-dimensional Fibonacci quasicrystals.

Phys. Rev. B 1990, 42, 6402–6407. [CrossRef]
30. Dal Negro, L.; Oton, C.J.; Gaburro, Z.; Pavesi, L.; Johnson, P.; Lagendijk, A.; Righini, R.; Colocci, M.; Wiersma, D.S. Light Transport

through the Band-Edge States of Fibonacci Quasicrystals. Phys. Rev. Lett. 2003, 90, 055501. [CrossRef] [PubMed]
31. Tavakoli, M.; Jalili, Y.S. One-dimensional Fibonacci fractal photonic crystals and their optical characteristics. J. Theor. Appl. Phys.

2014, 8, 113. [CrossRef]
32. Ozbakis, B.; Kustepeli, A. The resonant behavior of the Fibonacci fractal tree antennas. Microw. Opt. Technol. Lett. 2008, 50,

1046–1050. [CrossRef]
33. Sharma, C.; Vishwakarma, D.K. Miniaturization of Spiral Antenna Based on Fibonacci Sequence Using Modified Koch Curve.

IEEE Antennas Wirel. Propag. Lett. 2017, 16, 932–935. [CrossRef]
34. Chauhan, M.; Pandey, A.K.; Mukherjee, B. A novel cylindrical dielectric resonator antenna based on Fibonacci series approach.

Microw. Opt. Technol. Lett. 2019, 61, 2268–2274. [CrossRef]
35. Della Villa, A.; Enoch, S.; Tayeb, G.; Pierro, V.; Galdi, V.; Capolino, F. Band gap formation and multiple scattering in photonic

quasicrystals with a Penrose-type lattice. Phys. Rev. Lett. 2005, 94, 183903. [CrossRef]
36. Apigo, D.J.; Cheng, W.; Dobiszewski, K.F.; Prodan, E.; Prodan, C. Observation of topological edge modes in a quasiperiodic

acoustic waveguide. Phys. Rev. Lett. 2019, 122, 095501. [CrossRef]
37. Rosa, M.I.; Guo, Y.; Ruzzene, M. Exploring topology of 1D quasiperiodic metastructures through modulated LEGO resonators.

Appl. Phys. Lett. 2021, 118, 131901. [CrossRef]
38. Camacho, M.; Boix, R.R.; Medina, F.; Hibbins, A.P.; Sambles, J.R. Extraordinary Transmission and Radiation from Finite by Infinite

Arrays of Slots. IEEE Trans. Antennas Propag. 2019, 68, 581–586. [CrossRef]
39. Camacho, M.; Hibbins, A.P.; Capolino, F.; Albani, M. Diffraction by a truncated planar array of dipoles: A Wiener–Hopf approach.

Wave Motion 2019, 89, 28–42. [CrossRef]
40. Camacho, M.; Capolino, F.; Albani, M. Asymmetric surface wave excitation through metasurface-edge diffraction. Opt. Lett.

2020, 45, 5420. [CrossRef] [PubMed]
41. Camacho, M.; Boix, R.R.; Medina, F. Computationally efficient analysis of extraordinary optical transmission through infinite and

truncated subwavelength hole arrays. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2016, 93, 063312. [CrossRef]
42. Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1970.
43. Harrington, R.F. Time-Harmonic Electromagnetic Fields; McGraw-Hill: New York, NY, USA, 1961.

http://dx.doi.org/10.1364/OL.29.002500
http://dx.doi.org/10.1063/1.3206738
http://dx.doi.org/10.1109/TMTT.2008.2007343
http://dx.doi.org/10.1126/science.1098999
http://dx.doi.org/10.1126/science.1109043
http://www.ncbi.nlm.nih.gov/pubmed/15860621
http://dx.doi.org/10.1103/PhysRevLett.95.233901
http://dx.doi.org/10.1364/PRJ.8.000430
http://dx.doi.org/10.1038/nature05620
http://www.ncbi.nlm.nih.gov/pubmed/17392781
http://dx.doi.org/10.7716/aem.v10i3.1803
http://dx.doi.org/10.1103/PhysRevLett.99.203905
http://dx.doi.org/10.1364/OE.16.006267
http://www.ncbi.nlm.nih.gov/pubmed/18545330
http://dx.doi.org/10.1109/TAP.2016.2589969
http://dx.doi.org/10.1063/1.4996112
http://dx.doi.org/10.1080/02726340801921635
http://dx.doi.org/10.1088/1464-4258/10/7/075202
http://dx.doi.org/10.1103/PhysRevB.42.6402
http://dx.doi.org/10.1103/PhysRevLett.90.055501
http://www.ncbi.nlm.nih.gov/pubmed/12633367
http://dx.doi.org/10.1007/s40094-014-0113-0
http://dx.doi.org/10.1002/mop.23299
http://dx.doi.org/10.1109/LAWP.2016.2614721
http://dx.doi.org/10.1002/mop.31887
http://dx.doi.org/10.1103/PhysRevLett.94.183903
http://dx.doi.org/10.1103/PhysRevLett.122.095501
http://dx.doi.org/10.1063/5.0042294
http://dx.doi.org/10.1109/TAP.2019.2935819
http://dx.doi.org/10.1016/j.wavemoti.2019.03.004
http://dx.doi.org/10.1364/OL.398342
http://www.ncbi.nlm.nih.gov/pubmed/33001909
http://dx.doi.org/10.1103/PhysRevE.93.063312


Electronics 2022, 11, 2830 12 of 12

44. Collin, R.E. Antennas and Radiowave Propagation; Mc-Graw Hill: New York, NY, USA, 1985.
45. Navarro-Cía, M.; Pacheco-Pe na, V.; Kuznetsov, S.A.; Beruete, M. Extraordinary THz Transmission with a Small Beam Spot: The

Leaky Wave Mechanism. Adv. Opt. Mater. 2018, 6, 1701312. [CrossRef]
46. Camacho, M.; Boix, R.R.; Kuznetsov, S.A.; Beruete, M.; Navarro-Cia, M. Far-Field and Near-Field Physics of Extraordinary THz

Transmitting Hole-Array Antennas. IEEE Trans. Antennas Propag. 2019, 67, 6029–6038. [CrossRef]
47. Martini, E.; Mencagli Jr, M.; Maci, S. Metasurface transformation for surface wave control. Philos. Trans. R. Soc. Math. Phys. Eng.

Sci. 2015, 373, 20140355. [CrossRef] [PubMed]
48. Florencio, R.; Boix, R.R.; Encinar, J.A.; Toso, G. Optimized periodic MoM for the analysis and design of dual polarization

multilayered reflectarray antennas made of dipoles. IEEE Trans. Antennas Propag. 2017, 65, 3623–3637. [CrossRef]
49. Hamilton, J.K.; Camacho, M.; Boix, R.; Hooper, I.R.; Lawrence, C.R. Effective-periodicity effects in Fibonacci slot arrays. Phys.

Rev. B 2021, 104, L241412. [CrossRef]

http://dx.doi.org/10.1002/adom.201701312
http://dx.doi.org/10.1109/TAP.2019.2920262
http://dx.doi.org/10.1098/rsta.2014.0355
http://www.ncbi.nlm.nih.gov/pubmed/26217056
http://dx.doi.org/10.1109/TAP.2017.2702700
http://dx.doi.org/10.1103/PhysRevB.104.L241412

	Introduction
	Numerical Methods
	Numerical Validation
	Results and Discussion
	Conclusions
	References

