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Abstract: In recent deep-learning-based real-time object detection methods, the trade-off between
accuracy and computational cost is an important consideration. Therefore, based on the fully
convolutional one-stage detector (FCOS), which is a one-stage object detection method, we propose
a light next FCOS (LNFCOS) that achieves an optimal trade-off between computational cost and
accuracy. In LNFCOS, the loss of low- and high-level information is minimized by combining the
features of different scales through the proposed feature fusion module. Moreover, the light next block
(LNblock) is proposed for efficient feature extraction. LNblock performs feature extraction with a low
computational cost compared with standard convolutions, through sequential operation on a small
amount of spatial and channel information. To define the optimal parameters of LNFCOS suggested
through experiments and for a fair comparison, experiments and evaluations were conducted on
the publicly available benchmark datasets MSCOCO and PASCAL VOC. Additionally, the average
precision (AP) was used as an evaluation index for quantitative evaluation. LNFCOS achieved an
optimal trade-off between computational cost and accuracy by achieving a detection accuracy of
79.3 AP and 37.2 AP on the MS COCO and PASCAL VOC datasets, respectively, with 36% lower
computational cost than the FCOS.

Keywords: convolution neural networks; object detection; FCOS; attention method; LNblock;
lightweight

1. Introduction

The field of computer vision (CV) includes image processing tasks such as object detec-
tion [1,2], semantic segmentation [3], and super-resolution [4]. The advent of convolutional
neural networks (CNNs), which are widely used deep-learning methods, has accelerated
the development of CV. Object detection is a fundamental CV task used for locating and
categorizing objects.

Previously, deep-learning-based object detection have used two-stage methods that
employ a network each for classification and regression to achieve a high detection accuracy.
These methods divide the classification and regression process into two stages based on
the region of interest wherein the object exists. A representative method is the region-
based convolutional neural network (R-CNN) [5–7]. However, two-stage methods have a
limitation in that real-time processing is impossible because classification and regression
are performed by dividing them into two stages, resulting in high computational costs.
To overcome this issue, one-stage methods that achieve an optimal trade-off between
detection accuracy and computation cost by performing both processes in one network
have been proposed. The single-shot multibox detector (SSD) [8] and you only look once
(YOLO) [9–11] methods employ this approach. With the advent of one-stage methods,
object detection has exhibited real-time detection performance. However, to improve the
detection accuracy, the anchor is densely used by increasing recall. This results in a serious
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class imbalance problem because the foreground and background are both classified as the
background during network training. To address this problem, anchor-free methods that
do not predefine an anchor have been developed. Representative examples include the
fully convolutional one-stage object detection (FCOS) [12] and the YOLOX [13] methods.
The center-point-based anchor-free method overcomes the class imbalance problem by
predicting each pixel, similar to the semantic segmentation method.

Recently, one-stage methods have shown significantly higher efficiencies compared
to two-stage methods. Therefore, to obtain an optimal trade-off between computation
cost and detection accuracy, lightweight methods that can identify the optimal trade-
off between computation cost and hardware resources have been studied for applying
deep-learning networks with limited resources within an application program. One such
method is pruning, which reduces the weight of the network structure. The MobileNet
method, which is used for configuring a network with minimal computational cost, has
been proposed. The MobileNet [14,15] network was constructed based on depth-wise
separable convolution, which is a combination of depth-wise convolution (DWConv) [16]
and point-wise convolution (PWConv). Its computation cost is approximately eight times
lower than the conventional standard convolutions(StdConv) and has been proposed for
use in situations wherein hardware, such as mobile devices, is limited.

In this paper, we propose an anchor-free method based on FCOS, called the light next
FCOS (LNFCOS), which achieves an optimal trade-off between computational cost and
accuracy. The proposed method comprises feature fusion and light next block (LNblock),
wherein the feature loss is minimized by considering the information of different scales
through feature fusion and the standard convolution is replaced by the proposed LNblock.
The proposed method can achieve the same accuracy with less computational cost com-
pared with conventional methods because it requires a small amount of space in the channel
and also performs channel information extraction. Moreover, it achieves an accuracy similar
to that of conventional methods and lowers the computational cost by 46.3GFLOPs.

The main contributions of this study are as follows:

• Feature loss was minimized by combining low- and high-level information through
the proposed feature fusion module;

• An optimal trade-off was achieved between computation cost and accuracy compared
to the conventional methods by replacing the StdConv with an LNblock;

• A detection head that maintains computational cost and improves detection accuracy
by improving the structure of the conventional detection head is proposed.

2. Related Works
2.1. Fully Convolutional One-Stage Detector

FCOS, show in Figure 1, is an anchor-free method that approaches the conventional
object detection problem from the point of view of the anchor. According to the definition
of the size, number, and aspect ratio of the predefined anchor size, conventional object
detection methods result in a performance deviation owing to the dense prediction for the
dataset when detecting objects. Additionally, the definitions of the hyperparameters related
to anchors are specialized for the dataset by reflecting a heuristic point of view, which
reduces the generalization performance. If the predefined anchor has a fixed size and the
size of the object in the image changes significantly, object detection is difficult. To solve
these problems, a method of detecting an object through a pixel unit prediction has been
studied, such as the fully convolutional network (FCN) [17], called the center-point method,
which has shown good performance for various tasks such as semantic segmentation and
depth estimation.
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Figure 1. Structure of the fully convolutional one-stage detector. It uses ResNet-50 [18]
as the backbone and has the structure of an object detection network using a feature
pyramid [19] structure.

2.2. Types of Convolution Methods

With the development of deep-learning methods, convolution-related technologies
have developed. Conventional convolution methods have three major limitations, which
include a high computational cost, a low correlation between the channels of the feature
map, and dead channels. Moreover, to accurately determine an object in an image, such
as in object detection and semantic segmentation, a relatively wide receptive field must
be considered to obtain sufficient contextual information. To overcome this problem,
CNN methods that involve extending the receptive field by extending the kernel size
of the convolution filter and using more convolutions have been used. However, these
methods increase the computational cost; hence, their use is limited to some devices.
Therefore, various convolution filters that are suitable for each task have been developed.
For example, dilated convolution [20] extends the receptive field of the convolution kernel
with a low computational cost by adding zero-padding to it; DWConv extracts spatial
information from each channel at an approximately eight times lower computational cost
than conventional convolutions; and deformable convolution [21] calculates a geometric
pattern by learning the offset when generating an output feature map in the learning
process. Figure 2 shows the structures of these convolution filters.

Figure 2. Structure of different convolution methods. Each convolution is a convolution that performs
specialized operations to extract spatial information and geometric features, although the feature
extraction performance is lower than that of the StdConv.
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2.3. Attention Mechanism

The attention mechanism has been proposed to solve the long-term memory prob-
lem. It uses a fixed-length context vector of an early natural language processing model.
Moreover, it emphasizes the input related to the word to be predicted at a particular point
in time by re-referencing the conventional input at every point in time when predicting a
word. Owing to these features, the attention mechanism has been widely used not only
in the field of natural language processing, but also in the field of CV, wherein it is used
to emphasize the feature information. Representative, it has been applied to each spatial
channel. By calculating the correlation between the pixels within the input feature map, the
importance of each pixel is identified and reflected in the output feature map by using a
sigmoid activation function. With the advent of attention mechanisms, the performance of
CV has improved. Representative examples of emphasis mechanisms include the convolu-
tional block attention module (CBAM) [22] and squeeze-and-excitation module (SEM) [23].
Figure 3 shows the spatial and channel attention method of the CBAM.

Figure 3. Channel and spatial attention method for CBAM. Each attention method used max-pooling
and average-pooling to extract information from the object from the feature map and then attention
to extract the important information of the channel through the sigmoid function.

3. Proposed Method

This section describes the proposed method. In Section 3.1, the structures of the
proposed feature fusion module and the LNblock are described. The loss function used is
described in Section 3.2.

Figure 4 shows the structure of the proposed LNFCOS. Features were extracted using
ResNet-50, which is the same backbone network used in the conventional FCOS. Sub-
sequently, to alleviate the problem of feature information imbalance, feature loss was
minimized through feature fusion of low- and high-level information. In this process, the
object information in the channel was emphasized by applying the channel-attention to the
semantic information of each channel. Additionally, the feature pyramid was reconstructed
through the LNblock, which is proposed to replace the StdConv to extract the feature
information of the object with a lower computational cost. The unnecessary operation of
the detection head was in addition minimized to reduce the operation cost compared to the
conventional method. The details of these operations are discussed in Section 3.1.
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Figure 4. Structure of the proposed light next fully convolutional one-stage detector (LNFCOS).
The proposed method replaces the existing 3× 3 StdConv and improves spatial information by
reconstructing a feature pyramid based on LNblock. In addition, based on the proposed feature
fusion module, the feature information was improved with a minimum computational cost. Finally,
based on the proposed LNblock, the structure of the detection head was improved to reduce the
computational cost.

3.1. Network Architecture

Light next block (LNblock): The LNblock can extract spatial features with a low
computational cost. It consists of a DWConv that calculates the spatial features and a
PWConv that performs an operation between channels. Its structure is similar to that of the
mobile bottleneck convolution (MBConv) used in MobileNet. However, the LNblock is a
dilated depth-wise convolution (D2WConv), which has a wider acceptance area with the
same computational cost as the conventional method and improves spatial information
extraction performance with a lower computational cost compared to conventional methods.
Additionally, the computational cost is minimized by minimizing the activation function
and batch normalization and dividing the conventional input channel by half. Figure 5
shows the structure of the LNblock.

Figure 5. Structure of light next block. The proposed LNblock enables the efficient extraction of
spatial information with low computational cost. Here, D2WConv, BN, PWConv, and SilU are the
dilated depth-wise convolution, batch norm, 1× 1 convolution, and sigmoid linear unit activation
function, respectively.
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First, D2Wconv, which has a smaller acceptance area than the conventional DWConv,
is applied to extract spatial information. By using a wider acceptance area, it is possible to
extract spatial information within a channel more efficiently compared to the conventional
method with the same computational cost. Weight change is minimized by applying batch
normalization to the extracted spatial information. Subsequently, the extracted spatial
information is refined by expanding and contracting the channel through PWConv. Thus,
the proposed LNblock can efficiently extract spatial information with a low computational
cost compared to StdConv.
Feature fusion module: Figure 6 shows the proposed feature fusion module feature fusion
module is a feature fusion method that minimizes loss by combining different features with
a channel-highlighting technique that allows attention to contour and the semantic infor-
mation required for object detection among channel information in the feature information,
with a low computational cost to minimize the loss of feature information.

Figure 6. Structure of the feature fusion module.

The feature fusion method first uses PWConv to compress the feature information of
each channel into 256 channels to integrate features of different scales. Second, it combines
low- and high-level feature information by upsampling feature maps at a relatively small
resolution. In addition, a channel attention method is applied to emphasize the edge and
semantic information of each channel for objects in the combined feature information.
Finally, the difference between conventional and emphasized information is constructed
as residual learning using the input feature information. Therefore, the proposed feature
fusion mitigates the imbalance between different scales. Equations (1) and (2) show the
channel enhancement and the proposed feature fusion process, respectively. The symbols
GAP, σ, PWγ,Concat, FU P, and FDW denote global average pooling, sigmoid activation
function, PWConv, concatenation operation, upsampling, and downsampling, respectively.
γ denotes the expansion and contraction coefficient of the channel.

ACH(x) = x · (σ(PWγ (PW 1
γ
(GAP(x))))), (1)

MFFM(x1, x2) = ACH(PW(Concat(PW(Fup(x1)), PW(x2)))). (2)

3.2. Loss Function

The loss function of the proposed method comprises the classification and bound-
ing box regression loss functions and the sum of the central losses. Each loss function
uses focal loss [24], the generalized intersection over union (GIoU) [25], and binary cross
entropy (BCE).
Classification loss: The focal loss becomes smaller than the cross-entropy loss function
when Pt approaches 1. Conversely, when Pt approaches 0, the loss increases. α and γ
are the hyperparameters that control the loss function, and when it is 0, it is the same
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as cross-entropy. In this study, the values of hyperparameters α and γ were 2 and 0.25,
respectively. Equations (3) and (4) are the cross-entropy loss and focal loss, respectively.

LossCE(p, y) =

{
− log(p), if y = 1
− log(1− p), otherwise

. (3)

where p and y represent the ground-truth (GT) and output values of the model, respectively.

pt =

{
p, if y = 1
1− p, otherwise

,

LossFocal = −α(1− pt)
γ · log (Pt). (4)

Regression loss: GIoU is a bounding-box regression function that performs regression
based on the intersection over union (IoU), unlike the commonly used smooth L1 loss
function. Equation (5) shows GIoU.

LossGIoU
(

B, Bgt) = 1− IoU +

∣∣C− B ∪ Bgt
∣∣

|C| . (5)

where B, Bgt, and C represent the predicted bounding box, GT, and minimum size of the
area covering the predicted bounding box and GT, respectively.

Finally, the centerness loss function, which gives weight to the object distance from the
object center during inference, determines whether an object is conventional in the center,
hence the BCE, which judges two special cases. Equation (6) represents centerness loss
function.

LossCenterness(Y, Ŷ) = −(Y log Ŷ + (1−Y) log (1− Ŷ)), (6)

where Y and Ŷ denote the predicted value and GT, respectively.
The final loss function of the model is shown in Equation (7) as follows:

LossTotal(p, g) = LossFocal(p, g) + LossGIoU(p, g) + LossCenterness(p, g). (7)

4. Experiments Results and Discussion

In this section, we show the effectiveness of the proposed method through experi-
mental details explained in Section 4.1, a comparison of conventional networks on the
PASCLVOC[26] and MS COCO [27] data sets in Section 4.2, and finally an ablation study in
Section 4.3.

4.1. Implementation Details

Hyperparameter settings: In the proposed method, all data sets from PASCAL VOC and
MSCOCO 2017 can be used to train and evaluate performance. Before using a dataset, we
used a backbone network pretrained with the ImageNet-1K dataset.

First, the optimizer used in the datasets was stochastic gradient descent (SGD), with a
momentum and weight decay of 0.9 and 0.005, respectively. For each dataset, the training
batch size was 32 and 8. The number of epochs was 30. The respective input resolution of
FCOS for both PASCAL VOC and MSCOCO datasets was 512× 512 and 800× 1333. The
initial learning rate (LR) was set as 0.01. At this time, in the PASCAL VOC dataset, LR
decreased by 0.1 for each iteration at 2 K and 2.1 K, and in the MS COCO, it decreased by
0.1 at 60 K and 90 K. Table 1 shows the hardware and software environment used in the
experiment.



Electronics 2022, 11, 2783 8 of 15

Table 1. Hardware and software environment.

Items Descriptions

CPU AMD Ryzen 3700X
GPU NVIDIA RTX 3090 24 GB
RAM 64 GB

OS Ubuntu 21.10
Framework Pytorch 1.11

Evaluation matrix: In this study, the mean average precision (mAP), which is the average
of the average precision (AP) [28] was used as an evaluation metric in object detection to
evaluate the performance. The AP calculates the mAP of the recall values on the precision-
recall curve (PR curve). The AP of each class was obtained with an AP value of 11 steps of
the recall, 0.0, 0.1, . . . , 1.0. Equations (8)–(11) show the precision, recall, AP, and mAP.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

AP =
1

11 ∑
r
∈ 0.0, ..., 1.0ρinterp(r) , (10)

mAP =
1
N

N

∑
i=1

APi . (11)

where TP, FP, FN, r, ρinterp, N, and APi denote the true positive (TP), false positive (FP),
false negative (FN), recall, precision value of each recall, total number of classes, and AP
value of the ith class, respectively.

4.2. Comparison with Other Networks

In this study, training and evaluation were performed on the public datasets PASCAL
VOC (07+12) and MS COCO 2017.

PASCAL VOC is divided into 20 classification categories and consists of 8324 images
in the training, 11,227 in the validation, and 4952 in the test datasets. In this study, we
used the training and validation datasets to perform evaluation and pretraining the test
datasets in the ablation studies. We compared the performances of conventional methods
and the proposed method for the PASCAL VOC dataset, which is often used to compare
object detection performance. The comparison was performed using an input resolution of
512× 512 , which is often used in the one-stage method for PASCAL VOC.

MS COCO is divided into 80 classification categories and consists of 118,287 images in
the training, 5000 in the validation, and 4952 in the evaluation datasets. In this study, it was
used to compare a conventional network with other networks. The performances for the
MS COCO dataset were evaluated with average values between 50% and 95% based on the
threshold value of the IoU.

We also performed ablation studies to verify the performance of the proposed method
and its modules.

4.2.1. PASCALVOC 2007

Table 2 shows the detection accuracy, parameters, and computation costs of the pro-
posed and other networks for the PASCALVOC 2007 test dataset. The detection accuracy of
the proposed method was higher by +0.8 AP with a lower computation cost, and it required
fewer parameters than the conventional methods. Thus, the usefulness of the proposed
method was confirmed.
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Table 2. Comparison of other networks with PASCALVOC 07 test dataset.

Networks Backbone Input resolution Parameters (M) FLOPs (G) mAP (%)

Two-stage
Fast R-CNN [5] VGG-16 600× 1000 - - 70.0

Faster R-CNN [6] VGG-16 600× 1000 134.7 - 73.2
OHEM [29] VGG-16 600× 1000 - - 74.6
R-FCN [30] ResNet-101 600× 1000 50.9 - 80.5

One-stage
SSD300 [8] VGG-16 300× 300 26.3 - 74.1
SSD512 [8] VGG-16 512× 512 29.4 - 76.0

YOLOv2 [10] DarkNet-19 544× 544 51.0 - 78.6
FCOS [12] ResNet-50 512× 512 32.1 103.1 78.4

LNFCOS (ours) ResNet-50 512× 512 27.1 60.2 79.3

Figure 7 shows the detection results of the conventional FCOS and proposed methods
for the PASCAL VOC dataset. As evident from Figure 7a, through the conventional FCOS
method, it is difficult to detect overlapping objects within different objects owing to the
lack of spatial information when extracting features. Moreover, some objects are omitted.
The results of the proposed method, shown in Figure 7b, confirm that the proposed method
improves the detection accuracy with a low computational cost by improving the spatial
information for images containing different objects. However, it performed some erroneous
detections because of the excessive improvement in spatial information for objects with a
long aspect ratio, such as the train class.

Figure 7. Detection results of (a) the conventional FCOS and (b) proposed method for the PASCAL
VOC 2007 test dataset.

4.2.2. MS COCO 2017

Table 3 lists the performances of the conventional and proposed methods for the
MSCOCO 2017 minival dataset. LNFCOS proceeded with a simultaneous input of 800× 1333
as with FCOS.

The proposed method achieved a detection accuracy of approximately 37.2 AP by
using ResNet-50 as the feature extraction network for the MS COCO dataset. Moreover,
compared to the two-stage methods, the proposed method achieved an optimal balance
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between detection accuracy and accuracy, as the number of parameters was approximately
five times lower than that of Faster R-CNN. However, compared with FSAF, the AP50
decreased by −1.2 AP. The difficult object detection performance (AP75) was improved
through the feature information and proposed module but decreased for AP50.

Table 3. Comparison of other networks using the MSCOCO 2017 minival dataset.

Networks Backbone Input
Resolution Parameters (M) AP (%) AP50 (%) AP75 (%)

Two-stage
CoupleNet [31] ResNet-101 800× 1024 - 34.4 54.8 37.2
FasterR-CNN

[32] ResNet-50 800× 1024 39.8 36.7 57.3 39.3

MaskR-CNN +
GRoIE [33] ResNet-50 800× 1333 - 38.4 59.9 41.7

One-stage
YOLOv3 [11] DarkNet-53 608× 608 65.2 33.0 57.9 34.4

RetiaNet +
Foveabox [34] ResNet-50 800× 1333 - 36.4 56.2 38.7

FSAF [35] ResNet-50 800× 1333 - 37.2 57.2 39.4
FCOS [12] ResNet-50 800× 1333 32.1 37.4 56.1 40.3

LNFCOS (ours) ResNet-50 800× 1333 27.1 37.2 56.0 39.9

Figure 8 shows the detection results of the conventional FCOS and the proposed
method for the publicly available MS COCO dataset. The upper image in Figure 8a shows
the false detection of the person, dining table, and chair class objects owing to the loss of low-
and high-level information. Additionally, in the lower image, various objects are placed
close to each other, and some are falsely detected owing to a lack of channel information.
As shown in Figure 8b, the proposed method reduces false detection by improving feature
information through the proposed feature fusion module. Additionally, the detection
error is minimized by improving the characteristics of the objects by improving the spatial
information, as shown in the lower image.

Figure 8. Detection results of (a) the conventional FCOS and (b) proposed method for the MS COCO
2017 minival dataset.
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4.3. Ablation Study

To verify the effectiveness of LNFCOS, an excision study was performed using the
PASCAL VOC 2007 test dataset. Table 4 lists the detection accuracy of each class of LNFCOS
and FCOS for the PASCAL VOC 07 test dataset, wherein it is evident that the detection
accuracy of LNFCOS is better than that of FCOS. Through the proposed LNblock, the spatial
information extraction performance was improved by reconstructing the feature pyramid
and detection head, and the loss of contextual information was minimized through the
proposed feature fusion module to achieve an optimal balance between detection accuracy
and computational cost. Compared to FCOS, LNFCOS slightly improved the detection
accuracy for difficult-to-detect objects, such as boats, potted plants, and trains. However, in
the case of objects with a long aspect ratio, LNFCOS showed more false detections compared
with FCOS. This confirmed that there was some spatial information loss owing to the zero-
padding in D2Wconv, which required a wide acceptance area and low computational cost.
Through resection studies, it was confirmed that LNFCOS achieved an optimal balance
between computational cost and accuracy compared with FCOS.

Table 4. The ablation study for LNFCOS analysis on the PASCAL VOC 2007 test dataset.

FCOS

aero bike bird boat bottle bus car cat chair cow
80.8 86.8 81.5 72.2 63.4 84.8 88.1 91.1 58.8 80.3

table dog horse mbike person plant sheep sofa train tv
66.0 88.6 86.1 84.8 84.2 51.0 80.8 72.1 88.9 79.3

LNFCOS

aero bike bird boat bottle bus car cat chair cow
79.8 85.6 81.7 75.8 63.0 85.2 87.3 91.8 58.7 84.7

table dog horse mbike person plant sheep sofa train tv
65.9 90.8 86.9 83.9 83.4 52.3 83.7 70.5 90.7 79.2

4.3.1. LNblock Analysis

In the ablation study, the parameters of the LNblock and comparisons with other
methods were performed using the PASCALVOC 2007 test dataset to verify the usefulness
of the LNblock.

Table 5 presents the accuracy and calculation costs of the proposed LNblock based
on to the ratios of the parameters. The parameters of the LNblock comprised the kernel
size K, extension factor D, and channel extension ratio C. Through the experiment, it was
confirmed that the LNblock contributed to the improvement of the detection accuracy
with a low computational cost. Additionally, the optimal ratio between the computational
cost and detection accuracy was confirmed at a parameter ratio of (K = 5, D = 2, C = 2).
Through this experiment, it was confirmed that the object detection accuracy decreased
when the kernel size and expansion ratio increased more than a certain level. In the case of
the channel coefficient, it was also confirmed that the detection accuracy decreased more
compared with the increase in the calculation cost when the expansion ratio was large.

Table 6 presents the results of the comparative analysis between the LNblock and
MBConv. MBConv has been used for efficient feature extraction at a low computational cost
in EfficientNet [36], starting with MobileNet. Compared to the weight reduction applied
in other methods, the computational cost of the LNblock was higher by approximately 1.9
GFLOPs compared to MBConv, but its detection accuracy was higher by 0.3 AP. However,
the optimal balance between computational cost and detection accuracy was achieved by
improving the detection accuracy with a lower computational cost of approximately 36.9
GFLOPs compared with the conventional StdConv.
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Table 5. Ablation study results of LNblock parameter analysis for the PASCAL VOC 2007 test dataset.

Method Parameters (M) FLOPs (G) mAP (%)

Baseline 32.1 103.1 78.5
LNblock (K = 3, D = 2,

C = 2) 26.9 60.2 78.8

LNblock (K = 3, D = 2,
C = 4) 27.1 60.8 78.6

LNblock (K = 5, D = 2,
C = 2) 27.0 60.2 79.1

LNblock (K = 5, D = 2,
C = 4) 27.1 60.9 78.8

LNblock (K = 7, D = 2,
C = 2) 27.0 60.2 78.5

LNblock (K = 7, D = 2,
C = 4) 27.2 61.0 78.3

Table 6. Ablation study results of StdConv, MBConv, and LNblock for the PASCAL VOC 2007
test dataset.

Method Parameters (M) FLOPs (G) mAP (%)

Baseline 32.1 103.1 78.5
MBConv 27.1 58.1 78.8
LNblock 27.0 60.2 79.1

4.3.2. Feature Fusion Module Analysis

An ablation study was performed to confirm the accuracy and computational cost of
the proposed feature fusion module. Table 7 presents the results of the proposed method
with and without the feature fusion module. In the proposed method, when only the
feature fusion module was used, the calculation cost increased slightly. However, it was
confirmed that it improved the detection accuracy by +0.6 AP with only a slight increase in
the computational cost by emphasizing the necessary feature information in each channel
for low- and high-level information.

Table 7. Ablation study results of the proposed method with and without the proposed feature fusion
module (FFM) for the PASCAL VOC 2007 test dataset.

Method Parameters (M) FLOPs (G) mAP (%)

W/O FFM 32.1 103.1 78.8
W FFM 32.6 105.0 79.4

5. Conclusions

In this study, we proposed an efficient object detection network based on the proposed
LNblock, called LNFCOS, which can achieve an optimal trade-off between accuracy and
computation cost. First, the proposed method minimized the loss when extracting spatial
information at a low computational cost through the LNblock. Additionally, the feature
pyramid and detection head were reconstructed by replacing the standard convolution
with the proposed LNblock. As a result, the features could be efficiently extracted at a
lower computational cost compared to that of the conventional methods. Second, by using
the proposed feature fusion module, the detection accuracy was improved by minimizing
the feature loss that occurred in each channel in the conventional method, by emphasizing
the feature information in the channel. For a quantitative evaluation of the proposed
method, experiments and evaluations were performed on the publicly available datasets,
PASCALVOC and MS COCO, to achieve an optimal balance of detection accuracy and
computational cost, with a computational cost of 36% lower (43.0 GFLOPs) than that of the
conventional FCOS. In addition, we confirmed the performance of the proposed method
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through ablation studies. In a future study, we plan to apply the proposed method to
other object detection networks and further reduce the computational cost and improve
detection accuracy.
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