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Abstract: Fine-grained categorization is an essential field in classification, a subfield of object recogni-
tion that aims to differentiate subordinate classes. Fine-grained image classification concentrates on
distinguishing between similar, hard-to-differentiate types or species, for example, flowers, birds, or
specific animals such as dogs or cats, and identifying airplane makes or models. An important step
towards fine-grained classification is the acquisition of datasets and baselines; hence, we propose a
holistic system and two novel datasets, including reef fish and butterflies, for fine-grained classifica-
tion. The butterflies and fish can be imaged at various locations in the image plane; thus, causing
image variations due to translation, rotation, and deformation in multiple directions can induce vari-
ations, and depending on the image acquisition device’s position, scales can be different. We evaluate
the traditional algorithms based on quantized rotation and scale-invariant local image features and
the convolutional neural networks (CNN) using their pre-trained models to extract features. The
comprehensive evaluation shows that the CNN features calculated using the pre-trained models
outperform the rest of the image representations. The proposed system can prove instrumental for
various purposes, such as education, conservation, and scientific research. The codes, models, and
dataset are publicly available.

Keywords: novel datasets; fine-grained classification and detection; deep learning

1. Introduction

The remarkable progress of computer vision techniques has solved many challenging
problems in computer science and other domains. Biodiversity is one such domain that can
benefit from computer vision methods to solve complicated and time-consuming problems.
One such complex issue is the classification of animal and plant species, done mainly by
DNA matching [1]. However, in this process, precious specimens of animals and plants
collected and preserved by spending an enormous amount of human labor and wealth
have to be consumed. In order to avoid manual labor, the visual cues on the mentioned
animals’ bodies, such as colors and patterns, can be utilized to support species classification.
The bodies of butterflies and reef fish are the canvases of nature that depict extraordinary
combinations of colorful blobs and patterns, serving as visual cues to distinguish these
animal species from one another. This paper utilizes these visual cues to develop image
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representations or embeddings to support the image-based classification of butterflies and
reef fish species.

The wings of butterflies depict symmetry developed by color patterns and blobs,
as shown in Figure 1. The symmetrical patterns are instrumental in distinguishing the
butterfly species from one another. However, thousands of butterfly species are catego-
rized under 126 different families [2]. Due to such a massive number, classifying a given
specimen into one of the existing species becomes complicated and requires expert-level
knowledge. Consequently, such a tedious task becomes time-consuming because it linearly
increases with the number of animal species. Such a labor-intensive job can be supported
and expedited by an image-based species classification framework that uses the visual
information of the colors and patterns on the butterfly wings.

Figure 1. Some examples of symmetry on the wings of butterflies are clearly visible in the form of
color patterns and blobs.

Likewise, hundreds of reef fish species [3] are found worldwide in the oceans. The
reefs have a significant impact on their behavior and living style. These reefs are also
the sources of their food and shelter. However, water pollution caused by the extensive
use of pesticides, industrial wastes, and pharmaceuticals constantly threatens these reefs’
ecosystems. Such contaminants cause behavioral changes in the reef fish [4] which, if
detected, will provide critical information for their timely protection. To this end, an image-
based classification framework can provide a strong base for the reef fish’s image-based
behavior monitoring system. Such expert systems can also be used in numerous application
disciplines such as entertainment (e.g., aquariums) and education (e.g., in schools). Figure 2
shows the most common and challenging image variations found in butterflies and reef fish
images. For instance, in-plane orientation differences between the butterflies and reef fish
cause variations among the same species’ pictures. Such variations are negligible among
images of other animals such as horses [5] and cows [6] as compared to the butterflies
and reef fish images. Similarly, both the species are imaged with a cluttered background
caused by objects and other animals in their respective habitats. Changes in object scale
and translation also cause variations in images due to their relative position concerning the
imaging device. Therefore, we aim to select an image representation that performs well in
the face of such variations and supports the image-based species classification system for
butterflies and reef fish.
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(A)
In-plane orientation differences

(B)
Background clutter

(C)

Scale differences
(D)

Position differences

Figure 2. Common image variations found in butterflies and reef fish images showing different
background clutters, scales, and orientations.

2. Related Work

The fine-grained classification techniques related to this work are discussed in this
section. Lazebnik et al. [7] were the first to explicitly evaluate their proposed method on
butterfly images employing a parts-based object model based on local region descriptions
invariant to scale changes and affine transformations. Rotation-invariant local descriptors
detect and represent the local affine regions. Afterward, region matching is performed on
several image pairs to generate the candidate parts, followed by a validation step based
on the candidates’ geometric consistency to reject the invalid matches. However, such a
weakly supervised method suffers from the computational complexity of deriving similar
image regions’ spatial relations, especially in butterfly images where the object of interest is
imaged amid severe background clutter. Another well-known work introduced the Leeds
butterflies dataset [8], where the primary motivation is to avoid the usage of large training
sets in the conventional approach with machine learning algorithms. Consequently, the
authors suggest employing a generative model to learn object categories from the textual
descriptions, which are then connected with the butterflies’ visual attributes, such as
blobs and color features; however, their method involves Natural Language Processing
(NLP), which can be avoided using feature matching methods specifically proposed for
fine-grained classification that face a lack of training data [9]. Nonetheless, these two
datasets have been used in the literature for the evaluation of various problems, such as
fine-grained classification [10], co-classification [11], and invariant image classification [12].

More recently, state-of-the art CNN architectures have been utilized for the image-
based classification of butterfly species. For instance, Faster R-CNN [13] is used to classify
images of 111 species [14]. Similarly, VGGNet [15] and ResNet [16] are evaluated for the
recognition of 10 butterfly species [17]. A skip connection-based CNN architecture is used
for the fine-grained classification of butterfly images that belong to 56 subspecies [18],
while ResNet is used for the fine-grained classification of 86 butterflies species [19]. Other
CNN-based methods include the use of VGGNet and Alexnet [20]; ResNet, Inception-v3,
and VGG [21]; and Squeeze-and-excitation networks [22].

Fish4Knowledge is the largest repository of reef video clips. It consists of 700,000 clips,
each spanning 10 min. The repository establishment is motivated by the conservation,
protection, and scientific study of the marine life found in coral reefs. These video clips are
from the Taiwanese reef, as it is one of the most diverse reefs in the world, accommodating
3000 fish species (Available online: http://fishdb.sinica.edu.tw/ (accessed on 18 August
2022)). The FishCLEF [23] dataset is derived from this repository and has been publicly
available as a part of the ImageCLEF competition since 2014. It consists of 4000 video clips,
with several thousand detected reef fish from 10 species. Huang et al. [24] perform fish clas-
sification on 24,150 images, 15 species extracted from the Fish4Knowledge repositorywith

http://fishdb.sinica.edu.tw/
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a hierarchical tree, where the reject function is integrated with the Balance-Guaranteed
Optimized Tree (BGOT) to avoid increasing depth errors. However, the pre-processing of
the fish images aligns the fish orientations to improve the recognition rate, which requires
time and effort for such a large number of images. The CNN-based methods are also
proposed for image-based fish classification, such as using AlexNet and VGGNet [25],
GoogleNet [26], and modified Alexnet [27]. The image is sampled more densely on image
regions with more fine-grained details and where there are differences between species [28].
Consequently, the CNN/classifier achieves better recognition performance on those parts of
the image that are important for the species and thus the classification process. Fine-grained
image classification can be performed via approaches such as that of Beuth et al. [29], which
zooms into an image to find details that are relevant for distinguishing the divergent classes.
The approach utilizes visual attention, and by this processing, it zooms in and extracts a
region of interest. A subsequent CNN can then process this region of interest with much
higher resolution. Thus, more qualitative image content is fed into the CNN. The authors
show a decrease in error rate via their system by a factor of 2.3. This work deploys the
model proposed by Beuth [30].

As mentioned earlier, the butterfly and reef fish images face the same variations. The
tasks of their image-based classification become identical. While most of the previous
works aim at either butterfly classification or reef fish classification, there exists only a
single publication [31] that jointly performs both tasks. They use images of 30 species [31]
of butterflies and reef fish. As mentioned earlier, the main focus is developing an image
representation invariant to the image, with variations locally and globally. The scale and
rotation-invariant features (SIFT) are used to achieve local invariance. The positions of
identical local features are then triangulated. The angles produced by such triangulation
are aggregated in an angles histogram to build a global image representation. As the
angles of a triangle are invariant to triangle position changes, scale, and orientation, their
proposed image representation is scale, translation, and rotation-invariant. Therefore, such
image representation becomes a natural choice for the image-based species classification of
butterflies and reef fish. Nonetheless, we extend their work in the following directions.

1. In addition to the four traditional-based image representations, we evaluate 21 CNN-
based image representations that use the pre-trained models and are the most compre-
hensive evaluation of CNN-based image representations on the datasets of butterflies
and reef fish on two different data settings in a single publication to the best of
our knowledge.

2. Similarly, the reef fish image dataset collected from the internet and used in this work
is also the most diverse dataset to date, containing images of 50 species, most of which
are obtained in their natural habitat.

It should be noted here that the FishCLEF [23] dataset has 10 species while Huang et al. [24]
use the images of 15 species. Moreover, Fish4Knowledge is doubtlessly the most diverse
image repository of reef fish. However, the cameras mounted in the reef taking images and
videos suffer from imaging problems such as uneven illumination and occlusions.

The rest of the article is arranged as follows. Section 3 provides an overview of the
datasets. Section 4 details the image representation used for the specie-based image classifi-
cation. Results are reported in Section 5, and the conclusions and future directions of the
current research are outlined in Section 6.

3. Datasets

This section explains the process of collecting images for both datasets with their statistics.

3.1. Butterflies Dataset

We selected 50 butterfly species, among which 30 are from Anwar et al. [31]. The
Google image search was used to obtain images of butterfly species. For this purpose,
the commonly used names, as well as biological names, were utilized. For instance, the
biological name of “Painted Lady” is “Vanessa cardui”. These names were used in the Google
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image search to obtain the images. An inspection was then carried out on the retrieved
images to ensure that the butterfly of interest was depicted. The butterfly dataset consists
of 2613 images, most of which are ecological. Figure 3 shows the exemplar images of the
butterfly species cropped to show the butterfly of interest. In contrast, Figure 4 shows the
number of images per class, both ecological and lab specimens.
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Figure 3. Representative images of butterfly species. The text above the images shows the species.
The images can be better seen on a monitor when zoomed in.
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Figure 4. The number of images per class in the butterflies dataset. Ecological images are those
that are taken in the natural habitat of butterflies. Such images contain background clutter and the
butterfly being imaged with non-uniform orientations and illumination conditions. The lab images
are those of the butterfly specimen preserved in the lab. Hence, these images do not contain the
background clutter, and the images are taken with minimal differences in orientation and illumination.
The left y-axis (min = 0, max = 300) represents the count of ecological images where the right y-axis
(min = 0, max = 40) represents the count of lab images.

3.2. ReefFish Dataset

For our current work, we use 50 reef fish species, among which 30 are those used
in the experiments of Anwar et al. [31]. We named our dataset ReefFish. Here, we also
used a Google image search to obtain the reef fish images, which were then inspected to
select those depicting the fish of interest. Similarly, biological and commonly used names
were employed in the searching process. For instance, the biological name of the “Teardrop
butterfly fish” is “Chaetodon unimaculatus”. Of the total of 3825 images in the reef fish dataset,
most are ecological. Figure 5 shows the exemplar images of the reef fish species.

In contrast, Figure 6 shows the count of images per class, both ecological and lab
specimens. Our primary goal is to deal with image variations frequently found in butterflies
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and reef fish images. These include image variation caused by object scale changes, position
and in-plane orientation, and background clutter.

Thus, we gathered only those images from internet image searches that suffer from
these variations. Photos of other repositories, such as Fish4Knowledge, are taken from
image acquisition devices mounted on the reef. Due to this reason, they suffer from
additional problems such as uneven illumination and occlusions.

Clown Fish
Pomacanthus

imperator

Pomacanthus

imperator juvenile
Synchiropus

splendidus

Chaetodon

auriga

Chaetodon

ornatissimus

Chaetodon

unimaculatus

Chaetodon

Lunula

Chaetodon

quadrimaculatus

Zanclus

cornutus

Balistoides

conspicillum

Hemitaurichthys

polylepis

Chaetodon

octofasciatus

Chelmon

rostratus

Pygoplites

diacanthus

Acanthurus

leucosternon

Acanthurus

lineatus

Acanthurus

triostegus

Apolemichthys

arcuatus

Chaetodon

fremblii

Chaetodon

burgessi

Chaetodon

ephippium

Chaetodon

larvatus

Chaetodon

rainfordi

Centropyge

acanthops

Pomacanthus

arcuatus

Chaetodon

semilarvatus

Pomacanthus

sexstriatus

Chaetodon

paucifasciatus

Holacanthus

tricolor

Zebrasoma

flavescens

Rhinecanthus

aculeatus

Pterapogon

kauderni

Pomacanthus

xanthometopon

Paracanthurus

hepatus

Nemateleotris

decora

Heniochus

acuminatus

Heniochus

singularius

Forcipiger

flavissimus

Cirrhitichthys

falco

Chaetodon 

ulietensis

Chaetodon 

striatus

Chaetodon 

tinkeri

Chaetodon 

sedentarius

Chaetodon 

punctatofasciatus

Chaetodon 

lineolatus

Chaetodon 

ephipippium

Chaetodon 

collare

Chaetodon 

bennetti

Acanthurus

achilles

Figure 5. All the representative images of reef fish species from our novel ReefFish dataset.
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Figure 6. The images per class in the reef fish dataset. Similar to the butterfly images, ecological
images are those taken in the natural habitat of the fish while the lab images are taken in a controlled
environment such as in the lab. The left y-axis (min = 0, max = 200) represents the count of ecological
images where the right y-axis (min = 0, max = 15) represents the count of lab images.

4. Methodology

We proposed using two types of image representations for image-based butterflies’
tasks and reef fish species classification. First is the BoVWs image representation built on
top of the handcrafted local invariant features. In contrast, the second is calculated using
various pre-trained models. The details of both the image representations are given in
the following.

4.1. Traditional Algorithms

In case of traditional algorithms, the image representation is conducted with the fa-
mous bag-of-visual words (BoVWs) model, which consists of the following two main steps.

1. Visual Vocabulary Construction: In the BoVWs model, features are collected from a
set of images and quantized using a clustering strategy such as the k-means to form
the visual vocabulary. Since the value of k defined the number of the clusters, the
visual vocabulary voc = {v1, v2, v3, . . . , vM} consists of k or M visual words.
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2. Image representation: An image consists of image patches, and these patches are
represented by local descriptors such SIFT; the given image is first represented as a
set of descriptors

I = {d1, d2, d3, . . . , dN} (1)

where N is the total number of descriptors. A visual word vi from the vocabulary
is then assigned to any given descriptor dk using a similarity measure such as the
Euclidean distance as follows:

v(dk) = arg min
v∈voc

Dist(v, dk) (2)

where dk is the kth descriptor in the image and v(dk) is the visual word assigned to this
descriptor based on the distance Dist(v, dk). In the given image, all the descriptors are
mapped to the visual words. The frequency of these visual words is then aggregated
in a histogram where the number of bins in this histogram is equal to the size of the
visual vocabulary, that is, M. Such a histogram-based representation of the image is
called the bag-of-visual-words (BoVWs).

However, this image representation must be least affected by the variations found
in their images for butterflies and reef fish species classification. This is achieved in the
following manner.

4.1.1. The Background Clutter Minimization

The visual vocabulary is constructed from the local features that are densely extracted
from the images. These densely extracted features consist of features from the background
and the object area or the foreground. Visual vocabulary is prone to contamination due
to the presence of the features from the background [12]. For instance, the butterflies
are imaged under severe background clutter. It is more likely that the features from
the background negatively affect the discriminating nature of visual vocabulary. There
exist specialized methods [32,33] to learn a discriminating vocabulary; however, these
methods are computationally expensive. For the sake of simplicity, in the case of butterflies,
segmentation masks are manually generated for the process of vocabulary construction.
These segmentation masks extract the features from the foreground to construct visual
vocabulary. Figure 7 shows the extraction of dense features from the foreground with the
help of a segmentation mask.

Dense features extraction

Segmentation mask

Foreground features extractionGiven image

Figure 7. The process in which the segmentation masks are utilized to extract foreground features for
vocabulary construction.

4.1.2. Scale and Rotation Invariance

To make the global BoVWs image representation scale and rotation-invariant, the local
features on top of it should have both properties. To this end, the local rotation-invariance is
achieved by using SIFT [34]; however, the following SIFT extraction methods are evaluated
to achieve local scale-invariance, which are also shown in Figure 8.
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• Multi-Scale SIFT: In this setting, we densely extract the rotation-invariant SIFT features
from multiple predefined scales. The descriptors extracted from all the scales are
concatenated for a given feature. Several empirically defined scales are evaluated on
the dataset for multi-scale SIFT. The one with the best performance is selected.

• Scale-Less SIFT (SL-SIFT): Hassner et al. [35] propose to extract SIFT descriptors from
multiple scales and then combine them into a single descriptor called the Scale-Less
SIFT (SLS). They represent each pixel as a set of descriptors extracted at several
predefined scales. The subspace to point mapping technique is then used to combine
all those descriptors into a single SLS descriptor.

• Difference of Gaussian (DoG-SIFT): Regions of images with high information content
that can be localized are called interesting regions [36]. These regions are detected in
images using the interest point detectors [37]. The difference-of-Gaussian (DoG) is one
of the interest point detectors used by Lowe [34] to extract interesting regions for SIFT
features. Among these regions, the low contrast regions on edges are then neglected
by performing a non-maximal suppression. The rest of the interest points are then
assigned orientation, followed by calculating a 128-dimensional SIFT descriptor for
each interest point.

• Dense Interest Points (DIP-SIFT): This hybrid approach proposed aims at combining
the best of both worlds, i.e., interest points and dense sampling [36]. Image patches
are densely sampled on a regular grid and at multiple scales. The amount of the pixel
stride on the dense grid is adjusted according to the patch’s scale to minimize the
adjacent patches’ overlap. An “interestingness” measure such as the Laplacian is used
to refine the patch for scale and position. If an actual maximum is found within the
patch limits, it is considered the patch center. Otherwise, the center point of the patch
is considered its center. The SIFT descriptor for this patch is then calculated centered
on the center.

Difference of Gaussian (DoG) SIFT [11] Multi-scale SIFT [4] Dense Interest Points SIFT [16]

Figure 8. Comparisons of the different strategies employed for SIFT features extraction for traditional
classification algorithms.

4.2. CNN Algorithms

The images are also represented using the pre-trained models of several Convolutional
Neural Network (CNN) architectures. By pre-trained, we mean that the respective models
are trained on image datasets with thousands of images and several hundred classes, such
as the famous ImageNet [38]. A typical CNN architecture consists of two main parts:
the first part is called the features extraction module or convolutional base. It usually
contains layers such as convolutional and pooling layers. The images are encoded into
feature vectors after passing through the convolutional base. The second part of the CNN
architecture is a classifier. The encoded image is applied as input to this part, which is then
classified into several classes. Most CNN architectures use a fully connected neural network
where a given layer’s neurons have full connections to all its preceding layer’s activation
units. However, we only use the pre-trained features extraction module to represent our
images, a process called transfer learning using CNN. For this purpose, we use several
pre-trained CNN architectures whose feature vector sizes are given in Table 1. We would
like to mention here that the pre-trained models are only used for image encoding or image
representation in a vector form. For this purpose, the features extractor part (the lower part
of the CNN) is used, while the higher part of the CNN (classifier) is removed. Instead, for
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low cost and to demonstrate a convenient comparison between the CNN models, a linear
SVM is used for image-based classification. This also allows us to align both the SIFT-based
and the CNN-based evaluations as both of them use a linear SVM as a classifier. The details
are given in Section 5.1.

Table 1. Various feature vectors for the state-of-the-art CNN methods employed for benchmarking
our novel datasets.

CNN
Methods Versions No. of

Features
CNN

Methods Versions No. of
Features

AlexNet [39] - 4096

ResNet [40]

152 2048

DenseNet [41]

201 1920 101 2048
169 1664 50 2048
161 2208 34 512
121 1024 18 512

DPN [42]
131 2688

VGG [15]
19 4096

98 2688 16 4096
68 832 13 4096

Inception [43] v4 1536 SqueezeNet [44] 1_1 512
v3 2048 1_0 512

5. Experiments and Results

This section of the article discusses the experimental protocols and results.

5.1. Experimental Protocols

Traditional: The best parameters of traditional algorithms are based on the findings
of Anwar et al. [31], for instance, the size of the visual vocabulary is 1000. For multi-scale
SIFT, 8 scales performed best on both the datasets (the scales are {2 4 6 8 12 16 22 32}).
The SL-SIFT employs a dense regular grid with a pixel stride of 10. SIFT extracts linearly
distributed features from 20 scales in the range of {2, 32} at each pixel position. The DoG-
SIFT also obtains features with the default settings of the function vl_sift provided by the
VLFEAT library [45]. The default settings of DIP-SIFT are employed where the pixel stride
of the dense grid is 10, and the number of octaves is 4, with 2 scales per octave.

CNN: All the pre-trained models are from the official PyTorch [46] implementation
with their default settings to compute the image representations. The dataset is split
randomly into disjointed train and test sets for each experiment with the split ratios of
90–10% and 80–20%, where the experiments are performed five times. Consequently, the
mean classification accuracy achieved by each image representation is reported along with
the respective standard deviation. For classification, a linear Support Vector Machine
(SVM) is utilized, where the best value of the regularization parameter “C” is found
using k-fold cross-validation on the training set. We use a linear SVM for classification
as our sole purpose is to carry out a performance evaluation of all the CNN-based image
representations. In addition to that, an SVM comes with much lower cost in terms of
computation as compared to other neural networks-based classifiers.

5.2. Results and Discussion

The performances achieved by each variant of the traditional algorithms for image
representation for each dataset on both the settings of the data split are shown in Table 2.
Multi-scale SIFT outperforms the rest of the extraction methods on both datasets on the
data split setting of 90–10%. DoG-SIFT performs better on the butterflies dataset because
the DoG blob detector accurately detects the blobs found on butterflies’ wings. However,
its performance is not satisfactory for the ReefFish dataset because most of the reef fish
species have stripes that are not easily detected by the DoG blob detector. DIP-SIFT uses
Laplacian of Gaussian (LoG), a blob detector, but its dense nature prevents it from behaving
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like DoG-SIFT. Even then, DIP-SIFT’s performance is inferior to multi-scale SIFT and SLS
on both datasets. Lastly, SLS performs on par with multi-scale SIFT, but the complex
computations that involve extracting SIFT from 20 scales and subspace to point mapping
make it unfavorable for further experiments.

Table 3 shows the performances achieved by CNN-based image representations for
each dataset on both the data split settings. The variants of DenseNet outperform all other
CNN architectures on both datasets. Interestingly, the data split of 80–20% achieves better
performance than its counterpart. Unlike the handcrafted methods, almost all the CNN
models achieve recognition rates of more than 90% and hence are least affected by the
image variations found in the both the datasets. It is worth mentioning that we did not
perform data augmentations such as rotations and scaling in our experiments. This clearly
shows that the CNN-based image representations are more favorable than handcrafted
features for the classification of images that are affected by changes in orientations and
scales with heavy to moderate background clutter.

Table 2. Classification accuracies achieved by various traditional schemes with a train–test split of
90–10% and 80–20% on butterflies and ReefFish datasets. The results are also provided with standard
deviation, and the best results are highlighted in bold.

Datasets

Butterflies ReefFish

Algorithms Accuracy
(90–10)

Accuracy
(80–20)

Accuracy
(90–10)

Accuracy
(80–20)

DoG 82.12 ± 0.83 80.64 ± 1.43 60.04 ± 2.04 58.74 ± 1.75
DIP 81.75 ± 1.87 80.15 ± 1.28 81.40 ± 1.10 79.43 ± 0.70

Mutiscale 86.25 ± 1.25 84.72 ± 1.52 88.75 ± 1.80 86.72 ± 1.37
SLS 84.02 ± 1.37 82.75 ± 1.82 87.80 ± 1.60 84.81 ± 1.25

Table 3. Comparison of the CNN architectures, benchmarking the proposed datasets. Each experi-
ment is performed five times. The standard deviation is provided with each model’s result, and the
best ones are given in bold.

Butterflies Dataset ReefFish Dataset

Architectures Accuracy
(90–10)

Accuracy
(80–20)

Accuracy
(90–10)

Accuracy
(80–20)

AlexNet 90.54 ± 1.11 89.94 ± 1.74 89.99 ± 0.95 91.44 ± 0.75

DenseNet201 95.27 ± 0.90 95.80 ± 0.66 96.08 ± 0.55 96.34 ± 0.40
DenseNet169 95.81 ± 1.24 95.22 ± 0.36 95.14 ± 1.66 95.46 ± 1.07
DenseNet161 95.66 ± 0.86 96.27 ± 0.90 94.93 ± 0.93 95.98 ± 0.55
DenseNet121 95.89 ± 1.09 96.08 ± 0.99 94.36 ± 0.88 95.33 ± 0.56

DPN131 89.53 ± 1.32 89.59 ± 0.83 88.98 ± 1.06 90.37 ± 0.15
DPN98 90.08 ± 1.06 89.94 ± 1.00 89.77 ± 1.04 90.65 ± 0.45
DPN68 91.86 ± 2.51 91.73 ± 0.82 91.85 ± 1.11 93.29 ± 0.67

Inceptionv4 92.25 ± 1.57 92.04 ± 0.73 90.81 ± 1.65 92.17 ± 0.83
Inceptionv3 93.02 ± 1.10 93.05 ± 0.91 94.24 ± 0.47 94.33 ± 0.67

ResNet152 94.96 ± 1.30 94.91 ± 0.23 95.56 ± 1.48 95.43 ± 0.32
ResNet101 94.88 ± 0.62 94.95 ± 0.94 94.36 ± 1.75 94.73 ± 0.66
ResNet50 93.95 ± 1.40 94.64 ± 0.38 94.36 ± 1.03 94.62 ± 0.32
ResNet34 93.57 ± 1.03 93.71 ± 0.99 92.79 ± 2.12 93.73 ± 0.38
ResNet18 93.88 ± 0.62 94.45 ± 1.00 93.16 ± 1.31 93.55 ± 0.83

SqueezeNet1_1 94.34 ± 1.17 93.98 ± 0.79 94.10 ± 1.01 94.02 ± 0.71
SqueezeNet1_0 94.26 ± 0.62 93.83 ± 1.17 94.26 ± 0.72 94.57 ± 1.02
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Table 3. Cont.

Butterflies Dataset ReefFish Dataset

Architectures Accuracy
(90–10)

Accuracy
(80–20)

Accuracy
(90–10)

Accuracy
(80–20)

VGG19 89.46 ± 1.82 90.21 ± 1.00 88.67 ± 1.54 89.61 ± 0.91
VGG16 92.09 ± 1.64 93.20 ± 0.86 89.30 ± 1.29 90.16 ± 0.73
VGG13 92.17 ± 2.21 93.13 ± 0.78 91.07 ± 0.10 91.33 ± 0.44
VGG11 92.95 ± 0.90 92.86 ± 1.19 92.48 ± 0.53 92.04 ± 0.66

6. Conclusions

An image-based holistic system for the species classification of butterflies and reef
fish is proposed and evaluated on the most diverse datasets collected from the internet
containing images of 50 species of both animals. The images are represented using the
traditional algorithms, such as the BoVWs model as well as pre-trained CNN architectures
for image-based classification. The BoVWs-based image representation is invariant to scale
and rotation changes by evaluating four rotation-invariant SIFT feature extraction methods.
On the other hand, 20 of the most recently proposed pre-trained CNN architectures are
also assessed for image representation. The experimental results showed that, among all
the image representations, the variants of DenseNet achieved the best classification rates on
both datasets. Nonetheless, a large part of our dataset is collected from the internet and thus
lacks challenging and extreme image variations. Consequently, the future directions include
dataset extension by including images of more species under challenging environments
such as those of coral reefs. With this baseline evaluation, we also plan to develop a
task-specific deep learning-based recognition pipeline.
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