
Citation: Pan, H.; Li, Y.; Wang, H.;

Tian, X. Railway Obstacle Intrusion

Detection Based on Convolution

Neural Network Multitask Learning.

Electronics 2022, 11, 2697. https://

doi.org/10.3390/electronics11172697

Academic Editor: Byung Cheol Song

Received: 30 July 2022

Accepted: 25 August 2022

Published: 28 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Railway Obstacle Intrusion Detection Based on Convolution
Neural Network Multitask Learning
Haixia Pan *,†, Yanan Li †, Hongqiang Wang and Xiaomeng Tian

College of Software, Beihang University, Beijing 100191, China
* Correspondence: haixiapan@buaa.edu.cn
† These authors contributed equally to this work.

Abstract: The detection of train obstacle intrusion is very important for the safe running of trains.
In this paper, we design a multitask intrusion detection model to warn of the intrusion of detected
target obstacles in railway scenes. In addition, we design a multiobjective optimization algorithm that
performs with different task complexity. Through the shared structure reparameterized backbone
network, our multitask learning model utilizes resources effectively. Our work achieves competitive
results on both object detection and line detection, and achieves excellent inference time performance
(50 FPS). Our work is the first to introduce a multitask approach to realize the assisted-driving
function in a railway scene.

Keywords: multitask learning; railway scene; structure reparameterized

1. Introduction

Due to the sudden appearance of various obstacles under the influence of various
weather conditions, emergency braking must be performed when a train needs to stop in an
emergency. However, considering that the weight of a train ranges from several thousand
to more than ten thousand tons, its inertia during operation is very large. Therefore, once
the emergency brake is applied, there must be a large forward impact force, and the people
and objects in the carriage inevitably lose their balance, which leads to possible collapses
and crushes, and even severe injuries. At the same time, given the extensive geographical
coverage and ever-increasing total length of the railway system, staff cannot monitor all
sections of the railway in real time. The distance that the human eye can recognize is
limited, and telephoto lenses are used to observe the distance that the human eye cannot
observe, identify obstacles in the distance, and give early warning. It is necessary to install
detection equipment that assists the driver to determine whether there are obstacles in the
track area, so as to determine whether the front of the train is safe. Ma [1] and Ding [2]
used detection methods based on YOLOv3 [3] and YOLOv5 [4], respectively, to identify
all obstacles in the current railway scene. Liu [5] added an attention module based on
YOLOv4 [6] for obstacle detection in a railway scene. However, the method of object
detection alone has great limitations. Obstacles in the safe area by the rails are also detected.
Although they pose no threat to the safe running of the train, the detection system will
still alarm and distract the attention of the staff. Considering the defect mentioned above,
adding a track recognition system to judge whether the identified obstacle can pose security
threats can effectively improve the accuracy and recognition rate.

For these two tasks, Wang [7] divided all railway areas for obstacle intrusion judgment.
Chen [8] adopted target detection and semantic segmentation, respectively, and combined
the results of the two tasks at the output level. However, when an obstacle blocked the
track line, the segmentation method was not able to extract the complete information
about the track line, so that the network needed to extract boundary information from the
segmentation results in the postprocessing stage, and at the same time impute the missing

Electronics 2022, 11, 2697. https://doi.org/10.3390/electronics11172697 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11172697
https://doi.org/10.3390/electronics11172697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11172697
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11172697?type=check_update&version=2


Electronics 2022, 11, 2697 2 of 17

parts, which required huge extra computing resources. Therefore, a multitask method was
adopted to combine target obstacle detection and track line recognition, which directly
extracted the position of the track line and reduced the waste of computing resources.

In the existing multitask-based automatic driving methods [9–11], because the auto-
matic driving of the car is fully automatic and requires no human intervention, the goal
focuses on improving the recall rate. However, the obstacle detection for a railway system
is more inclined to assist the driver to detect long-distance obstacles in the shortest time
span and to give early warning to obstacles that may have intrusion behaviors. Using the
existing automatic driving methods is prone to generate a large number of false alarms and
interfere with the driver which tends to cause safety issues.

Obstacle detection based on a railway scene also faces two difficulties. The first is
the long braking distance. Since the speed of the train is higher than that of an ordinary
vehicle in daily urban scenarios, and given the huge size of the train, emergency braking
for a train requires a longer braking distance. Therefore, obstacle detection focuses more
on the detection of long-distance obstacles. Another problem is the small pixel ratio of
rails. Track line detection only focuses on the rails in the current track area of the train, and
considering the slender shape of the rails, the target to be detected occupies very few pixels
in the scene. The method of performing small target segmentation not only can hardly
segment the established target, but also wastes computing resources, which does not fit the
requirement of real-time detection.

Based on the above-mentioned problems, we propose a multitask intrusion detection
algorithm. The network adopts a multitask design, which can simultaneously perform
target obstacle detection as well as predict the location of the rail even when the track
line is occluded. The network can also expand the limit area for the detected track line.
Table 1 shows the comparison between the proposed method and other multitask methods
in driving scenarios. When the camera detects an intrusion within the visible range, it
can quickly and effectively detect the type of obstacle, determine whether the obstacle has
invaded the boundary area, and give the driver different levels of warning according to the
degree of intrusion. Based on this method, early warning can be done to assist the staff to
drive the train safely. The contribution of this work can be summarized in three parts:

• We design a multitask intrusion detection model. The network uses the method of
hard parameter sharing and shares the same encoder, which can perform the above-
mentioned two different tasks to save computational cost, reduce inference time, and
improve the performance of each task;

• In order to improve the speed of network operation, we adopt the track line detection
method based on row classification. Using global features to predict the track line
positions, it has a larger receptive field than the segmentation formula and can solve
the occlusion problem;

• Based on the proposed multitask network, we propose a multiobjective optimization
method that utilizes the complexity of different tasks to optimize the results.

Table 1. The comparison of multitask methods in driving scenarios.

Method Tasks Comparison

MultiNet [9] Classification, detection, segmentation The classification is only used as an aid for detection and
segmentation. Only detects vehicles.

YOLOP [10] Detection, drivable area segmentation, lane
line segmentation

The recall rate is high. Cannot deal with the problem of
occluded lane lines.

HybridNets [11] Detection, drivable area segmentation, lane
line segmentation

Similar to YOLOP. Improves the recall rate of
detection results.

Ours Detection, track line classification, track
line segmentation

Pays more attention to precision rather than recall.
Segmentation assists classification results. Can effectively

deal with the problem of track line being blocked



Electronics 2022, 11, 2697 3 of 17

The rest of this paper is structured as follows. Section 2 gives a brief overview of
obstacle detection, lane line detection, and multitasking network framework. Section 3
details our proposed algorithm. Section 4 introduces the dataset used in this paper, presents
the training results, and performs the inference process. Section 5 provides the conclusion
of this paper.

2. Related Works

In recent years, more attention has been paid to feature extraction methods based on
convolutional neural networks. This method no longer uses manually designed features,
but uses the network to complete feature extraction automatically. Hinton’s team designed
AlexNet [12] using convolutional neural networks, which achieved the best accuracy on
the ImageNet dataset [13], making convolutional neural networks an important tool for
studying different problems in computer vision. The convolution operation is shown
in Figure 1. The role of the convolutional layer is to extract local features, and different
convolution kernels can extract different features.

Figure 1. Schematic diagram of the convolution operation. The output of different colors represents
the result obtained after the input data are convolved through the convolution kernel of the corre-
sponding color. After only performing the convolution operation on the input data, the size of the
output result is smaller than that of the input data.

The input of the convolutional neural network is a matrix. The convolution multiplies
and sums the elements of the input matrix element by element by sliding the window from
left to right and from top to bottom, and outputs the obtained result as the corresponding
feature map (the value of the location). Finally, the feature space is composed of all feature
maps. In a shallow network, convolution kernels of different sizes are used to realize the
local perception of the image, and the underlying semantics such as network color and
texture are extracted. In a deep network, the semantics of the network are more abstract and
have a bigger receptive field. The whole network downsamples the feature map through
the convolution layer and the pooling layer, which reduces the size of the feature map
on the one hand, and on the other hand, the weight sharing of the network reduces the
number of parameters of the network.

Our work is based on convolutional neural networks. The related works are divided
in three parts: track obstacle detection methods, lane detection methods, and multitask
learning methods, especially those which are applied to autonomous driving scenarios.

Obstacle Detection. The obstacle detection algorithm, that is, the target detection
algorithm, needs to identify the obstacles existing in the area, and uses the bounding box
to indicate the position of the object, so as to locate the object and indicate the type of the
object. In the field of object detection, detection methods are divided into one-stage object
detection and two-stage object detection. The representative works of these two types
of methods are described in Table 2. The two-stage algorithm can be divided into two
steps. The first step selects the region proposals from the entire image, and the second step
is to find objects from the region proposals, classify the found objects, and generate the
final object’s bounding box. Although two-stage detection methods have a high accuracy,
they need to consume a lot of time and resources, which is not conducive to a real-time
use of the network. The single-stage target detection algorithm is an improvement of the



Electronics 2022, 11, 2697 4 of 17

two-stage algorithm. The detection frame selection is combined with the object localization
classification, and the anchor frame is arranged for the whole image when the target is
selected, so as to realize the region proposal selection and target localization. Class division
and confidence calculation are performed for each anchor box to realize the classification of
each anchor box. Finally, the positioning and classification of the target are realized. With
the development of the YOLO series, the one-stage network has had better performance in
both speed and accuracy. Therefore, in academia and industry, network algorithms based
on the YOLO series have been well applied.

Table 2. The description of one-stage and two-stage obstacle detection methods.

Class Name Description

One-stage
Fast-RCNN [14] Extracted the entire image once, mapped candidate boxes.

Faster-RCNN [15] Added a feature extraction network to replace the original method of obtaining
candidate boxes.

Two-stage

YOLOv3 [3] Used multiscale features for object detection, replaced softmax with logistic in
object classification.

YOLOv4 [6]
Used a variety of data enhancement techniques, combined with class label smoothing

methods, and achieved a balance between computational complexity and
memory usage.

YOLOv5 [4] Sliced the image, added a residual fusion part on the basis of ordinary convolution,
sped up the running speed of the network, and improved the accuracy of the network.

Lane Detection. The traditional lane line detection algorithm divides the lane line
area through edge detection and filtering, and then combines Hough transform, RANSAC,
and other algorithms for lane line detection. However, the traditional method needs to
manually adjust the parameters according to the characteristics of the application scenario,
which is very limited in applications. Therefore, methods based on deep learning have
been widely welcomed, and these methods can be roughly divided into three categories.
First of all, the methods based on semantic segmentation were introduced. However, these
methods generated a lot of time overhead. Then, a row classification lane detection method
based on input image meshing was proposed. For each row, the model predicted that
the most likely cell contained part of the lane markings. Since only one cell was selected
per row, this process was repeated for each possible lane in the image. Except for these,
detection-based methods have also been widely used in this field. The representative works
of these three types of methods are described in Table 3.

Table 3. The description of three different lane detection methods.

Class Name Description

Semantic segmentation SCNN [16] Convolution layer by layer according to a certain direction.
SAD [17] Proposed a self-attention distillation method.

Row classification E2E-LMD [18] Proposed a classification-based solution to the lane detection problem.
UFAST [19] Treated the lane detection process as a row-based selection problem using global features.

Target detection LaneATT [20] Proposed a new anchor-based lane detection attention mechanism.

Multitask Learning. A deep learning network consists of an input layer, a hidden
layer, and an output layer. The hidden layer is composed of multiple layers. However,
how to use this hidden layer to achieve a shared representation that is more in line with
features has become one of the main problems in multitask learning research. To solve this
problem, existing multitask research methods can be divided into multitask research based
on encoder sharing and multitask research based on decoder sharing. The representative
works of these two types of methods are described in Table 4.



Electronics 2022, 11, 2697 5 of 17

Table 4. The description of decoder-based multitask network and encoder-based multitask network.

Class Name Description

Decoder-based PAD-Net [21] Predicted a set of low-level to high-level intermediate auxiliary tasks, took these
intermediate auxiliary tasks as subsequent model inputs.

Encoder-based

P-LPN [22] Used a public encoder, pasted the anchor obtained from the detection to the output
obtained from the segmentation.

Misra et al. [23] A shared representation method, using hyperparameters to control connection sharing
between layers.

NDDR-CNN [24] A shortcut method, concatenating the features of each task in the last dimension to
obtain the feature information.

MTAN [25] Combined the attention mechanism to add attention modules for different tasks.

The encoder-based multitask network structure directly predicts all task outputs from
the same input in one cycle, which is mostly used in semantic segmentation and depth
estimation tasks. A multitask network with shared encoder shares task functions during the
encoding phase, and then uses independent task-specific headers to perform subsequent
task processing based on each task.

3. Methodology

The multitask network model structure is shown in Figure 2.

Figure 2. The architecture of the multitask learning network. The loaded images are the input of the
shared encoder. Then, the feature map corresponding to the images is obtained by downsampling.
The feature map is used as the input for different subsequent tasks. It is, respectively, passed to the
segmentation branch, which is an auxiliary training, the track line detection branch that performs
track line position prediction, and the target detection branch that performs obstacle detection. Finally,
the output results of different branches are combined as the overall network output.

While designing the multitask learning network, we adopted a line-classification-based
track line detection algorithm in the multitask network, which avoided the disadvantage of
the segmentation network in the track line detection with a slender and smaller pixel ratio.
In addition, we adopted the anchor-free design, which effectively avoided the problem that
the size of the a priori anchor frame was not suitable for small targets. After introducing the



Electronics 2022, 11, 2697 6 of 17

network, we introduce how to balance different task relationships through a task weight
design. In order to introduce the method used in this paper, we show some notations used
hereinafter in Table 5.

Table 5. Preliminary notations.

Variable Definition

H The height of the image
W The width of the image
C The number of lanes
h The number of row anchors
w The number of grid cells
x The global features of the image
i The ith lane
j The jth row anchor
k The kth lane grid cell
t Current training step

3.1. The Network of Multitask Learning

In this part, we go through the whole system used in our work from the backbone,
neck, and head parts. We designed a network that contains one shared encoder and two
subsequent decoders to solve specific tasks. There are no complex and redundant shared
blocks between different decoders, which reduces computational consumption and allows
our network to be easily trained end-to-end. The backbone network is used to extract the
features of the input image. The neck is used to fuse the features generated by the backbone.
Different decoders perform lane line detection and obstacle detection, respectively. Our
backbone network used RepVGG [26], which adopted the idea of structural reparameteriza-
tion to improve the speed and accuracy of the network. The structural reparameterization
is shown in Figure 3.

3×3 1×1

Conv Layer BN Layer

3×3 3×3 3×3 3×3

Figure 3. Structural reparameterization of backbone. The model used in training involves 3 channels,
conventionally including 3 × 3 convolution, 1 × 1 convolution, and identity, each followed by a batch
normalization layer. When the model is used for testing, there is only one channel shown on the right.

The target obstacle detection network and the train track line detection network share
the backbone network which uses structural reparameterization. In the design of the head
network used to detect objects, considering that the two tasks of target detection and target
classification have different focal points and interesting parts, our network selects the
decoupling head which is shown in Figure 4. Considering that the anchor-frame-based
method not only increases the complexity of the detection head, but also needs to migrate
the prediction frame generated in the detection to the GPU when generating a large number
of prediction frames, the application of some edge devices can lead to unsupported device
performance and cannot be used in the actual landing scene. The anchor-frame-based
target detection algorithm is also easily affected by the preset anchor frame. At the same
time, based on the accuracy of small target detection in the detection process and the
lightweight requirements of the target detection algorithm when the algorithm is deployed,



Electronics 2022, 11, 2697 7 of 17

the target detection network in this paper adopted an anchor-free target detection algorithm
to improve the coupling degree of the target detection algorithm to a greater extent and
enhance the generalization performance of object detection results on small object data.

Figure 4. The schematic diagram of decoupling head. The detection head is divided into three
different branches that perform classification, regression, and bounding-box prediction, respectively.

In the process of intrusion detection, it is not only necessary to find the location and
type of the obstacle, but also to clarify the location of the obstacle. If the obstacle is in the
safe area, it is not necessary to issue an alarm frequently to affect the train staff. Furthermore,
if the obstacle is in the alarm area, different levels of alarms need to be issued based on the
intrusion degree of the obstacle. Therefore, the network needs to establish the encroachment
area by detecting the track line and performs the expansion processing as needed based on
the coordinates of the detected track line. For the segmentation algorithm, if the size of the
lane line image is H ×W × C, then the H ×W × (C + 1) classification problem needs to be
dealt with when performing the segmentation. However, the slender structure of the lane
line occupies a small proportion of the overall image. Pixel classification will generate a lot
of unnecessary burdens and have a great impact on network performance.

Therefore, based on the special structure of the track line, the row anchor method
proposed in [19] was adopted. The line classification method is used to judge whether the
line has a track line on some preset lines. Line classification is a line direction selection
strategy that only needs to deal with the classification problem on a given row. The
classification problem on each row is w-dimensional. Therefore, the original classification
of the whole image becomes a classification problem based on a given line, and since the
positioning on each line can be manually set, the size of h(h � H) can be set as needed,
which greatly reduces the amount of network computation.

Considering that the track line itself has a certain thickness, a certain track line in a
row can be regarded as a whole and can be divided into a grid. The network performs
classification algorithm training and infers where this grid is located to determine where
the track lines are located. Therefore, the network only needs to select the corresponding
row anchor, whose schematic diagram is Figure 5, in the given row anchor, when classifying
and dividing the data in each row into corresponding grids, whose number is w (w� W).
Considering that there may be no track line in the target row anchor, one-dimensional data
are added to indicate that the row has no lane lines, and the number of grids is (w + 1).
So the number of classifications that the network needs to perform is (h× (w + 1)× C),
which can greatly reduce the computational complexity of the network. At the same
time, to improve the detection speed, the segmentation method is used to learn the shape,
structure, and position distribution of the rail area in the network only during training. The
segmentation result is classified based on the row anchor to determine the grid where the
rail exists.



Electronics 2022, 11, 2697 8 of 17

Figure 5. Schematic diagram of row anchor. The light blue blocks represent a grid cell in the selected
row anchor. Green blocks indicate that this grid contains the corresponding lanes. Dark blue blocks
represent grid cells from the remaining row anchors. The height of the cube on the right represents
the number of row anchors, denoted as h. Furthermore, the width of this cube represents the number
of grid cells, denoted as w.

3.2. New Formulation for Multitask Learning

The formulation for obstacle detection. The detection loss Ldet is a weighted sum of
classification loss, object loss, and bounding box loss as follows:

Ldet = α1Lcls + α2Lobj + α3Lbox (1)

where Lcls and Lobj are utilized to reduce the loss of well-classified examples, thus forcing
the network to focus on the hard ones. α1, α2, and α3 are coefficients of these loss functions.
Lcls is used for penalizing classification and Lobj for the confidence of one prediction. All of
them use BCEWithLogitsLoss, whose formula expression is:

Ln = −yn log(σ(xn)) + (1− yn) log(σ(1− xn)) (2)

where n represents the number of labels predicted per batch, and σ(xn) can use formula
σ(x) = 1

1 + exp−1 to map x to the interval (0, 1). Lbox, which is calculated by IoU, represents
the intersection loss between the predicted box and the ground-truth box.

The formulation for line detection. For the lane line detection loss, the loss function
generally consists of the loss of classification and the loss of segmentation. In order to
better allow the network to learn the structural features of the lane lines and make sure
that a relatively continuous track line maintaining a linear trend is identified, an additional
structural loss was added. The loss function of the lane lines was as follows:

Lline = β1Lclass + β2Lstr + β3Lseg (3)

where Lclass represents the loss of classification, Lstr represents the structural loss used to
constrain track line shapes, and Lseg represents the loss of segmentation. β1, β2, and β3
are coefficients of these loss functions. In the classification loss, X is used to represent the
input image, and f (i,j) is used to represent a classifier that can find the grid position where
the ith lane is located from the jth row anchor. As a result, Pi,j,: = f (i,j)(X) represents the
probability that each grid in the jth row anchor had the ith lane, and there are w grids in
total. Moreover, Ti,j,: indicates whether there is a lane line in the jth row anchor and the
grid position where the lane line is located. Both Pi,j,: and Ti,j,: are (w + 1)-dimensional
(a grid is used to indicate that the row has no track lines) vectors that satisfies one-hot
encoding. We can get the loss function as follows:

Lclass =
C

∑
i=1

h

∑
j=1

LCE(Pi,j,:, Ti,j,:) (4)

where LCE represents the cross-entropy loss used here. According to this function, the
probability distribution of all positions on each row of anchor points can be predicted



Electronics 2022, 11, 2697 9 of 17

based on the global features. Therefore, the correct location can be selected based on the
probability distribution.

In addition to the classification loss, two loss functions are proposed to model the
positional relationship of the lane line points. Because the lane lines are continuous, even if
it is a curve, it can be approximated as a straight railway from a distance. Therefore, the
lane lines between adjacent row anchors need to be close to each other. Furthermore, the
distribution of the classification vector on the adjacent row anchors needs to be constrained
to ensure that the predicted probabilities of the two adjacent row anchors are as close as
possible, thereby ensuring the smoothness of the overall line. The predicted similarity loss
function is as follows:

Lsim =
C

∑
i=1

h

∑
j=1
‖Pi,j,:, Pi,j+1,:‖1 (5)

where Pi,j,: represents the probability that each grid in the jth row anchor has the ith lane.
To account for the shape, the position of the lane on each row anchor needs to be calculated.
Furthermore, the track line position is obtained from the classification prediction by finding
the maximum response peak. Substituting differentiable so f tmax for argmax can get the
second-order difference equation constraint Lshp, which is obtained to ensure that the
overall detected track line structure is relatively smooth and the slope is relatively similar.
The formula expression is:

Lshp =
C

∑
i=1

h−2

∑
j=1
‖(LOCi,j − LOCi,j+1)− (LOCi,j+1 − LOCi,j+2)‖1 (6)

where LOCi,j = ∑w
k=1 kṖrobi,j,k represents the expected value that the jth orbital line in

the ith row anchor appears in the kth grid. Probi,j,: = so f tmaxPi,j,k in LOCi,j is used as
an approximation which chooses the probability of occurrence of lane lines in each grid
instead of where the track lines are located.

Based on the rail shape constraints and the rail position similarity constraints, the rail
structural loss can be obtained:

Lstr = γ1Lsim + γ2Lshp (7)

where γ1 and γ2 represents coefficients of different loss functions.
In addition to the Lclass and Lstr introduced above, we used the cross-entropy loss as

the Lseg. The loss function of the lane line detection problem can then be obtained.
The formulation for the whole network. In the multitask learning process, the learn-

ing speed of different tasks is different. Based on the same input feature representation,
some tasks have a low learning difficulty and fast convergence speed, while some tasks
have a high learning difficulty and slow convergence speed. When the learning speed
of tasks is unbalanced, it is easy to cause tasks with fast learning speed to dominate the
learning process of the model, resulting in the phenomenon of self-reinforcing, which leads
to the insufficient representation ability of the model and affects the results.

Due to the particularity of railway scenes, there are small target obstacles in both
obstacle detection and track line detection tasks. Most of the pixels belong to the back-
ground area, and the target obstacles and track lines only occupy a very small part of the
pixel area. At the same time, combined with the particularity of railway scenes, we pay
more attention to medium- and long-distance obstacles during detection, which are more
difficult to classify. These belong to the common features of the different tasks of this work.
The labeled data can be seen in Figure 6. Therefore, the target detection task has problems
such as unbalanced proportion of obstacle categories and unbalanced sample distribution,
since the obstacle detection work needs to be able to detect all possible target obstacles
in the area, and the track line detection work only needs to identify and extract the two
rail lines of the current train running. Because there are position offsets of the train track



Electronics 2022, 11, 2697 10 of 17

lines collected in different videos, the track line detection task also has the problem of
unbalanced sample distribution when performing line classification.

Figure 6. The annotation results of data we used. The red area represents the left track line, and the
green area represents the right track line. Two track lines are used to perform track line identification.
The yellow part represents people, and the blue part represents signal lights. These obstacles are used
to perform object detection.

Multitask networks need to study how to reasonably use the characteristics of different
tasks to adjust the importance of tasks, so that the importance of tasks matches the update
degree of the model parameters. Then, it can ensure the learning speed remains relatively
balanced, and alleviate the problem of task advantages. Based on this, we propose a new
calculation method, which dynamically adjusts the coefficients of the loss function of differ-
ent tasks according to the number of categories and the difficulty of sample classification
for different tasks.

When designing the task, we paid more attention to the samples with low confidence
in the task, which are prone to misclassification during the training process and challenge
the model. We used− log(p) as a judgment parameter for the difficulty of training samples,
in which p references the probability that the network predicts this task objective correctly.
Because the confidence range of p is (0,1], the more difficult the sample is to be predicted, the
smaller the log(p) is, and the larger the − log(p) is. At the same time, we also considered
the impact of negative samples on the results and used (1− p) to represent the proportion
of negative samples in the task weight. So the coefficient expression formula was:

Cc = −(1− p)θ log(p) (8)

where θ was set to 2. As shown in Figure 7d, the line detection task is relatively simpler
and has a faster convergence speed. In order to be able to balance two different tasks,
it is necessary to relatively balance the two different tasks through the task coefficient.
Therefore, the task coefficient designed above was substituted into the multitask network
adaptive loss function formula L(t) = ∑i wi(t)Li(t). The overall multitask network task
formula was:

Ltotal(t) = log(−(1− pdet(t))θ log(pdet(t)))Ldet

+ log(−(1− pline(t))θ log(pline(t)))Lline
(9)

Figure 7h shows the loss function results after the multiobjective coefficient trade-
off. The comparison of the training results proves that the algorithm proposed by this
network is beneficial to trade-off tasks with multiple objectives. Weighted by this coefficient,
different tasks can converge at a relatively balanced rate.



Electronics 2022, 11, 2697 11 of 17

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The training results of this network. (a) mAP@50 without processing the task weight
coefficient. (b) mIoU without processing the task weight coefficient. (c) Recall without processing the
task weight coefficient. (d) Loss without processing the task weight coefficient. (e) mAP@50 with
the adaptive weight proposed by this network. (f) mIoU with the adaptive weight proposed by this
network. (g) Recall with the adaptive weight proposed by this network. (h) Loss with the adaptive
weight proposed by this network.

4. Experiments
4.1. Datasets

Different from the automatic driving scene of a car, a train track line is more slender.
Due to the faster train speed, it is necessary to detect farther obstacles and face the challenge
of smaller target obstacles. There are no publicly available datasets in this scenario.

Since the installation of obstacles during the actual operation of a train would pose a
safety threat to the train, the dataset used in this experiment was composed of real train
operation data actually collected in a test field scenario, simulated data, and network
crawling barrier-free train-operation monitoring data. In the simulation data, in order to
make the scene picture more realistic, we used the Unreal Engine with real-time rendering
capabilities, a spline mesh component to make rails, a spline component to set the train
trajectory, and controlled the train to move along the set trajectory at runtime. We also
bound the camera to the appropriate position of the locomotive to capture the scene while
the train was running and used Unreal Engine’s terrain system, landscape and vegetation
system, and foliage to create terrain and vegetation environments. Finally, we used existing
animal models and character models to create rich obstacle types.

The test site data and simulation data aimed to obtain more active obstacle data, such
as animals and people. The web crawling data aimed to obtain more real scene data under
climatic conditions. In the proving ground scenario, the obstacles that were to appear when
the train was running included people, branches, and a suitcase, which was used to replace
a stone. The obstacles in the simulated data were persons and animals, including cows and
horses. In the data scraped from the web, obstacles included people on a platform, traffic
lights, tunnel entrances, and oncoming trains. The time in our dataset included days and
nights. The weather conditions in our dataset included sunny, rainy and snowy days. The
terrain of the dataset included plains, trees, mountains, stone bridges, steel bridges, etc.
Some dataset pictures are shown in Figure 8.

Based on the video, one frame was extracted every 1000 frames, and the data with
low imaging quality or too-repetitive scenes were removed. A total of 2400 day and night
data were obtained. These data were randomly divided according to the ratio of 8:1:1. The
dataset consisted of 1944 training sets, 216 validation sets and 240 test sets.



Electronics 2022, 11, 2697 12 of 17

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Some representative samples in the dataset. (a–c) correspond to the simulated data in our
dataset, (d–g) correspond to the network crawling data in our dataset and they, respectively, represent
rainy, sunny, snowy days and a scene in the tunnel. (h) corresponds to the collected data.

4.2. Ablation Study

In this section, we verify our method with several ablation studies. Our training
settings were mostly consistent from baseline to final model. We trained the model for
a total of 300 epochs and 5 epochs of warm-up on our dataset. We used the stochastic
gradient descent (SGD) for training. We used a learning rate of lr × BatchSize/32, an initial
lr = 0.01, and a cosine lr schedule. The weight decay was 0.0005 and the SGD momentum
was 0.9. The input size was evenly drawn with 32 strides. All algorithms were trained on
an RTX 3090 and the inference on a Tesla P40. The experiments were all conducted with the
same settings. In order to facilitate the comparison, we used the segmentation branch to
calculate mIoU when testing the network in this paper, and the rest of the indicators were
calculated after canceling the segmentation branch.

Order. Although the network design appears to be designed in parallel, in actual
network operation, the network is executed in a serial manner. Therefore, the order in which
the two branches are designed in the head area also has a certain impact on the network
results. In this part, we executed the lane line detection head and the target detection head,
respectively, and compared the network results. The results are shown in Table 6. There
was no segmentation branch in the actual reasoning, and the lane line recognition effect
could only be judged by the classification result. The lane line priority scheme could obtain
a better prediction accuracy(+3.6%) and classification accuracy (+0.6%) and had better
indicators in the test stage. So in the network design, we chose the lane-first order.

Table 6. Comparison of order with lane line detection head first or target detection head first.

Order Accuracy (%) mIoU (%) Top 1 (%)

Lane-first 69.6 59.6 52.3
Detect-first 66.0 60.53 51.78

Backbone. In addition to RepVGG, we also tested this experiment on the now com-
monly used YOLO series backbone networks ResNet50 and DarkNet53. The experimental
results are shown in Table 7. The experiments showed that the target detection algorithm
using RepVGG had the best performance, and the lane line detection performance obtained
by using DarkNet53 was the best. However, as mentioned above, practical reasoning
was more focused on detection and classification metrics. The backbone network based
on RepVGG had the best detection indicators and classification indicators, so we chose
RepVGG as the backbone network of the network.



Electronics 2022, 11, 2697 13 of 17

Table 7. Comparison of networks with ResNet50, DarkNet53, and RepVGG as the backbone.

Backbone Accuracy (%) mIoU (%) Top 1 (%) FPS (%)

ResNet50 35.8 52.95 50.8 66
DarkNet53 64.0 62.21 51.3 67
RepVGG 69.6 59.6 52.3 52

IoU Loss. In addition to the above two differences, different bounding boxes can be
used to predict the loss during detection, and different calculation methods of intersecting
the predicted box and the real box can be used. There were different results in the small-
target calculation process, as shown in Table 8. LEIoU had the highest detection accuracy,
and LIoU had the highest classification accuracy. Comparing the difference between the
two, LEIoU was slightly more advantageous than LIoU . Taking the above information into
consideration, we used LEIoU as Lbox.

Table 8. Comparison of Lbox with different IoU losses.

Lbox Accuracy (%) mIoU (%) Top 1 (%)

LIoU 69.6 59.6 52.3
LDIoU 69.5 61.3 51.46
LCIoU 67.5 56.42 51.72
LEIoU 71.1 60.06 51.07

Weight. After selecting the type of bounding box, different weights of Lbox will have
different effects on the results. For the given weight setting, we chose 2, 5, 8, and 10 for
comparison and experimentally chose the most favorable weights for the results. The
results are shown in Table 9. Through experiments, we can see that when the weight is 5,
the best detection effect can be achieved. When the weight is 2, the best lane line recognition
effect can be achieved. Comparing the difference between the two, when the weight is
5, it is 9.3% more than when the weight is 2, but it is 10.16% less when performing the
segmentation operation and 38.89% less when classifying the lane lines, which is much
larger than the difference in classification results. In general, a weight of 2 could achieve
better results. The parameters with a weight of 2 were subsequently selected.

Table 9. Comparison of weights of object detection loss.

Weight Accuracy (%) mIoU (%) Top 1 (%)

2 61.8 70.22 89.96
5 71.1 60.06 51.07
8 58.9 63.6 89.04
10 48.3 81.52 89.16

Finally, we compared our designed task-adaptive-based multitask loss function with a
simple summation loss function, and the results are shown in Table 10. The weight calcula-
tion used had a good index improvement in object detection and lane line segmentation.
The results prove that our proposed task-based multiobjective adaptive algorithm has a
good representation of the dataset of this paper.

Table 10. Comparison of the different methods for multitask loss.

Method Accuracy (%) mIoU (%) Top 1 (%)

Add directly 61.8 70.22 89.96
Ours 68.6 73.69 89.79



Electronics 2022, 11, 2697 14 of 17

In general, the algorithm in this paper prioritized lane line detection during code
execution, selectd RepVGG as the network backbone, used LEIoU as Lbox, with a weight of
2, and adopted the dynamic task-adaptive-based multitask loss function proposed in this
paper when calculating the multitask loss function.

4.3. Visualization

The visualization of this network on the test set is shown in Figure 9.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. The visual representation of the results in our work. (a–d) correspond to the simulated
data in our dataset, (e,f) correspond to data collected at night and (g–i) correspond to data collected
during the day. The red circle indicates that the obstacle intrudes into the track area, and the purple
circle indicates that the obstacle intrudes into the first-level warning area on both sides of the rail.

4.4. Comparison to Other Methods

In this section, we compare the results of this network and other object detection or
lane line networks running on our dataset. In these experiments, we used RepVGG as our
backbone, a head-first lane line detection as the head network order and used LEIoU as
Lbox. For the obstacle detection, three methods were used for experimental comparison.
The results are shown in Table 11. Although the method proposed in this paper is not as
real-time as YOLOX and YOLOv7, it can also meet the real-time requirements while the
frame rate of the video is 25 FPS. Furthermore, the method used in this article achieved the
best results in detection accuracy, with a 2.9% improvement compared to YOLOv7, which
is the latest work in the YOLO series.

Table 11. Comparison with the results of other target detection networks.

Method Size GFlops Params (M) Accuracy (%) FPS

ATSS [27] 640 205 32 56.2 12
YOLOX-s [28] 640 27 9 53.7 69
YOLOv7-s [29] 640 104 37 65.7 56

Ours 640 128 85 68.6 52

For the lane line detection network, we used the segmentation network for the ex-
perimental comparison. In this comparative experiment, FPS was calculated with a seg-



Electronics 2022, 11, 2697 15 of 17

mentation branch. The results are shown in Table 12. Table 12 also proves that the slender
structure of the track line is not suitable when applying a pure segmentation algorithm.

Table 12. Comparison with the results of other segmentation networks.

Method Size GFlops Params (M) mIoU (%) FPS

Deeplabv3 [30] 416 1021 63 33.12 16
PSPNet [31] 416 619 664 57.55 13
CCNet [32] 416 804 427 58.7 9
DANet [33] 416 1110 2339 43.44 10
ISANet [34] 416 386 252 42.38 27

Ours 640 128 85 73.69 40

From Tables 11 and 12, it can be seen that although our method is insufficient in FPS
compared with other YOLO methods, it has better performance in both accuracy and mIOU.
Regarding computational efficiency, because multitask networks need to perform more task
runs than single-task networks, the number of model parameters and the model complexity
are increased. However, although the number of model parameters is increased, for new
tasks with little data, the cold start problem is also solved. The potential reason is that
different tasks have different noises. Assuming that the noises of different tasks tend to
be in different directions, learning together offsets some of the noise to a certain extent,
making the learning effect better and the model more robust. In addition, the multitask
method adopts a shared encoder structure and different tasks affect the feature generation
part. As a result, the associated multitask learning can achieve a better generalization effect
than single-task learning, and reduce the possibility of model overfitting. Through the
intersection and union of multiple different task solution spaces, the multitask solution
space is supplemented and generalized to obtain a more representative solution space.
Therefore, the multitask learning performance is better than the single-task learning one.

In general, the multitask network proposed in this paper can achieve more advanta-
geous experimental results than those of the single-task network. At the same time, the
weight of the task-adaptive loss function proposed in this paper can also improve each
individual task.

5. Conclusions

In this paper, we proposed a multitask learning network that was used for railway
obstacle intrusion detection. The network could detect obstacles appearing in front of
the train in real time and could identify the rail track line. It could perform obstacle
recognition and multilevel warning functions even if the track line was blocked, so that
railway operations’ risks were reduced. By using the track line detection algorithm based
on line classification, our work made up for the shortcomings of using a segmentation
method for track line detection, and the segmentation results were greatly improved. We
also designed a multitask loss function coefficient for balancing different tasks’ complexity,
which helped the network better perform different detection tasks.

The current network had better processing capabilities for straights and gentle curves.
Future work may focus on strengthening the processing of curves and improving the
robustness of the network under different rail conditions.

Author Contributions: Conceptualization, H.W.; Data curation, X.T.; Funding acquisition, H.P.;
Methodology, Y.L.; Software, Y.L.; Supervision, H.P.; Validation, Y.L.; Visualization, Y.L.; Writing—
original draft, Y.L.; Writing—review & editing, H.P. and H.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Most of the data are not applicable; web scraped and simulated data
can be provided upon request.



Electronics 2022, 11, 2697 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, Y.; Fang, J.; Zhao, J.; Zhang, Q. Research on the Application of YOLO v3 in Railway Intruding Objects Recognition. In

Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications, Dalian, China, 24–26
June 2022; IEEE: New York, NY, USA, 2022; pp. 583–586.

2. Ding, X.; Cai, X.; Zhang, Z.; Liu, W.; Song, W. Railway Foreign Object Intrusion Detection based on Deep Learning. In Proceedings
of the International Conference on Computer Engineering and Artificial Intelligence, Shijiazhuang, China, 22–24 July 2022; IEEE
Computer Society: Washington, DC, USA, 2022; pp. 735–739.

3. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
4. Jocher, G. Yolov5. 2021. Available online: https://github.com/ultralytics/yolov5 (accessed on 9 June 2020).
5. Liu, L.; Gou, J.N. Research on detection method of railwat intrusion obstacles based on the YOLO v4. J. Railw. Sci. Eng. 2022, 19,

528–536.
6. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
7. Wang, Y.; Zhu, L.; Yu, Z. Segmentation and recognition algorithm for high-speed railway sence. Acta Opt. Sin. 2019, 39, 119–126.
8. Chen, Y.; Lu, C.; Wang, Z. Detection of foreign object intrusion in railway region of interest based on lightweight network. J. Jilin

Univ. 2021, 1–13. [CrossRef]
9. Teichmann, M.; Weber, M.; Zöllner, M.; Cipolla, R.; Urtasun, R. Multinet: Real-time joint semantic reasoning for autonomous

driving. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: New
York, NY, USA, 2018; pp. 1013–1020.

10. Wu, D.; Liao, M.; Zhang, W.; Wang, X.; Bai, X.; Cheng, W.; Liu, W. Yolop: You only look once for panoptic driving perception.
arXiv 2021, arXiv:2108.11250.

11. Vu, D.; Ngo, B.; Phan, H. HybridNets: End-to-End Perception Network. arXiv 2022, arXiv:2203.09035.
12. Alex, K.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the

Annual Conference on Neural Information Processing Systems, Lake Tahoe, CA, USA, 3–8 December 2012.
13. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
14. Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,

7–13 December 2015; pp. 1440–1448.
15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015.
16. Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as deep: Spatial cnn for traffic scene understanding. In Proceedings of the AAAI

Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.
17. Hou, Y.; Ma, Z.; Liu, C.; Loy, C.C. Learning lightweight lane detection cnns by self attention distillation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1013–1021.
18. Yoo, S.; Lee, H.; Myeong, H.; Yun, S.; Park, H.; Cho, J.; Kim, D.H. End-to-end lane marker detection via row-wise classification. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19
June 2020; pp. 1006–1007.

19. Qin, Z.; Wang, H.; Li, X. Ultra fast structure-aware deep lane detection. In Proceedings of the European Conference on Computer
Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 276–291.

20. Tabelini, L.; Berriel, R.; Paixao, T.M.; Badue, C.; De Souza, A.F.; Oliveira-Santos, T. Keep your eyes on the lane: Real-time
attention-guided lane detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2021; pp. 294–302.

21. Xu, D.; Ouyang, W.; Wang, X.; Sebe, N. Pad-net: Multi-tasks guided prediction-and-distillation network for simultaneous depth
estimation and scene parsing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 675–684.

22. Zhao, Y.; Qi, M.; Li, X.; Meng, Y.; Yu, Y.; Dong, Y. P-LPN: Towards Real Time Pedestrian Location Perception in Complex Driving
Scenes. IEEE Access 2020, 8, 54730–54740. [CrossRef]

23. Misra, I.; Shrivastava, A.; Gupta, A.; Hebert, M. Cross-stitch networks for multi-task learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3994–4003.

24. Gao, Y.; Ma, J.; Zhao, M.; Liu, W.; Yuille, A.L. Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural discriminative
dimensionality reduction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 15–20 June 2019; pp. 3205–3214.

25. Liu, S.; Johns, E.; Davison, A.J. End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp.1871–1880.

26. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742.

https://github.com/ultralytics/yolov5
http://doi.org/10.13229/j.cnki.jdxbgxb20210266.
http://dx.doi.org/10.1109/ACCESS.2020.2981821


Electronics 2022, 11, 2697 17 of 17

27. Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training
sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 9759–9768.

28. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
29. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.
30. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,

arXiv:1706.05587.
31. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.
32. Huang, Z.; Wang, X.; Wei, Y.; Huang, L.; Shi, H.; Liu, W.; Huang, T.S. Ccnet: Criss-cross attention for semantic segmentation.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 603–612.

33. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.

34. Xu, Z.; Ren, H.; Zhou, W.; Liu, Z. ISANET: Non-small cell lung cancer classification and detection based on CNN and attention
mechanism. Biomed. Signal Process. Control. 2022, 77, 103773 [CrossRef]

http://dx.doi.org/10.1016/j.bspc.2022.103773

	Introduction
	Related Works
	Methodology
	The Network of Multitask Learning
	New Formulation for Multitask Learning

	Experiments
	Datasets
	Ablation Study
	Visualization
	Comparison to Other Methods

	Conclusions
	References

