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Abstract: In the field of studying scale variation, the Feature Pyramid Network (FPN) replaces the
image pyramid and has become one of the most popular object detection methods for detecting
multi-scale objects. State-of-the-art methods have FPN inserted into a pipeline between the backbone
and the detection head to enable shallow features with more semantic information. However, FPN
is insufficient for object detection on various scales, especially for small-scale object detection. One
of the reasons is that the features are extracted at different network depths, which introduces gaps
between features. That is, as the network becomes deeper and deeper, the high-level features have
more semantics but less content description. This paper proposes a new method that includes a
multi-scale receptive fields extraction module, a feature constructor module, and an attention module
to improve the detection efficiency of FPN for objects of various scales and to bridge the gap in
content description and semantics between different layers. Together, these three modules make the
detector capable of selecting the most suitable feature for objects. Especially for the attention module,
this paper chooses to use a parallel structure to simultaneously extract channel and spatial attention
from the same features. When we use Adopting Adaptive Training Sample Selection (ATSS) and
FreeAnchor as the baseline and ResNet50 as the backbone, the experimental results on the MS COCO
dataset show that our algorithm can enhance the mean average precision (mAP) by 3.7% and 2.4%
compared to FPN, respectively.

Keywords: object detection; Feature Pyramid Network; feature transformer; feature balance

1. Introduction

In the field of computer vision, detecting instances of various scales is a challenging
task. Image pyramids are proposed to detect various scale objects by feeding the same
images with different resolutions into the network, such as SNIP [1–3]. However, the
training and inference of image pyramids also incur high computational costs. Compared
with the image pyramids, the Feature Pyramid Network (FPN) [4] takes a single scale
image as input and extracts features of different resolutions from different network depths.
Each resolution feature can be used to detect objects of a certain scale. However, since
most backbone networks for object detection are designed for classification tasks, such as
ResNet [5], ResNeXt [6], etc., features at different network depths have different semantic
representation capabilities. This is the semantic gap between high-level and low-level
features [3,7,8]. On the other hand, as the network becomes deeper and deeper, the
resolution of the features becomes smaller and smaller, and the location information of
objects is gradually lost [9]. As a result, the deep high-level and shallow low-level features
of FPN have an imbalance of semantic and location information, making it difficult for the
detector to enhance performance.

By observation, high-level features with low resolution have fewer location details but
more semantic information. Conversely, low-level features with high resolution have fewer
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semantics and more location information. Intuitively, the most straightforward way is to
fuse high-level and low-level features to generate balanced features.

The first method is to extract features from deeper and wider backbones, such as
ResNeXt [6], or task-specific backbones, such as HourglassNet [10] for semantic segmenta-
tion and HRNet [11] for object detection. A deeper and wider backbone network always
leads to higher computing costs. The FLOP of HRNet is 32.9 G, while that of ResNet50 is
3.8 G.

The second way is to sequentially fuse the features extracted from the backbone
through a specific path, such as FPN with a top–down path and Path Aggregation Network
(PANet) [12] with a bottom–up path. Due to the sequential way, the information is gradually
attenuated during the fusion, so the features of the bottom layer or the top layer cannot
receive enough information from the top layer or the bottom layer.

The third way is to resize the features of different resolutions to a specific scale by
up-sampling or down-sampling, and then fuse all the features into one. For example, the
Balance Feature Pyramids (BFP) of Libra RCNN [13] combine all the features from different
layers into one. The PConv of Scale-Equalizing Pyramid Convolution (SEPC) [14] only
fuses adjacent feature layers. When fusing features in BFP or PConv, they are given the
same weight regardless of whether they are derived from separate layers with distinct
semantics and content descriptions.

Inspired by the fact that the same object is most likely to be detected in adjacent
feature layers, this paper exploits the correlation between adjacent feature layers and
proposes a new algorithm to generate balanced features. The new algorithm is named
Balance Feature Transformer (BFT). After integrating BFT into ATSS and FreeAnchor, their
detection performance is significantly improved.

The main contributions of this paper are summarized as follows:

1. This paper proposes a new feature fusion method called the Balanced Feature Trans-
former (BFT), which is based on the correlation between adjacent features of the
pyramid. The features output by our method have a better balance in terms of seman-
tic discriminative ability of features and object localization, and at the same time, they
have a low computational cost.

2. To take full advantage of the semantic and location information of different features,
this paper also proposes a multi-layer feature attention algorithm that learns different
types of attention from the same feature through two parallel branches, thereby
enhancing the ability of the detector to detect objects.

3. Our method has low computational cost and can be easily embedded into existing
algorithms. This paper achieves a 3.7 AP improvement on the SOTA algorithm ATSS.

2. Related Work
2.1. Deep Object Detector

Convolutional neural networks (CNN) have achieved great success in object detection.
CNN-based object detection is a very important topic in computer vision: for example,
multi-object tracking [15], autonomous driving [16], robotics [17], medical image analy-
sis [18], etc. Many edge devices are limited in the computing power, and the deployed
models models need to be lightweight.

All the CNN-based detectors can be roughly divided into two categories, i.e., two-
stage detectors and one-stage detectors. Two-stage detectors, such as Faster R-CNN [19]
and its improvements, divide the whole detection process into two stages. In the first stage,
proposals are generated, and then, the second stage determines the accurate object regions
and the corresponding class labels according to the proposals. One-stage detectors, e.g.,
YOLO [20], follow an end-to-end manner to classify and locate objects on features without
the region proposal step. Compared with the two-stage detector, the one-stage detector has
a faster detection speed but lower accuracy. For the two-stage detector, the scale variance
problem is alleviated, since the ROI is resized to a fixed size before performing detection.
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Detectors can also be divided into anchor-free and anchor-based algorithms according
to whether anchor boxes are used. The anchor-based algorithm is used to lay out anchor
boxes on the features. However, the anchor box parameters, such as height and width,
need to be manually designed for new scenarios with different object sizes or aspect ratios.
Anchor-free detectors learn to recognize keypoints of instances, such as center points or
corner points, rather than using anchor boxes to detect instances. Typical anchor-based
algorithms include YOLO [19,21], SSD [20] and so on. FoveaBox [22] and CornerNet [23]
detector are two typical anchor-free algorithms.

How to select positive and negative samples greatly affects the performance of the
detector. The SOTA detectors, ATSS and FreeAnchor, use two different strategies for
selecting positive samples and negative samples. This article chooses the one-stage, anchor-
based detector ATSS as the first baseline. ATSS computes the mean and deviation of the
IOU between all predicted boxes and ground truth boxes, thereby adaptively calculating
the thresholds for positive samples. A second baseline detector is FreeAnchor, which
uses maximum likelihood estimation (MLE) as a way to learn how to identify positive
and negative samples. Both algorithms are one-stage, anchor-based detectors that lay
out anchor boxes identically but differ in how they determine if the sample is positive or
negative. Most of the experiments are performed on both methods to verify how well the
detectors perform after integrating our BFT method.

2.2. Feature Receptive Field

To detect objects of various scales, extracting features from images with different
receptive fields is a very intuitive method. However, the effective receptive field [24]
is proportional to the network depth and the size of the convolution kernel. ASPP [25]
employs different-sized convolution kernels to extract features with various receptive fields.
RepVGG [26] uses large convolution kernels to extract features and obtain large receptive
field. In this paper, we hope that the features have different receptive fields, and there can
be some cooperation between the features to jointly detect objects of different scales. So,
we propose the multiple receptive fields feature extractor (MRFE) module to fuse features
with different receptive fields together.

MobileNet [27] uses depthwise separable convolution and pointwise convolution to
extract features. We consider using a simple network structure to achieve low computa-
tional cost and multi-receptive field features. Therefore, we choose dilated convolution as
the basic module to construct MRFE. Dilated convolution can use fewer parameters and
extract larger feature receptive fields.

2.3. Multi-Level Feature Fusion

The input of FPN is a multi-scale feature set with which each feature has different
channel numbers, and the output is also a multi-scale feature set, but every feature’s
channel number is the same. The FPN has the following defects [28,29]. On the one hand,
high-level features suffer from information loss due to feature channel reduction. On the
other hand, deep high-level features in backbones have more semantic meanings, while the
shallow low-level features are more content descriptive [28]. FPN transfers the high-level
features to the low-level features through a top–down path. The semantics gradually decay
during this process; thus, the low-level characteristics do not obtain appropriate semantic
information. In other words, FPN does not fully exploit the complementarity of the deep
and shallow layers to improve the semantics of low-level features.

For FPN or PANet, the main purpose is to balance the semantics and localization
information between high-level and low-level features. The information is gradually
attenuated due to the downward or upward transmission in a layer-by-layer manner. In
order to solve the above problem, Libra R-CNN [13] proposed Balanced Feature Pyramids
(BFP), which fuses all output features of FPN together to form a median scale feature
and then generates features of the desired scales by resizing. The BFP has to use a non-
local [30] attention module to refine the median scale feature. This makes the network
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difficult to train and has a high computation cost. AugFPN [28] introduced Residual
Feature Augmentation (RFA) and Adaptive Spatial Fusion (ASF) modules to improve
network performance and alleviate the effects of FPN defects. Meanwhile, RFA and
ASF are too complicated, make the network heave and slow down the inference speed.
SEPC [14] applied the correlation between the feature levels and proposed to use cross-layer
convolution to improve the detection performance on multi-scale features. However, the
PConv method treats all features equally and ignores the differences between features
during fusion. NasFPN [31] uses Neural Architecture Search (NAS) to search for a better
network structure, which greatly improves the detection results, but it is tricky to explain
and has a high computational cost. Adaptively spatial feature fusion (ASFF) [32] generates
weight for features and adopts an adaptive strategy for feature fusion. However, in this
way, there is a significant slowdown on GPU hardware [7], resulting in a significant amount
of time to train the network.

The Feature Pyramid Network (FPN) detects objects of various scales through features
of different resolutions. However, actually, objects of a certain scale are difficult to detect
on some feature layers due to the different receptive fields [33]. For example, it is difficult
for small objects to be detected at low-resolution features with large receptive fields. Most
of the existing methods achieve feature balance by fusing features from different layers,
which ignore feature layer and object scale matching, resulting in inefficient computation.
Therefore, we believe that the size of the object should also be considered when alleviating
feature imbalance. In order to detect as many objects as possible on one feature layer, we
consider using multiple convolution kernels with various kernel sizes to extract features
with different receptive fields. Features can adaptively match objects of various scales.

2.4. Task-Awareness Attention

Naturally, since objects of vastly different scales often co-exist in images, how to detect
them all is a challenging task in object detection. Traditionally, image pyramids with multi-
scale training [1,2,34] are used to detect various scales of objects. Unlike image pyramids,
feature pyramids [4] generate a set of features with different resolutions in which objects of
various scales are detected. The problem of how to guide the network to extract features
that match the object scale becomes important.

Libra R-CNN [13] proposes to insert a non-local module right after the BFP to make
the balanced semantic features more discriminative. SEPC [14] introduces a modified
3D convolution PConv to extract scale and spatial features simultaneously. ASFF [32]
introduces learnable parameters to conduct feature fusion. ASFF only learns three scalar
weights, which is insufficient for the fusion of multi-feature layers. Attentional Feature
Fusion (AFF) [35] introduces a new attention module, MS-CAM, to enhance the feature
ability of features to detect objects of various scales. MS-CAM uses the self-attention
method, which makes it heave. Non-Local is a self-attention module that pays more
attention to regions of interest, but the computational cost is high. ASFF learns to choose
appropriate features but ignores regions where the instances may be located. The MS-CAM
module, with a structure similar to self-attention, extracts channel information through
global average pooling and strengthens feature category information, but it pays less
attention to object location information.

The object detection task is to tell what an instance is and where it is. Therefore,
the network should strive to find the most suitable features for the location and category
of objects. We present a task-aware attention method in this paper to help the detector
figure out which features are optimal for the input and where the objects are most likely to
be found.

3. Method

Figure 1 shows the whole pipeline of Balance Feature Transformer (BFT). The multiple
receptive fields feature extractor (MRFE), the feature constructor module, and the multi-
layer channel and spatial attention (MLCS) module make up the overall framework. The
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MRFE module configures convolutions with different kernel sizes and then concatenates
them along the channel dimension to form features with different receptive fields. The
feature constructor module extracts multiple scale features from each feature layer and
combines the same scale features into a new feature layer. The MLCS module extracts
the channel and spatial attention from the same features, allowing the detector to pick
the appropriate feature layer based on the input image. In the following sections, we will
describe all components in detail.

FPN ASPP Channel&SpatialFeature Reconstruct

Figure 1. The entire pipeline consists of multiple receptive fields for the feature extractor, feature
constructor module, and attention module MLCS.

Compared with the Feature Pyramid Network (FPN) and Balance Feature Pyramid
(BFP), our method exploits the correlation of adjacent features so that the output features
have more discrimination. In the pipeline, we integrate MRFE so that the features have
different receptive fields (RF) and make the RF quite different. With the help of MLCS, the
features are more balanced. All of these make our method more robust.

3.1. Multiple Receptive Fields Feature Extractor

FPN is usually used as one of the solutions to detect objects of various scale. That
is, the detector performs small-scale object detection on large-resolution features while
detecting large-scale objects on small-resolution features. The disadvantage of this scheme
is that the dataset is imbalanced in the object category and object size distribution, which
may lead to insufficient training at some levels. For the MS COCO dataset [36], the size
of more than 70% of objects is less than 10% of the entire image, while the size of objects
larger than 60% of the entire image is about 5%, so the distribution of objects of different
scales is not uniform. If a feature layer of FPN can only detect objects of a certain scale,
then objects of other scales may not be detected.

Inspired by ASPP [25], we design the MRFE module and insert it into the network
pipeline just after the FPN. MRFE is configured with different dilation coefficients according
to the feature resolution, so that the detector can extract features of different receptive fields
at each level. Our motivation is to match the receptive fields with the sizes of objects at
each layer. At the same time, the dilation coefficient is configured to overlap each other
due to the correlation between each level, allowing adjacent-sized items to be detected on
the next level. The dilated coefficient is shown in Table 1.

Table 1. Table of dilated coefficient in ASPP module.

Module MRFE Layer Layer-1 Layer-2 Layer-3 Layer-4

Layer-5 1 11 13 15

Layer-4 1 9 11 13

FPN Layer Layer-3 1 7 9 11

Layer-2 1 5 7 9

Layer-1 1 2 5 7
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3.2. Feature Constructor

The motivation of the feature constructor module is to exploit the correlation between
the adjacent features of the pyramid feature layer to construct a new feature layer so that
the new features can alleviate the semantic gap.

First of all, for the feature Fi(0 < i < L − 1) ∈ RH×W where L is the number of
FPN layers, three features with sizes (2H × 2W, H ×W, H/2×W/2) are generated
by 1× 1 convolution, 3× 3 convolution, and 3× 3 convolution whose stride is set to 2,
just like feature C4 shown in Figure 2. Then, for the feature F0 and FL−1, features of sizes
(2H× 2W, H×W) and (H/2×W/2, H×W) are generated, respectively, referring to C3
and C5 in Figure 2. Finally, features with the same scale are concatenated along the channel
dimension to make new feature layers as the output of the module. The new features have
both the semantics information of the deep high-level features and the location information
of the shallow low-level features. In Figure 2, Sj means the size of the feature layer j. The
size of the circle indicates the resolution of the feature.

C5

C4

C3

C5S5

C4S4

C3S3

C5S4

C4S5

C4S3

C3S4

C5S5

C4S5

C3S3

C5S4

C4S4 C4S3

C3S4

AcrossSame

AcrossDown

AcrossUp

Figure 2. Feature constructor module. It consists of two sub-modules: the feature resizing module
and the feature transform module. The resizing module generates different scale features by up-
sampling or down-sampling. The feature transform module combines all the same scale features
together to make new feature layers.

3.3. Multi-Layer Channel and Spatial Attention(MLCS) Module

The main purpose of the multi-layer channel and spatial attention module proposed
in this paper is to extract the attention weights from the multi-layer features. As illustrated
in Figure 3, the whole multi-layer feature attention module is made up of two parallel
branches that extract channel and spatial attention weights from the same data.

Pooling Concat 1x1 Conv Split

× ×

3x3 Conv

Figure 3. Multi-layer channel and spatial attention (MLCS) module. MLCS consists of two parallel
branches. The first branch is used to learn the weights of each feature layer in order to tell which
feature layer is optimal for identifying objects. The second branch is mainly used to learn a spatial
position weight for each feature layer.
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The channel attention in MLCS can be calculated according to Formula (1).

Wchn = σ(Conv1×1δ(Conv1×1ConcatL
1 (

1
H ×W

H,W

∑
i,j

Fi,j
l ))) (1)

For input multi-layer feature F ∈ RH×W×C×L, a feature of dimension (1, 1, C, L) is
generated by global average pooling. Then, features of dimension (1, 1, S) are generated by
concatenating all features of dimension (1, 1, C) along the channel dimension, where we
define S as L× C. Finally, linear functions approximated by a 1× 1 convolution layer are
used to generate the output.

The spatial attention of layer l can be computed as Formula (2).

Wspt =
K

∑
k=1

ωl,k · F(l; pk + ∆Pk; c) · ∆mk (2)

where K is the number of sparse sampling locations, pk + ∆pk is a shifted location to focus
on a discriminative region by the self-learned spatial offset ∆pk, and ∆mk is a self-learned
importance scalar at location pk. Fl is the feature that concatenates along the channel with
dimension (H, W, S).

Finally, the output features of MLCS module can be calculated by Equation (3).

Fout = Fin � (Wchn �Wspt) (3)

4. Experiments
4.1. Dataset And Evaluation Metrics

All experiments in this paper are performed on the challenging dataset MS COCO-2017 [36].
The dataset contains 80 categories of around 160,000 images (118,000 images for training,
5000 images for validation, and 41,000 images for testing). All reported results follow the
standard COCO-style mean Average Precision (mAP) metrics under different Intersection
of Union (IOU) thresholds, ranging from 0.5 to 0.95. We also report the results of APS, APM,
and APL on small, medium, and large scales, respectively.

4.2. Implementation Details

For fair comparison, all experiments are implemented with the open source MMDetec-
tion [37] toolbox based on Pytorch. We implement CAR as a plugin and train it using the
ATSS framework. All other parameters are not noted in this paper following the MMDetec-
tion default setting. All models are trained using one compute node of 2 A100 GPUs each
with 40 GB memory.

Training. We use ResNet50 as the model backbone in all ablation studies and train
it with the standard 1× configuration. Other models are trained with the standard 2×
training configurations as introduced in ATSS. Following the typical convention, the long
edge and short edge of input images are resized to 1333 and 800. We use stochastic gradient
descent (SGD) to train detectors with a batch size of four (two GPUs, two images per GPU)
for 12 epochs. The initial learning rate is set to 0.0025 and stepped down by a factor of 10
at eight epochs and 11 epochs.

Inference. We compare our best model with multi-scale testing to state-of-the-art
methods reported utilizing test time augmentation. Model EMA, mosaic, mix-up, label
smoothing, soft-NMS, and adaptive multi-scale testing are not employed.

4.3. Comparison with State-of-the-Art Detectors

To verify the effectiveness of the BFT, we evaluated the BFT on the MS COCO and com-
pared it with other state-of-the-art detectors. For a fair comparison, we have reimplemented
the corresponding baseline methods with FPN on mmdetection.
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As shown in Table 2, when we adopt ResNet50 as the backbone, ATSS with BFT has an
improvement of 3.7% over ATSS with FPN, and it has an improvement of 0.8%, 4.0%, and
6.9% for small, medium, and large instances, respectively. The improvement in large-scale
objects is quite noticeable. When we adopt ResNet101 as the backbone, ATSS with BFT
improves the mAP metric by 2.9% when compared with ATSS with FPN, while APs, APm
and APL increase by 0.5%, 3.5%, and 5.6%.

Table 2. Performance comparison with the state-of-the-art (SOTA) results on MS-COCO. Symbol “*”
means our reimplemented results, and mark “†” means ResNeXt101-32x4d.

Method Backbone Schedule AP AP50 AP75 APS APM APL

anchor-based detector:
ATSS [38]/w FPN * ResNet50 1× 39.1 57.0 42.5 23.3 42.8 50.1
ATSS [38]/w FPN * ResNet101 1× 41.5 59.6 45.3 24.9 45.5 53.0
ATSS [38]/w FPN * ResNet101 2× 41.8 60.2 45.5 25.3 45.9 54.0
YOLOV2 [20] Darknet19 - 21.6 44.0 19.2 5.0 22.4 35.5
YOLOV3 [22] Darknet53 - 33.0 57.9 34.4 18.3 35.4 41.9
FreeAnchor [21] * ResNet50 1× 38.5 57.3 41.2 21.1 41.8 51.5
FreeAnchor [21]/w SEPC * ResNeXt101 † 2× 47.7 67.3 51.7 29.2 50.8 60.3
RetinaNet [39] ResNet101 - 39.1 59.1 42.3 21.8 42.7 50.2
Cascade R-CNN [40] ResNeXt101 - 42.8 62.1 46.3 23.7 45.5 55.2
Revisiting R-CNN [41] ResNet101+ResNet152 - 43.1 66.1 47.3 25.8 45.9 55.3
SNIP [1] DPN-98 [42] - 45.7 67.3 51.1 29.3 48.8 57.1
Faster R-CNN [19] * ResNet101 2× 38.7 58.7 42.0 22.1 42.8 50.6
RefineDet512 [43] ResNet101 - 36.4 57.5 39.5 16.6 39.9 51.4

anchor-free detector:
FoveaBox [44]/w FPN * ResNet50 1× 36.2 56.1 38.5 20.4 39.7 46.2
FoveaBox [44]/w FPN * ReNet101 1× 38.3 58.3 40.9 21.4 42.4 50.0
FoveaBox [44]/w FPN * ReNet101 2× 38.9 58.7 42.0 22.1 42.8 50.6
FCOS [45] ResNeXt-64x4d-101 2× 43.2 62.8 46.6 26.5 46.2 53.3
RepPoints [46] ResNeXt101+DCN [47] - 45.0 66.1 49.0 26.6 48.6 57.5
CenterNet [48] Hourglass104 - 44.9 62.4 48.1 25.6 47.4 57.4
CornerNet [49] Hourglass104 - 40.5 56.5 43.1 19.4 42.7 53.9

ours:
ATSS/w BFT ResNet50 1× 42.8 60.4 46.2 24.1 46.8 57.0
ATSS/w BFT ResNet101 2× 44.4 61.7 48.1 25.8 49.0 58.6
ATSS/w BFT ResNeXt101 † + DCN [47] 2× 47.3 65.1 51.4 28.4 51.8 62.5
ATSS/w BFT ResNeXt101 † + MDCN [47] 2× 47.8 65.7 52.0 29.0 52.2 63.2
ATSS/w BFT ResNeXt101-32x4d [6] 2× 47.9 66.2 52.1 28.7 52.8 63.1
ATSS/w BFT SWIN-T [50] 3× 42.9 60.4 46.9 23.1 47.3 59.2

When we adopt ResNeXt101 with DCN [47] as the backbone, ATSS with BFT improves
the mAP metric by 5.5% when compared to ATSS with FPN while improving various
scaled object detection metrics by 3.1%, 5.9%, and 8.8%. It does a better job of detecting
little objects, and the overall improvement is more balanced. When we adopt ResNeXt101
with MDCN [47] as the backbone, ATSS with BFT boosts the mAP by 6.0%. For objects
of different scales, compared with ATSS with FPN, metrics are improved by 3.7%, 6.3%,
and 9.2%.

When adopting ResNeXt101 as the backbone, we also double-check the ATSS with
BFT performance under multi-scale training settings. BFT improves the mAP metric to
47.9%, which is a 0.6% improvement over without multi-scale training, while metric AP50
also improves by 1.1%.
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4.4. Ablation Study
4.4.1. Effect of Each Component

In this section, we adopt ResNet50 as the backbone and perform the ablation studies
on the MS COCO dataset to analyze the effect of each component in our proposed method
by progressively adding additional components to the baseline. We use SGD to train
detectors with a batch size of 4 and a learning rate of 0.002 for 12 epochs.

As shown in Table 3, after integrating MRFE, feature constructor, and MLCS modules
into the ATSS detector, the metric, mAP, increases by 0%, 2.4%, and 1.2%, respectively.
The MRFE module can boost the metric APL by 1.4%, and the feature constructor module
makes the highest improvement. In the presence of MRFE and MLCS modules, the fea-
ture constructor can still increase the mAP by 1.2%. All the modules together boost the
performance of ATSS by about 3.7%.

Table 3. The results of ablation experiments performed by our algorithm on ATSS and FreeAnchor.
[X] mean the module is added into the pipeline

Detector MRFE Constructor MLCS AP AP50 AP70 APS APM APL

ATSS

39.1 57.0 42.5 23.3 42.8 50.1
X 39.1 57.3 42.4 23.5 42.7 51.5

X 41.5 58.0 43.0 24.4 43.9 52.7
X 40.3 57.9 43.9 24.2 44.1 51.9

X X 42.2 59.6 45.6 23.7 46.4 55.8
X X 42.7 60.1 46.3 25.3 46.8 55.8

X X 41.6 59.2 44.9 23.9 45.9 54.4
X X X 42.8 60.4 46.2 24.1 46.8 57.0

FreeAnchor

38.5 57.3 41.2 21.1 41.8 51.5
X 38.2 57.5 41.3 21.4 42.8 52.2

X 40.6 58.7 43.5 23.1 44.4 54.6
X 39.9 58.2 42.9 22.5 43.7 53.2

X X 40.7 58.7 43.5 22.6 44.2 54.6
X X 41.0 59.2 43.8 22.6 44.7 55.2

X X 40.3 58.6 43.2 22.7 43.8 53.1
X X X 41.1 59.3 43.8 23.2 44.8 55.0

For the FreeAnchor detector, after integrating the MRFE, feature constructor, and
MLCS modules into the detector, separately, the mAP metric increases by −0.3%, 2.1%, and
1.4%. MRFE alone improves the APL and APM by 0.7% and 1.0%. The feature constructor
is still the module that achieves the highest improvement. The feature constructor in the
presence of MRFE and MLCS modules can still improve the performance by 0.8%. All the
modules together boost the performance of FreeAnchor by 2.6%.

4.4.2. Effect of Different Baseline

As shown in Table 2, our method achieves 3.7% and 2.6% improvements on ATSS
detector and FreeAnchor detector, respectively. By comparing the experimental results,
it can be seen that on ATSS, the MRFE module performs poorly on the metric APS, but
together with the other two modules, it achieves a huge improvement of 4.0% and 6.9% on
APM and APL. For the detector FreeAnchor, the metrics for detecting large, medium, and
small scales objects are improved by 3.5%, 3.0%, and 2.1%, respectively.

From the results shown in Table 2, we can conclude that our method can improve
the performance of ATSS detector and FreeAnchor detector with low computational cost.
In general, it is believed that our method can be easily plugged into other detectors and
improve the performance of the detectors.
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4.4.3. Comparison with Other Feature Fusion Modules

In this section, we adopt ResNet50 as the backbone and perform the performance
and computational studies on the MS COCO dataset by integrating our method into the
FreeAnchor detector. We use SGD to train detectors with a batch size of 4 and a learning
rate of 0.002 for 12 epochs. Table 4 shows the experimental results.

Table 4. Comparison with other feature fusion modules on FreeAnchor.

Feature Fusion AP AP50 AP75 FLOPS(G)

FPN 38.5 57.3 41.2 239.3
HRNet 38.6 57.1 41.3 297.6
PANet 38.9 57.6 41.6 245.6
Libra 39.4 58.7 42.2 315.8
NASFPN 39.1 57.0 41.8 347.1
PConv 40.0 59.1 42.2 239.3
BFT 41.1 59.3 43.8 248.7

Table 4 shows that compared with FPN, BFT improves the metric mAP by 2.6% while
improving FLOPs by only 3.7%, which is negligible. The detection metric mAP is enhanced
by 1.1% when compared to the PConv utilized in SEPC. So, we can conclude that our
method can effectively improve the performance of the FreeAnchor detector with low
computational cost.

5. Discussion

The definition of feature imbalance in this paper refers to the difference in semantic and
location information between feature layers caused by different network depths of feature
layers. That is, the high-level features have more semantics than the low-level features. On
the contrary, low-level features have more location information than high-level features.
The features are situated at various network depths, which is the primary source of the
imbalance. However, in order to identify object categories and localize instances, the
object detection task requires features with more semantic information and more location
information. Another reason is the imbalanced distribution of object categories and scales
in the dataset used for training. This article tries to propose a solution to the above reasons.

FPN uses a top–down path to transfer the semantics of high-level features to low-level
features in a layer-by-layer fusion manner. PANet transfers the location information of
low-level features to high-level features by adding a bottom–up path to the FPN. Due to
the sequential fusion manner, the semantic and location information will be attenuated
during the transmission process. Another method is to fuse features of different sizes into
features of a specific scale, such as the BFP of Libra RCNN, and then directly generate
different feature layer sizes through resize. The main idea of this article is to use linear
interpolation or convolution functions to directly construct 1/2 and 2×-size features from
features on various layers. With the help of the feature construction module, the features
of the same scale are constructed into a new feature layer. The new feature consists of the
original one and its adjacent features. That is, the new feature has both the semantics of the
adjacent high-level features and the location information of the adjacent low-level features.
This makes the new features more balanced than those in FPN. The experimental results of
ablation show that our method outperforms FPN.

The MLCS module is trained to extract features that are most suitable for the object
to be detected. The MLCS module, which is structured in a parallel manner, consists of a
channel attention module and a spatial attention module. The motivation is to extract both
channel and spatial attention from the same feature, allowing the detector to focus on the
specific regions and channel of the feature simultaneously.

In Figure 4, we compare the ROC of FPN and BFT. In addition, we show the inference
output of FPN and BFT in Figure 5. As shown in Figure 4, comparing the ROC results of
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objects of different sizes, it can be determined that BFT has improved the original algorithm.
In Figure 5, we can see that ATSS with BFT can detect more objects and improve the
performance of the detector. From Figures 4 and 5, we can conclude that BFT can boost the
performance of the detector over FPN.

Figure 4. Comparison of the ROC of BFT with FPN. The upper layer (a) of figure is the ROC of ATSS
with FPN, and the lower layer (b) of figure is the ROC of ATSS with BFT. From left to right are the
ROCs for laptops, airplanes, and dogs.

Figure 5. Comparison of the inference output of BFT and FPN. The upper layer is the output of ATSS
with FPN, and the lower layer is the output of ATSS with BFT.

The results of the ablation experiments in Table 3 show that MRFE plays a limited
role in the whole pipeline, and the core module is the feature constructor block and the
MLCS block. In the ablation experiment, we verify the effect of each module by gradually
adding each module to the pipeline, and we also verify the effect of the combination of two
modules on the experimental results. From the experimental results, it can be concluded
that the performance of the baseline has been improved, and each module works well.

We show the performance and computational cost comparisons with other feature
fusion methods in Table 4. When compared to FPN, BFT improves the performance by
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2.6% while only increasing the computing costs by 3.7%. From the experimental results, it
can be concluded that BFT is a low-cost fusion method and an effective method.

We integrate BFT into ATSS and show the results in Table 2 after comparing it with
other SOTA detectors. We conduct experiments on different backbones, such as ResNet and
ResNeXt, with or without DCN. The results show that the overall detector performance
can be improved by embedding our method into the network.

We have verified that our method can improve the detection performance of the
network, but in fact, there is still no way to quantitatively measure the specific difference in
semantics and positioning information between the feature layers. Although it is possible
to use training loss or IOU loss, as well as positive and negative sample ratios, etc., those
methods require relatively complex calculations. We are exploring a new way to directly
measure the imbalance of features. This is also our later work.

6. Conclusions

In this paper, we discuss the feature imbalance problem and propose a reconstructive
approach, combined with the MLCS attention method, to effectively improve the detection
performance of the network. The BFT method can be integrated into the pipeline to alleviate
the output feature imbalance. Based on the experimental results shown in the paper, we
believe that BFT can alleviate network feature imbalance.

During the experiment in this paper, we found that using different attention algo-
rithms on features of different depths will affect the experimental results of the algorithm.
This paper only proposes a network structure and a simple multi-feature layer attention
algorithm. In the future, we will shift our attention to the adaptive attention algorithm,
which can automatically calculate the attention weights of different depths of features.
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